首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic cells are susceptible to human immunodeficiency virus (HIV) infection and may transmit the virus to T cells in vivo. Scarce information is available about drug efficacy in dendritic cells because preclinical testing of antiretroviral drugs has been limited predominantly to T cells and macrophages. We compared the antiviral activities of hydroxyurea and two protease inhibitors (indinavir and ritonavir) in monocyte-derived dendritic cells and in lymphocytes. At therapeutic concentrations (50 to 100 microM), hydroxyurea inhibited supernatant virus production from monocyte-derived dendritic cells in vitro but the drug was ineffective in activated lymphocytes. Concentrations of hydroxyurea insufficient to be effective in activated lymphocytes cultured alone strongly inhibited supernatant virus production from cocultures of uninfected, activated lymphocytes with previously infected monocyte-derived dendritic cells in vitro. In contrast, protease inhibitors were up to 30-fold less efficient in dendritic cells than in activated lymphocytes. Our data support the rationale for testing of the combination of hydroxyurea and protease inhibitors, since these drugs may have complementary antiviral efficacies in different cell compartments. A new criterion for combining drugs for the treatment of HIV infection could be to include at least one drug that selectively targets HIV in viral reservoirs.  相似文献   

2.
Cells responsible for repopulation of irradiated longterm cultures of murine bone marrow and capable of generating CFUs for at least 4-5 weeks after seeding referred here to as primitive hemopoietic stem cells (P-HSC) were assayed by limiting dilution analysis. During development of mice P-HSC can be detected for the first time in the liver of 12-13-day-old embryos and their number is about 10 per organ. At day 17-18 of gestation the number of P-HSC increases ten-fold; however, we could not detect the proliferation of these cells using the technique of hydroxyurea suicide. In the adult mouse P-HSC content is about 100 precursors per femur and their concentration is one P-HSC per 1-2 x 10(5) bone marrow cells. P-HSC content in the spleen is 0.5 per 10(6) cells. In vivo treatment with 5-fluorouracil or hydroxyurea (six injections every 6 h) does not alter significantly the number of P-HSC, although either treatment kills about 99% of CFUs. Several months after reconstitution of lethally irradiated mice with a "small" inoculum of bone marrow cells (0.20-0.35 x 10(6)) the number of bone marrow P-HSC was reduced as compared to that in animals reconstituted by injection of a "large" cell dose (20-35 x 10(6)). These data suggest that P-HSC have limited proliferative potential and are incapable of self-maintenance.  相似文献   

3.
In in vitro micronucleus (MN) assays the sensitivity to MN induction or cytotoxicity can vary depending on the kind of cells employed. This study was conducted to examine the involvement of the p53 function in the different sensitivities between Chinese hamster lung (CHL) cells and human lymphoblastoid TK6 cells in MN assays. MN induction and cytotoxicity were compared using MN-inducing chemicals reported as DNA reactive clastogens, non-DNA reactive clastogens or aneugens. The study revealed that the maximum levels of MN induction in p53-compromised CHL cells were higher than those in p53-competent TK6 cells, but MN were significantly induced in TK6 cells at lower concentrations than in CHL cells. Most of the test chemicals produced a more severe cytotoxicity in TK6 cells, suggesting TK6 cells are more sensitive for cytotoxicity than CHL cells. An additional experiment with 9 MN inducers revealed that the magnitude of MN induction and cytotoxicity were comparable between p53-competent TK6 cells and its p53-null mutant NH32 cells at the same concentrations. Furthermore, the MN frequencies induced by methylmethane sulfonate, aphidicolin and hydroxyurea in NH32 cells were identical to those in TK6 cells at different recovery times. From these results, it is suggested that the p53 abrogation does not explain the difference in sensitivity to MN induction or cytotoxicity between CHL and TK6 cells. In this regard, p53 abrogated NH32 cells can be an option for the in vitro MN assay.  相似文献   

4.
The effect of IL-3 and hydroxyurea on human erythroleukemia cell line (K562 cells) was demonstrated by using the electro-microscopy and flow cytometry. Our data showed that neither IL-3 nor hydroxyurea could induce the apoptosis of K562 cells alone. However, the IL-3 and hydroxyurea could induce the apoptosis of K562 cells cooperatively. Analysis with flow cytometry showed that the percentage of apoptotic cells was about 31.90% after K562 cells were induced by IL-3 and hydroxyurea cooperatively for 5 days, and the sub-G1 peak (apoptotic peak) was detected in the induced K562 cells. Meanwhile, the percentage of S-phase in the IL-3 and hydroxyurea induced K562 cells was increased, and the proliferation of the induced K562 cells was inhibited significantly. Furthermore, the IL-3 and hydroxyurea induced K562 cells showed chromatin condensation with regular crescents at the nuclear edges and apoptotic bodies. It suggested that IL-3 could enhance the sensitivity of K562 cells to hydroxyurea and the apoptosis of K562 cells could be induced by IL-3 and hydroxyurea cooperatively.  相似文献   

5.
本文应用流式细胞分选仪和电子显微镜研究了IL-3和羟基脲对人红白血病细胞株(K562细胞)凋亡的影响.结果显示IL-3和羟基脲分别诱导K562细胞,不能引起细胞凋亡;而IL-3和羟基脲协同诱导K562细胞,可以引起细胞凋亡.用流式细胞仪检测到IL-3和羟基脲协同诱导K562细胞后,DNA含量低于二倍体的细胞数达31.90%,并产生明显的凋亡小峰.同时,IL-3和羟基脲协同诱导K562细胞,可抑制细胞周期中的S期,阻止细胞从S期进入G2/M期,使细胞周期延长,对K562细胞的生长和增殖具有抑制作用.在电镜下可观察到IL-3和羟基脲协同诱导的K562细胞,出现典型的凋亡细胞形态,细胞核内染色质浓缩、凝聚,紧靠在核膜边沿,形成新月形或环状的染色质结构,产生凋亡小体.提示IL-3和羟基脲具有协同效应,IL-3可提高K562细胞对羟基脲的敏感性,并可协同羟基脲诱导K562细胞凋亡.  相似文献   

6.
Cell-free DNA synthesis was performed in a lysed cell system from mouse cell cultures. The in vitro reaction was totally inhibited by N-ethylmaleimide but unaffected by hydroxyurea or fluorodeoxyuridine when these compounds were added to the incubation mixture. However, in a preparation obtained from cells which had been blocked by hydroxyurea before lysis, the rate of DNA synthesis was markedly reduced. This effect could not have been caused by the depletion of the precursor pools as all necessary triphosphates were added to the in vitro incubation mixture. Analysis by alkaline density gradients showed that the ligation of primary synthesis products is retarded in hydroxyurea-pretreated lysed cells and that small fragments accumulate. These results suggest that hydroxyurea interferes with the processing of early replication products, preventing the formation of longer intermediates. Its mechanism is either independent from the well-known inhibition of ribonucleoside diphosphate reductase or it may be the result of an as-yet-unknown function of this enzyme in a later step of replication. This observation could help to explain why cells appear to be blocked by hydroxyurea in the early part of the S phase (rather than at the G1/S border proper) and also why DNA repair synthesis is relatively insensitive to the drug.  相似文献   

7.
6 mutant alleles of the mei-41 locus in Drosophila melanogaster are shown to cause hypersensitivity to hydroxyurea in larvae. The strength of that sensitivity is directly correlated with the influence of the mutant alleles on meiosis in that: alleles exhibiting a strong meiotic effect (mei-41D2, mei-41D5, mei-41D7) are highly sensitive; alleles with negligible meiotic effects (mei-41(104)D1, mei-41(104)D2) are moderately sensitive and an allele which expresses meiotic effects only under restricted conditions (mei-41D9) has an intermediate sensitivity. This sensitivity is not a general feature of strong postreplication repair-deficient mutants, because mutants with that phenotype from other loci do not exhibit sensitivity (mus(2)205A1, mus(3)302D1, mus(3)310D1). The observed lethality is not due to hypersensitivity of DNA synthesis in mei-41 larvae to hydroxyurea as assayed by tritiated thymidine incorporation. Lethality is, however, potentially attributable to an abnormal enhancement of chromosomal aberrations by hydroxyurea in mutant mei-41 larvae. Both in vivo and in vitro exposure of neuroblast cells to hydroxyurea results in an increase in 3 types of aberrations which is several fold higher in mei-41 tissue. Since hydroxyurea disrupts DNA synthesis, these results further implicate the mei-41 locus in DNA metabolism and provide an additional tool for an elucidation of its function. The possible existence of additional genes of this nature is suggested by a more modest sensitivity to hydroxyurea which has been detected in two stocks carrying mutagen-sensitive alleles of alternate genes.  相似文献   

8.
9.
Hydroxyurea is a differentiation-inducing agent of human erythroleukemia K562 cells. However, the cellular mechanisms by which hydroxyurea exerts its effects on tumor cells, leading to the inhibition of cell growth and the induction of differentiation markers, are largely unknown. This study examined the role of different mitogen-activated protein kinase signal transduction pathways in hydroxyurea-induced erythroid differentiation of K562 cells. Using a panel of anti-extracellular signal-related kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 phosphospecific antibodies, we demonstrated that phosphorylation of ERK and JNK is decreased after the treatment of cells with hydroxyurea, whereas phosphorylation of p38 is increased. Moreover, inhibition of ERK activity by PD98059 induced erythroid differentiation, and it acted synergistically with hydroxyurea on hemoglobin synthesis, whereas inhibition of p38 activity by SB203580 inhibited induction of hemoglobin production by hydroxyurea. These findings suggest that the activation of p38 kinase may play important roles in the signal transduction mechanisms of hydroxyurea leading to erythroid differentiation.  相似文献   

10.
Abstract. In vitro studies of BrdU-dependent sister chromatid differential staining typically employ two cycles of BrdU incorporation. Experiments are described which determined the actual fraction of both S-phases that the rat embryonic fibroblasts (Rat-1) cells had to traverse in order to show distinctive differential staining. Following synchronization of cells by a combination of serum deprivation and hydroxyurea blockage, sister chromatid differential staining, labelling index, mitotic index, and per cent DNA replication are determined. Results indicate that only ≤50% of the first S-phase is necessary in order to show distinctive differential staining. the importance of this finding to studies of cellular proliferation using BrdU incorporation is discussed.  相似文献   

11.
In vitro studies of BrdU-dependent sister chromatid differential staining typically employ two cycles of BrdU incorporation. Experiments are described which determined the actual fraction of both S-phases that the rat embryonic fibroblasts (Rat-1) cells had to traverse in order to show distinctive differential staining. Following synchronization of cells by a combination of serum deprivation and hydroxyurea blockage, sister chromatid differential staining, labelling index, mitotic index, and per cent DNA replication are determined. Results indicate that only approximately 50% of the first S-phase is necessary in order to show distinctive differential staining. The importance of this finding to studies of cellular proliferation using BrdU incorporation is discussed.  相似文献   

12.
We investigated the helper-independent replication of adeno-associated virus (AAV) in cells synchronized by pretreatment with hydroxyurea, reversal of polyamine depletion, or physical mitotic detachment. In Chinese hamster cells (OD4 line) treated with hydroxyurea prior to infection. AAV underwent a complete cycle of replication. Transfection of such cells with plasmid-cloned AAV DNAs also gave rise to infectious viral progeny. Synchronization of OD4 cells by reversal of polyamine depletion or mitotic detachment led to independent AAV DNA synthesis (and infectious viral progeny in the case of the former procedure), but these procedures were not as effective as hydroxyurea pretreatment. Independent AAV DNA synthesis was also detected in some other cell lines of Chinese hamster, human, and monkey origin treated with hydroxyurea prior to infection. The results demonstrate that, in contrast to previous notions, the AAV infectious process is not absolutely dependent upon the addition of a coinfecting helper virus.  相似文献   

13.
The synthesis of polyoma DNA was studied in isolated nuclei from hydroxyurea-inhibited 3T6 cells infected with polyoma virus. During incubation of nuclei under conditions suitable for polyoma DNA synthesis in vitro, the short DNA fragments with a sedimentation coefficient of 4S formed in vivo (hydroxyurea fragments) became associated with preformed, replicating DNA strands. Centrifugation in dye-buoyant density gradients showed that the fragments formed part of the structure of the replicative intermediate of polyoma DNA. The proportion of "young" replicative intermediates was larger after hydroxyurea inhibition than in uninhibited controls. Hydroxyurea fragments appear to be closely related to the 4S fragments formed as normal intermediates during discontinuous synthesis of polyoma DNA.  相似文献   

14.
We studied DNA repair synthesis after ultraviolet irradiation in human fibroblasts cultured in vitro by measuring the ultraviolet-stimulated incorporation of [3H]thymidine into cells in which the semi-conservative DNA replication was inhibited by hydroxyurea. Experiments performed with five fibroblasts lines derived from healthy donors showed a relatively fast initial process ( that is completed within 1 h for 100 erg/mm2 and within 2 h for 500 erg/mm2) and a subsequent slower process, evident between 2 and 6 h after irradiation. The repair capacity of normal cells is expressed by the difference between the values of incorporation (in presence of hydroxyurea) of irradiated and control cells. The pattern of repair was similar in all five cell lines: repair capacity was positive and the amount of repair synthesis increased with incubation time after UV irratiation. Similar experiments were performed with fibroblasts derived from five patients with the classical xeroderma pigmentosum (XP) and from one patient with the De Sanctis-Cacchione syndrome. Normal and XP cells could be distinguished according to whether they displayed a positive or negative value of repair synthesis and/or according to the degree of the slope of the repair synthesis curve as a function of the incubation time after irradiation. We conclude that the technique used in our experiments can demonstrate in a rapid and simple way a defect in the repair capacity in fibroblast cultures; the data are in good agreement with those obtained in the same XP cell lines by other authors [9], who have measured unscheduled DNA synthesis in autoradiographs and repair replication after addition of BUdR.  相似文献   

15.
Alterations in cell cycle regulation underlie the unrestricted growth of neoplastic astrocytes. Chemotherapeutic interventions of gliomas have poor prognostic outcomes due to drug resistance and drug toxicity. Here, we examined the in vitro growth kinetics of C6 glioma (C6G) cells and primary astrocytes and their responses to 2 phase-specific inhibitors, lovastatin and hydroxyurea. C6G cells demonstrated a shorter G1 phase and an earlier peak of DNA synthesis in S phase than primary astrocytes. As C6G cells and primary astrocytes re-entered the cell cycle in the presence of lovastatin or hydroxyurea, they exhibited different sensitivities to the inhibitory effects of these agents, as measured by [3H]-thymidine incorporation. Compared to primary astrocytes, C6G cells were more sensitive to lovastatin, but less sensitive to hydroxyurea. Studies using 2 different paradigms of exposure uncovered dramatic differences in the kinetics of DNA synthesis inhibition by these 2 agents in C6G cells and primary astrocytes. One notable difference was the ability of C6G cells to more easily recover from the inhibitory effects of hydroxyurea following short exposure. Our results provide insight into C6 glioma drug resistance as well as the inhibitory effects of these 2 phase-specific inhibitors and their chemotherapeutic potential.  相似文献   

16.
The human adenovirus DNA genome contains a protein (CBP, or covalently bound protein) linked to each 5' terminus. To assess whether CBP is synthesized early, infected cells were incubated with hydroxyurea from 1 to 18 h postinfection, the hydroxyurea was removed, cycloheximide was added, and viral DNA was labeled with [3H]thymidine from 18 to 23 h postinfection. Removal of hydroxyurea at 18 h postinfection permits the synthesis of viral DNA, whereas cycloheximide maintains the block in late viral protein synthesis. Three lines of evidence are presented to show that viral 3H-labeled DNA prepared by this procedure was linked to CBP: (I) the DNA sedimented more rapidly than protein-free DNA (i.e., protinase treated) in neutral sucrose gradients containing guanidine hydrochloride; (ii) the DNA banded at a lower density than protein-free DNA in CsCl gradients containing guanidine hydrochloride; and (iii) neither the 3H-labeled DNA nor the end fragments produced by EcoRI digestion entered a 1.4% agarose gel during electrophoresis. These experiments are strong evidence that CBP is not a product of a late viral gene and is therefore the product of either an early viral gene or a cell gene. Experiments were performed to test whether CBP is attached to viral DNA synthesized in vitro by a soluble complex that synthesizes exclusively viral DNA as completed viral genomes in vitro. In vitro-labeled DNA was analyzed by velocity sedimentation, equilibrium sedimentation, and agarose gel electrophoresis as described above. Our results indicate that the majority of in vitro-synthesized DNA molecules were attached to CBP. These results, which indicate that CBP is synthesized early after infection and is attached to viral DNA labeled in vitro by a soluble replication complex, are consistent with the idea that CBP may play a role in viral DNA replication.  相似文献   

17.
We have measured deoxyribonucleotide pool sizes in different cell types: normal human, transformed human (HeLa), and the permanent hamster line CHO-K1. The range of sizes of the four DNA precursor pools in CHO cells is far greater than in human cells. It is a general rule that hydroxyurea causes rapid depletion of pools (except for dTTP) until the pool present in smallest amount is exhausted; this suggests a tight coupling of the pools to DNA replication (the presumed main cause of the depletion). The effect of hydroxyurea on DNA repair after ultraviolet irradiation (namely, a relatively small accumulation of incomplete repair sites blocked at the resynthesis stage) is probably accounted for by the reduced availability of DNA precursors. However, depletion of the dCTP pool is not an adequate explanation for the observed enhancement by hydroxyurea of the inhibitory effect of cytosine arabinoside; we suggest other possible modes of action. Ultraviolet irradiation has only small effects on the levels of deoxyribonucleotides.  相似文献   

18.
The antitumor agent hydroxyurea is a potent inhibitor of cell division and selectivity toxic for rapidly proliferating cells. This drug has been used in the treatment of human cancer and, since drug transport is an important aspect of drug action, we investigated the mechanism of hydroxy[14C]urea uptake by human diploid fibroblasts and their SV40-virus-transformed counterparts. Kinetic analysis of drug uptake, studies with metabolic inhibitors, and estimates of cell/medium distribution ratios and temperature coefficient (Q10) values indicated that hydroxyurea enters normal and SV40-virus-transformed human cells by a mechanism of diffusion.  相似文献   

19.
We studied the sensitivity of tumor cells to the induction of apoptosis by iron deprivation. Iron deprivation was achieved by the employment of a defined iron-deficient culture medium. Mouse 38C13 cells and human Raji cells die within 48 and 96 h of incubation in iron-deficient medium, respectively. On the contrary, mouse EL4 cells and human HeLa cells are completely resistant to the induction of death under the same experimental arrangement. Deoxyribonucleic acid fragmentation analysis by agarose gel electrophoresis as well as flow cytometric analysis after propidium iodide staining detected in 38C13 and Raji cells, but not in EL4 and HeLa cells, changes characteristic to apoptosis. The 38C13 cells, sensitive to iron deprivation, also displayed a similar degree of sensitivity to apoptosis induction by thiol deprivation (achieved by 2-mercaptoethanol withdrawal from the culture medium) as well as by rotenone (50 nM), hydroxyurea (50 microM), methotrexate (20 nM), and doxorubicin (100 nM). Raji cells shared with 38C13 cells a sensitivity to rotenone, methotrexate, doxorubicin, and, to a certain degree, to hydroxyurea. However, Raji cells were completely resistant to thiol deprivation. EI4 and HeLa cells, resistant to iron deprivation, also displayed a greater degree of resistance to most of the other apoptotic stimuli than did their sensitive counterparts. We conclude that some tumor cells in vitro are sensitive to apoptosis induction by iron deprivation, while other tumor cells are resistant. All the tumors found to be sensitive to iron deprivation in this study (four cell lines) are of hematopoietic origin. The mechanism of resistance to apoptosis induction by iron deprivation differs from the mechanism of resistance to thiol deprivation.  相似文献   

20.
In order to clarify the role of HMW FGF-2 in glioma development and angiogenesis, we over-expressed different human FGF-2 isoforms in C6 rat glioma cell line using a tetracycline-regulated expression system. Phenotypic modifications were analyzed in vitro and compared to untransfected cells or to cells over-expressing 18 kDa FGF-2 or all FGF-2 isoforms. In particular, we demonstrate that HMW FGF-2 has unique features in inhibiting glioma cell proliferation. HMW FGF-2 expressing cells showed a cell-cycle arrest at the G2M, demonstrating a role of HMW FGF-2 in controlling the entry in mitosis. Moreover, hydroxyurea was ineffective in blocking cells at the G1S boundary when HMW FGF-2 was expressed. We also show that the HMW FGF-2 isoforms inhibit 4E-BP1 phosphorylation at critical sites restoring the translation inhibitory activity of 4E-BP1. In vivo, inhibition of tumor growth was observed when cells expressed HMW FGF-2. This indicates that HMW FGF-2 inhibits tumor growth in glioma cells by acting on cell-cycle progression and protein translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号