首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Cai J  Qi Y  Hu X  Tan M  Liu Z  Zhang J  Li Q  Sander M  Qiu M 《Neuron》2005,45(1):41-53
In the developing spinal cord, early progenitor cells of the oligodendrocyte lineage are induced in the motor neuron progenitor (pMN) domain of the ventral neuroepithelium by the ventral midline signal Sonic hedgehog (Shh). The ventral generation of oligodendrocytes requires Nkx6-regulated expression of the bHLH gene Olig2 in this domain. In the absence of Nkx6 genes or Shh signaling, the initial expression of Olig2 in the pMN domain is completely abolished. In this study, we provide the in vivo evidence for a late phase of Olig gene expression independent of Nkx6 and Shh gene activities and reveal a brief second wave of oligodendrogenesis in the dorsal spinal cord. In addition, we provide genetic evidence that oligodendrogenesis can occur in the absence of hedgehog receptor Smoothened, which is essential for all hedgehog signaling.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
The homeobox gene Hb9, like its close relative MNR2, is expressed selectively by motor neurons (MNs) in the developing vertebrate CNS. In embryonic chick spinal cord, the ectopic expression of MNR2 or Hb9 is sufficient to trigger MN differentiation and to repress the differentiation of an adjacent population of V2 interneurons. Here, we provide genetic evidence that Hb9 has an essential role in MN differentiation. In mice lacking Hb9 function, MNs are generated on schedule and in normal numbers but transiently acquire molecular features of V2 interneurons. The aberrant specification of MN identity is associated with defects in the migration of MNs, the emergence of the subtype identities of MNs, and the projection of motor axons. These findings show that HB9 has an essential function in consolidating the identity of postmitotic MNs.  相似文献   

17.
Oscillations in notch signaling regulate maintenance of neural progenitors   总被引:3,自引:0,他引:3  
Shimojo H  Ohtsuka T  Kageyama R 《Neuron》2008,58(1):52-64
Expression of the Notch effector gene Hes1 is required for maintenance of neural progenitors in the embryonic brain, but persistent and high levels of Hes1 expression inhibit proliferation and differentiation of these cells. Here, by using a real-time imaging method, we found that Hes1 expression dynamically oscillates in neural progenitors. Furthermore, sustained overexpression of Hes1 downregulates expression of proneural genes, Notch ligands, and cell cycle regulators, suggesting that their proper expression depends on Hes1 oscillation. Surprisingly, the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta-like1 (Dll1) are also expressed in an oscillatory manner by neural progenitors, and inhibition of Notch signaling, a condition known to induce neuronal differentiation, leads to downregulation of Hes1 and sustained upregulation of Ngn2 and Dll1. These results suggest that Hes1 oscillation regulates Ngn2 and Dll1 oscillations, which in turn lead to maintenance of neural progenitors by mutual activation of Notch signaling.  相似文献   

18.
Constitutive activation of the Notch pathway can promote gliogenesis by peripheral (PNS) and central (CNS) nervous system progenitors. This raises the question of whether physiological Notch signaling regulates gliogenesis in vivo. To test this, we conditionally deleted Rbpsuh (Rbpj) from mouse PNS or CNS progenitors using Wnt1-Cre or Nestin-Cre. Rbpsuh encodes a DNA-binding protein (RBP/J) that is required for canonical signaling by all Notch receptors. In most regions of the developing PNS and spinal cord, Rbpsuh deletion caused only mild defects in neurogenesis, but severe defects in gliogenesis. These resulted from defects in glial specification or differentiation, not premature depletion of neural progenitors, because we were able to culture undifferentiated progenitors from the PNS and spinal cord despite their failure to form glia in vivo. In spinal cord progenitors, Rbpsuh was required to maintain Sox9 expression during gliogenesis, demonstrating that Notch signaling promotes the expression of a glial-specification gene. These results demonstrate that physiological Notch signaling is required for gliogenesis in vivo, independent of the role of Notch in the maintenance of undifferentiated neural progenitors.  相似文献   

19.
20.
Notch signaling regulates numerous developmental processes, often acting either to promote one cell fate over another or else to inhibit differentiation altogether. In the embryonic pancreas, Notch and its target gene Hes1 are thought to inhibit endocrine and exocrine specification. Although differentiated cells appear to downregulate Hes1, it is unknown whether Hes1 expression marks multipotent progenitors, or else lineage-restricted precursors. Moreover, although rare cells of the adult pancreas express Hes1, it is unknown whether these represent a specialized progenitor-like population. To address these issues, we developed a mouse Hes1(CreERT2) knock-in allele to inducibly mark Hes1(+) cells and their descendants. We find that Hes1 expression in the early embryonic pancreas identifies multipotent, Notch-responsive progenitors, differentiation of which is blocked by activated Notch. In later embryogenesis, Hes1 marks exocrine-restricted progenitors, in which activated Notch promotes ductal differentiation. In the adult pancreas, Hes1 expression persists in rare differentiated cells, particularly terminal duct or centroacinar cells. Although we find that Hes1(+) cells in the resting or injured pancreas do not behave as adult stem cells for insulin-producing beta (β)-cells, Hes1 expression does identify stem cells throughout the small and large intestine. Together, these studies clarify the roles of Notch and Hes1 in the developing and adult pancreas, and open new avenues to study Notch signaling in this and other tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号