共查询到20条相似文献,搜索用时 0 毫秒
1.
Retinitis pigmentosa is a hereditary eye disease that affects photoreceptors and leads to blindness. The discovery of a microbial light-gated channel and the subsequent development of similar 'optogenetic' sensors have opened the door to creating artificial photoreceptors in the remaining retinal circuits of retinitis pigmentosa retinas via gene therapy. Here we review recent studies in animal models of retinitis pigmentosa that have combined knowledge of retinal cell types, circuits and computations with the ability to equip cell types with optogenetic sensors in order to restore visual activity. We also discuss the translational potential of this therapy. 相似文献
2.
Cognitive neuroscience of creativity has been extensively studied using non-invasive electrical recordings from the scalp called electroencephalograms (EEGs) and event related potentials (ERPs). The paper discusses major aspects of performing research using EEG/ERP based experiments including the recording of the signals, removing noise, estimating ERP signals, and signal analysis for better understanding of the neural correlates of processes involved in creativity. Important factors to be kept in mind to record clean EEG signal in creativity research are discussed. The recorded EEG signal can be corrupted by various sources of noise and methodologies to handle the presence of unwanted artifacts and filtering noise are presented followed by methods to estimate ERPs from the EEG signals from multiple trials. The EEG and ERP signals are further analyzed using various techniques including spectral analysis, coherence analysis, and non-linear signal analysis. These analysis techniques provide a way to understand the spatial activations and temporal development of large scale electrical activity in the brain during creative tasks. The use of this methodology will further enhance our understanding the processes neural and cognitive processes involved in creativity. 相似文献
4.
The investigation of the functional connectivity of precise neural circuits across the entire intact brain can be achieved through optogenetic functional magnetic resonance imaging (ofMRI), which is a novel technique that combines the relatively high spatial resolution of high-field fMRI with the precision of optogenetic stimulation. Fiber optics that enable delivery of specific wavelengths of light deep into the brain in vivo are implanted into regions of interest in order to specifically stimulate targeted cell types that have been genetically induced to express light-sensitive trans-membrane conductance channels, called opsins. fMRI is used to provide a non-invasive method of determining the brain''s global dynamic response to optogenetic stimulation of specific neural circuits through measurement of the blood-oxygen-level-dependent (BOLD) signal, which provides an indirect measurement of neuronal activity. This protocol describes the construction of fiber optic implants, the implantation surgeries, the imaging with photostimulation and the data analysis required to successfully perform ofMRI. In summary, the precise stimulation and whole-brain monitoring ability of ofMRI are crucial factors in making ofMRI a powerful tool for the study of the connectomics of the brain in both healthy and diseased states. 相似文献
6.
We introduce optogenetic investigation of neurotransmission (OptIoN) for time-resolved and quantitative assessment of synaptic function via behavioral and electrophysiological analyses. We photo-triggered release of acetylcholine or gamma-aminobutyric acid at Caenorhabditis elegans neuromuscular junctions using targeted expression of Chlamydomonas reinhardtii Channelrhodopsin-2. In intact Channelrhodopsin-2 transgenic worms, photostimulation instantly induced body elongation (for gamma-aminobutyric acid) or contraction (for acetylcholine), which we analyzed acutely, or during sustained activation with automated image analysis, to assess synaptic efficacy. In dissected worms, photostimulation evoked neurotransmitter-specific postsynaptic currents that could be triggered repeatedly and at various frequencies. Light-evoked behaviors and postsynaptic currents were significantly (P 相似文献
7.
The recent development of light-activated optogenetic probes allows for the identification and manipulation of specific neural populations and their connections in awake animals with unprecedented spatial and temporal precision. This review describes the use of optogenetic tools to investigate neurons and neural circuits in vivo. We describe the current panel of optogenetic probes, methods of targeting these probes to specific cell types in the nervous system, and strategies of photostimulating cells in awake, behaving animals. Finally, we survey the application of optogenetic tools to studying functional neuroanatomy, behavior and the etiology and treatment of various neurological disorders. 相似文献
8.
Recent advances in optogenetics have permitted investigations of specific cell types in the nervous system with unprecedented precision and control. This review will discuss the use of optogenetic techniques in the study of mammalian neural circuitry in vivo, as well as practical and theoretical considerations in their application. 相似文献
10.
The application of informatics to neuroscience goes far beyond 'traditional' bioinformatics modalities such as DNA sequences. In this review, we describe how informatics is being used to study the nervous system at multiple levels, spanning scales from molecules to behavior. The continuing development of standards for data exchange and interoperability, together with increasing awareness and acceptance of the importance of data sharing, are among the key efforts required to advance the field. 相似文献
12.
Direct electrical stimulation of spiral ganglion neurons (SGNs) by cochlear implants (CIs) enables open speech comprehension in the majority of implanted deaf subjects 1-6. Nonetheless, sound coding with current CIs has poor frequency and intensity resolution due to broad current spread from each electrode contact activating a large number of SGNs along the tonotopic axis of the cochlea 7-9. Optical stimulation is proposed as an alternative to electrical stimulation that promises spatially more confined activation of SGNs and, hence, higher frequency resolution of coding. In recent years, direct infrared illumination of the cochlea has been used to evoke responses in the auditory nerve 10. Nevertheless it requires higher energies than electrical stimulation 10,11 and uncertainty remains as to the underlying mechanism 12. Here we describe a method based on optogenetics to stimulate SGNs with low intensity blue light, using transgenic mice with neuronal expression of channelrhodopsin 2 (ChR2) 13 or virus-mediated expression of the ChR2-variant CatCh 14. We used micro-light emitting diodes (µLEDs) and fiber-coupled lasers to stimulate ChR2-expressing SGNs through a small artificial opening (cochleostomy) or the round window. We assayed the responses by scalp recordings of light-evoked potentials (optogenetic auditory brainstem response: oABR) or by microelectrode recordings from the auditory pathway and compared them with acoustic and electrical stimulation. 相似文献
14.
Light is increasingly recognized as an efficient means of controlling diverse biological processes with high spatiotemporal resolution. Optogenetic switches are molecular devices for regulating light-controlled gene expression, protein localization, signal transduction and protein-protein interactions. Such molecular components have been mainly developed through the use of photoreceptors, which upon light stimulation undergo conformational changes passing to an active state. The current repertoires of optogenetic switches include red, blue and UV-B light photoreceptors and have been implemented in a broad spectrum of biological platforms. In this review, we revisit different optogenetic switches that have been used in diverse biological platforms, with emphasis on those used for light-controlled gene expression in the budding yeast Saccharomyces cerevisiae. The implementation of these switches overcomes the use of traditional chemical inducers, allowing precise control of gene expression at lower costs, without leaving chemical traces, and positively impacting the production of high-value metabolites and heterologous proteins. Additionally, we highlight the potential of utilizing this technology beyond laboratory strains, by optimizing it for use in yeasts tamed for industrial processes. Finally, we discuss how fungal photoreceptors could serve as a source of biological parts for the development of novel optogenetic switches with improved characteristics. Although optogenetic tools have had a strong impact on basic research, their use in applied sciences is still undervalued. Therefore, the invitation for the future is to utilize this technology in biotechnological and industrial settings. 相似文献
15.
To study the impact of neural activity on cellular physiology, one would like to combine precise control of firing patterns with highly sensitive probes of cellular physiology. Light-gated ion channels, e.g., Channelrhodopsin-2, enable precise control of firing patterns; green fluorescent protein-based reporters, e.g., the GCaMP6f Ca 2+ reporter, enable highly sensitive probing of cellular physiology. However, for most actuator-reporter combinations, spectral overlap prevents straightforward combination within a single cell. Here we explore multiwavelength control of channelrhodopsins to circumvent this limitation. The “stoplight” technique described in this article uses channelrhodopsin variants that are opened by blue light and closed by orange light. Cells are illuminated with constant blue light to excite fluorescence of a green fluorescent protein-based reporter. Modulated illumination with orange light negatively regulates activation of the channelrhodopsin. We performed detailed photophysical characterization and kinetic modeling of four candidate stoplight channelrhodopsins. The variant with the highest contrast, sdChR(C138S,E154A), enabled all-optical measurements of activity-induced calcium transients in cultured rat hippocampal neurons, although cell-to-cell variation in expression levels presents a challenge for quantification. 相似文献
|