首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During tree growth, hardwoods can initiate the formation of tension wood, which is a strongly stressed wood on the upper side of the stem and branches. In Eucalyptus globulus, tension wood presents wider and thicker cell walls with low lignin, similar glucan and high xylan content, as compared to opposite wood. In this work, tension and opposite wood of E. globulus trees were separated and evaluated for the production of bioethanol using ethanol/water delignification as pretreatment followed by simultaneous saccharification and fermentation (SSF). Low residual lignin and high glucan retention was obtained in organosolv pulps of tension wood as compared to pulps from opposite wood at the same H-factor of reaction. The faster delignification was associated with the low lignin content in tension wood, which was 15% lower than in opposite wood. Organosolv pulps obtained at low and high H-factor (3,900 and 12,500, respectively) were saccharified by cellulases resulting in glucan-to-glucose yields up to 69 and 77%, respectively. SSF of the pulps resulted in bioethanol yields up to 35 g/l that corresponded to 85–95% of the maximum theoretical yield on wood basis, considering 51% the yield of glucose to ethanol conversion in fermentation, which could be considered a very satisfactory result compared to previous studies on the conversion of organosolv pulps from hardwoods to bioethanol. Both tension and opposite wood of E. globulus were suitable raw materials for organosolv pretreatment and bioethanol production with high conversion yields.  相似文献   

2.
3.
Homobasidiomycetes include the majority of wood-decaying fungi. Two basic forms of wood decay are known in homobasidiomycetes: white rot, in which lignin and cellulose are degraded, and brown rot, in which lignin is not appreciably degraded. An apparent correlation has been noted between production of a brown rot, decay of conifer substrates, and possession of a bipolar mating system (which has a single mating-type locus, in contrast to tetrapolar systems, which have two mating-type loci). The goals of this study were to infer the historical pattern of transformations in decay mode, mating type, and substrate range characters, and to determine if a causal relationship exists among them. Using nuclear and mitochondrial rDNA sequences, we performed a phylogenetic analysis of 130 species of homobasidiomycetes and performed ancestral state reconstructions by using parsimony on a range of trees, with various loss:gain cost ratios. We evaluated pairwise character correlations by using the concentrated changes test (CCT) of Maddison and the maximum likelihood (ML) method of Pagel. White rot, tetrapolar mating systems, and the ability to decay conifers and hardwoods appear to be plesiomorphic in homobasidiomycetes, whereas brown rot, bipolar mating systems, and exclusive decay of conifers appear to have evolved repeatedly. The only significant correlation among characters was that between brown rot (as the independent character) and exclusive decay of conifer substrates (P < 0.03). This correlation was supported by the CCT on a range of plausible trees, although not with every reconstruction of ancestral states, and by the ML test. Our findings suggest that the evolution of brown rot has promoted repeated shifts to specialization for confier substrates.  相似文献   

4.
In the present study, a steam explosion wood pre-treatment process, optimized earlier with respect to ethanol production, has been applied to both softwoods (Picea abies and Pinus sylvestris) and hardwoods (Betula verrucosa and Populus tremula). The alkaline extractable lignins have then been isolated to investigate lignin separation efficiency and lignin structure and to evaluate their potential for producing value-added products, such as biodiesel components or chemicals, in terms of the purity, molecular size, functional groups, β-O-4′ inter-unit linkage content, and degradability in a subsequent processing treatment. The mechanism of lignin modification and possible improvements to the steam explosion pre-treatment process are discussed.  相似文献   

5.
Recent advances in the genetic transformation of trees   总被引:18,自引:0,他引:18  
As the commercial production of transgenic annual crops becomes a reality in many parts of the world, many people wonder if the genetic engineering of perennial trees will allow their eventual commercialization. Not long ago, trees were considered to be recalcitrant material for most molecular biology techniques, including genetic transformation. However, transgenes for shortening the juvenile phase or for phytoremediation purposes have now been incorporated, and the alteration of lignin biosynthesis and increased cellulose accumulation in forest trees have also been accomplished. For long-lived tree species, new questions arise regarding the stability of integration and expression of foreign genes. Biosafety considerations, including transgene dispersion through the pollen and advances in strategies to avoid this, are also important.  相似文献   

6.
Genetic engineering of trees to improve productivity, wood quality, and resistance to biotic and abiotic stresses has been the primary goal of the forest biotechnology community for decades. We review the extensive progress in these areas and their current status with respect to commercial applications. Examples include novel methods for lignin modification, solutions for long-standing problems related to pathogen resistance, modifications to flowering onset and fertility, and drought and freeze tolerance. There have been numerous successful greenhouse and field demonstrations of genetically engineered trees, but commercial application has been severely limited by social and technical considerations. Key social factors are costly and uncertain regulatory hurdles and sweeping market barriers in the form of forest certification systems that disallow genetically modified trees. These factors limit and, in many cases, preclude field research and commercial adoption. Another challenge is the high cost and uncertainty in transformation efficiency that is needed to apply genetic engineering and gene editing methods to most species and genotypes of commercial importance. Recent advances in developmental gene-based transformation systems and gene editing, if combined with regulatory and certification system reform, could provide the foundation for genetic engineering to become a significant tool for coping with the increasing environmental and biological stresses on planted and wild forests.  相似文献   

7.
Few experiments have yet been performed to explore the potential ecological impacts of genetic modification in long-lifespan species such as trees. In this paper, we review the available data on GM trees with modified lignin focussing on the results of the first long-term field trials of such trees. These trials evaluated poplars expressing antisense transgenes to reduce the expression of the lignin biosynthesis genes cinnamyl alcohol dehydrogenase (CAD) or caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT) with the aim of producing trees with improved pulping characteristics. The trees were grown for 4 years at two sites in France and England, and their ecological impacts and agronomic performance were assessed. Modifications to lignin in the poplars were maintained over the 4 years of the trial. The trees remained healthy throughout and growth was normal. The lignin modifications had no unexpected biological or ecological impacts. Interactions with leaf-feeding insects, microbial pathogens and soil organisms were unaltered although the short-term decomposition of transgenic roots was slightly enhanced. Investigation of the ecological impacts of the GM trees was curtailed by the early termination of the field trial when it was attacked and largely destroyed by anti-GM protestors. To supplement our work on the decomposition of GM plant materials with modified lignin, we have therefore turned to the study of transgenic tobacco lines where we can perform more comprehensive and controlled analyses of the biological and ecological effects of lignin-gene suppression.  相似文献   

8.
9.
The lignin structural ramifications of coumarate 3-hydroxylase (C3H) downregulation have not been addressed in hardwoods. Such information is required to accompany an assessment of the digestibility and bioenergy performance characteristics of poplar, in particular. Structurally rich 2D NMR methods were applied to the entire lignin fraction to delineate lignin p-hydroxyphenyl:guaiacyl:syringyl (H:G:S) levels and linkage distribution changes (and to compare with traditional degradative analyses). C3H downregulation reduced lignin levels by half and markedly increased the proportion of H units relative to the normally dominant G and S units. Relative stem H unit levels were up by ???100-fold to ???31?%, almost totally at the expense of G units; differences in the lignin interunit linkage distributions were more subtle. The H level in the most drastically C3H-downregulated transgenic poplar falls well beyond the H:G:S compositional bounds of normal angiosperms. The response observed here, in poplar, differs markedly from that reported for alfalfa where the S:G ratio remained almost constant even at substantial H levels, highlighting the often differing responses among plant species.  相似文献   

10.
Colour modifications caused by exposure to artificial UV radiation (350 nm, UV-A) of four tropical hardwoods, jatobá, angelim vermelho, garapeira, and marupá, have been evaluated by diffuse reflectance spectroscopy and by the CIE-L*a*b* system. To obtain the absorption maxima of the chromophore species formed during UV irradiation, Kubelka-Munk (K-M) difference spectra (non-irradiated-irradiated) have been recorded as a function of exposure time. The K-M difference spectra have shown that the investigated species develop strong absorption bands in the visible region upon UV irradiation that were assigned to the formation of lignin and extractive photodegradation products. The K-M difference spectra and CIE-L*a*b* parameters ( DeltaL, Deltaa, and Deltab) have shown that marupá is the wood species that suffers the major changes upon UV irradiation while angelim vermelho was the least affected.  相似文献   

11.
ABSTRACT.   Populations of Warbling Vireos ( Vireo gilvus ) are declining in California, apparently due to low reproductive success. From 1989–2002, I studied the nest-site selection and reproductive success of Warbling Vireos across an elevational gradient in the southern Sierra Nevada. Warbling Vireos regularly nested in upland coniferous forests with few or no deciduous trees, and tree species used by nesting vireos included five species of conifers and four species of deciduous trees. Overall, hardwoods were used more than expected based on their availability, but 69% of all nests were in conifers. Hardwood trees were found only in low and mid-elevation ponderosa pine ( Pinus ponderosa ) and mixed-conifer sites. In low-elevation ponderosa pine habitat, 87% of nests were in hardwoods, with 67% in California black oaks ( Quercus kelloggii ), a species that typically occupies upland sites. In mixed-conifer sites where reproductive success was high, 65% of nests were in incense cedar ( Calocedrus decurrens ) and California black oak was the next most commonly used species. Because fire suppression has likely increased numbers of shade-tolerant tree species like incense cedar, shade-intolerant species like black oaks may have been more important as a nest substrate for vireos in the past. Only conifers were used as nesting substrates at higher elevations. Nest success was greater for Warbling Vireos that nested in tall trees in areas with high basal area. My results suggest that Warbling Vireos in the Sierra Nevada would benefit from management activities that encourage retention and recruitment of California black oaks at lower elevations, and development of stands with large trees, dense foliage, and semi-open canopy throughout their elevation range.  相似文献   

12.
? Reduced lignin content in perennial crops has been sought as a means to improve biomass processability for paper and biofuels production, but it is unclear how this could affect wood properties and tree form. ? Here, we studied a nontransgenic control and 14 transgenic events containing an antisense 4-coumarate:coenzyme A ligase (4CL) to discern the consequences of lignin reduction in poplar (Populus sp.). During the second year of growth, trees were grown either free-standing in a field trial or affixed to stakes in a glasshouse. ? Reductions in lignin of up to 40% gave comparable losses in wood strength and stiffness. This occurred despite the fact that low-lignin trees had a similar wood density and up to three-fold more tension wood. In free-standing and staked trees, the control line had twice the height for a given diameter as did low-lignin trees. Staked trees had twice the height for a given diameter as free-standing trees in the field, but did not differ in wood stiffness. ? Variation in tree morphogenesis appears to be governed by lignin x environment interactions mediated by stresses exerted on developing cells. Therefore our results underline the importance of field studies for assessing the performance of transgenic trees with modified wood properties.  相似文献   

13.
Respiratory Activity in Stem, Branches and Leaves of Evergreen Trees in Tropical Rain Forest and of Deciduous Trees in Temperate Climate.— Reduced to the same temperature, the respiratory activity of different parts of tropical rain forest trees and of corresponding parts of temperate deciduous trees is approximately the same. In particular, the leaf-blades of Danish deciduous trees and of tropical rain forest trees from the lowland of Côte d'Ivoire (57° north. lat.) have nearly the same respiratory activity at 20°C: the blades of the extreme shade leaves about 0.1 mg CO2, those of the extreme sun leaves about 0.8 mg CO2 per 50 cm2 (one side only) per hour at 20°C. This is in accordance with the fact that the blades of shade leaves, respectively Sim leaves, of the tropical rain forest trees are built in the same way as the blades of deciduous trees in our temperate climate. The respiratory activity shows that they have the same “concentration” of living cells, the same “concentration” of active plasma. The respiratory activity of trunk and branches depends mainly on three factors: diameter of the stem-section or branch-section, nutritional condition, and temperature. The respiratory activity of trunk and branches of hardwoods in temperate climate is also dependent on the season. The estimations on stems and branches from the temperature trees were made In July–August. There was in most cases a remarkable agreement in respiratory activity between temperate and tropical hardwoods: Branches with a diameter of about 0.5–2 cm have a respiration of about 70–100 mg CO2 per kg fresh weight per hour at 20°C. Trunk sections with a diameter over 20 cm have a respiratory activity of about 3–5 mg CO2, per kg fresh weight per hour at 20°C. In the older parts of a stem most of the cells are dead. The agreement in respiratory activity probably means that the “concentration” of living cells in the older parts of the stem of tropical and temperate hardwoods is the same.  相似文献   

14.
Transgenics from several forest tree species, carrying a number of commercially important recombinant genes, have been produced, and are undergoing confined field trials in a number of countries. However, there are questions and issues regarding stability of transgene expression and transgene dispersal that need to be addressed in long-lived forest trees. Variation in transgene expression is not uncommon in the primary transformants in plants, and is undesirable as it requires screening a large number of transformants in order to select transgenic lines with acceptable levels of transgene expression. Therefore, the current focus of plant transformation is toward fine tuning of transgene expression and stability in the transgenic forest trees. Although a number of studies have reported a relatively stable transgene expression for several target traits, including herbicide resistance, insect resistance, and lignin modification, there was also some unintended transgene instability in the genetically modified (GM) forest trees. Transgene dispersal from GM trees to feral forest populations and their containment remain important biological and regulatory issues facing commercial release of GM trees. Containment of transgenes must be in place to effectively prevent escape of transgenic pollen, seed, and vegetative propagules in economically important GM forest trees before their commercialization. Therefore, it is important to devise innovative technologies in genetic engineering that lead to genetically stable transgenic trees not only for qualitative traits (herbicide resistance, insect resistance), but also for quantitative traits (accelerated growth, increased height, increased wood density), and also prevent escape of transgenes in the forest trees.  相似文献   

15.
The ''across grain'' toughness of 51 woods has been determined on thin wet sections using scissors. The moisture content of sections and the varying sharpness of the scissor blades had little effect on the results. In thin sections (less than 0.6mm), toughness rose linearly with section thickness. The intercept toughness at zero thickness, estimated from regression analysis, was proportional to relative density, consistent with values reported for non-woody plant tissues. Extrapolation of the intercept toughness of these woods and other plant tissues/materials to a relative density of 1.0 predicted a toughness of 3.45kJ m-2 , which we identify with the intrinsic toughness of the cell wall. This quantity appears to predict published results from KIC tests on woods and is related to the propensity for crack deflection. The slope of the relationship between section thickness and toughness, describing the work of plastic buckling of cells, was not proportional to relative density, the lightest (balsa) and heaviest (lignum vitae) woods fracturing with less plastic work than predicted. The size of the plastic zone around the crack tip was estimated to be 0.5mm in size. From this, the hypothetical overall toughness of a thick (greater than 1 mm) block of solid cell wall material was calculated as 39.35 kJ m-2, due to both cell wall resistance (10 per cent) and the plastic buckling of cells (90 per cent). This value successfully predicts the toughness of most commercial woods (of relative densities between 0.2 and 0.8) from ''work area'' tests in tension and bending. Though density was the most important factor, both fibre width/fibre length (in hardwoods) and lignin/cellulose ratios were negatively correlated with the work of plastic buckling, after correcting for density. At low densities the work of plastic buckling in the longitudinal radial (LR) direction exceeded that in longitudinal tangential (LT), but the reverse was true for relative densities above 0.25. This could be attributed to the direction of rays. Density for density, the toughness of temperate hardwoods tested was about 20 per cent lower than that of tropical hardwoods. This is probably due to the much greater number of vessels in temperate hardwoods. Vessels appear either not to display buckling behaviour during fracture at all or to collapse cheaply. These general results have applications to other plant tissues.  相似文献   

16.
Hardwood forests and plantations are an important economic resource for the forest products industry worldwide and to the international trade of lumber and logs. Hardwood trees are also planted for ecological reasons, for example, wildlife habitat, native woodland restoration, and riparian buffers. The demand for quality hardwood from tree plantations will continue to rise as the worldwide consumption of forest products increases. Tree improvement of temperate hardwoods has lagged behind that of coniferous species and hardwoods of the genera Populus and Eucalyptus. The development of marker systems has become an almost necessary complement to the classical breeding and improvement of hardwood tree populations for superior growth, form, and timber characteristics. Molecular markers are especially valuable for determining the reproductive biology and population structure of natural forests and plantations, and the identity of genes affecting quantitative traits. Clonal reproduction of commercially important hardwood tree species provides improved planting stock for use in progeny testing and production forestry. Development of in vitro and conventional vegetative propagation methods allows mass production of clones of mature, elite genotypes or genetically improved genotypes. Genetic modification of hardwood tree species could potentially produce trees with herbicide tolerance, disease and pest resistance, improved wood quality, and reproductive manipulations for commercial plantations. This review concentrates on recent advances in conventional breeding and selection, molecular marker application, in vitro culture, and genetic transformation, and discusses the future challenges and opportunities for valuable temperate (or “fine”) hardwood tree improvement.  相似文献   

17.
The regulation of cell-division activity in the vascular cambium and of secondary xylem and phloem development is reviewed for temperate-zone tree species in relation to auxins, gibberellins, abscisic acid, cytokinins, and ethylene. Representatives of the first four of these PGR classes (IAA, GA1, GA4, GA7, GA9, GA20, ABA, Z, ZR, DCA) have been identified conclusively by mass spectrometry in the cambial region in some Pinaceae, but not in any hardwood species. Endogenous ethylene has yet to be definitively characterized in this region in any species. Evidence concerning the source and metabolism of cambial PGRs is scanty and inconclusive for both conifers and hardwoods.Most cambial PGR research has focused on IAA. Much evidence indicates that this PGR is transported primarily in the cambial region at a rate of about 1 cm h–1, and that the transport is basipetally polar. GC-MS measurements have established that endogenous IAA levels in the cambial region of Pinaceae are highest during earlywood development, and that cambial IAA levels may be considerably lower in hardwoods than in conifers. IAA appears to be involved in the control of cambial growth in conifers and hardwoods in at least three specific ways, viz. maintenance of the elongated form of fusiform cambial cells, promotion of radial expansion in primary walls of cambial derivatives, and regulation of reaction wood formation. In addition, it is well established that exogenous IAA promotes vessel development in hardwoods. In both conifers and hardwoods, exogenous IAA stimulates cambial growth in 1-year-old shoots treated late in the dormant period or after the start of the cambial growing period. However, exogenous IAA has little effect on cambia that are older or are in what is hypothesized to be the resting stage of dormancy. Thus it is uncertain whether IAA is directly involved in the control of cambial growth, or acts indirectly through a process such as hormone-directed transport.It is not yet clear if gibberellins play a role in the control of cambial growth in conifers. However, in hardwoods, there is evidence that they inhibit vessel development and act synergistically with IAA in promoting cambial activity and fiber elongation. In both conifers and hardwoods, foliar sprays of gibberellins increase the accumulation of biomass above-ground, particularly in the main axis, while decreasing it in the roots.There are as yet no definite conclusions to be drawn concerning the involvement of ABA, cytokinins, and ethylene in the regulation of cambial growth in conifers or hardwoods. In conifers, ABA may antagonize the promotory effect of IAA on cambial cell division and tracheid radial expansion under conditions of water stress, but high endogenous ABA levels do not appear to be associated with the formation of latewood or the onset of cambial dormancy. Some evidence suggests that exogenous cytokinins enhance the promotory effect of IAA on cambial growth, particularly ray formation, in both hardwoods and conifers. However, exogenous cytokinins, by themselves, appear to be ineffective. In hardwoods, ethylene-generating compounds satisfy the chilling requirement of the dormant cambium and promote the formation of wood having an apparently greater content of lignin and extractives. Ethylene-generators also affect wood development in conifers and accelerate cambial growth at the application site in both hardwoods and conifers.  相似文献   

18.
Lignin, a polyphenolic polymer, is a major chemical constituent of the cell walls of terrestrial plants. The biosynthesis of lignin is a highly plastic process, as highlighted by an increasing number of noncanonical monomers that have been successfully identified in an array of plants. Here, we engineered hybrid poplar (Populus alba x grandidentata) to express chalcone synthase 3 (MdCHS3) derived from apple (Malus domestica) in lignifying xylem. Transgenic trees displayed an accumulation of the flavonoid naringenin in xylem methanolic extracts not inherently observed in wild-type trees. Nuclear magnetic resonance analysis revealed the presence of naringenin in the extract-free, cellulase-treated xylem lignin of MdCHS3-poplar, indicating the incorporation of this flavonoid-derived compound into poplar secondary cell wall lignins. The transgenic trees also displayed lower total cell wall lignin content and increased cell wall carbohydrate content and performed significantly better in limited saccharification assays than their wild-type counterparts.

Expressing exogenous, apple-derived chalcone synthase in actively lignifying poplar xylem tissue results in less total lignin, improved saccharification rates, and incorporation of naringenin into lignins.  相似文献   

19.
The effects of reductions in cell wall lignin content, manifested by RNA interference suppression of coumaroyl 3'-hydroxylase, on plant growth, water transport, gas exchange, and photosynthesis were evaluated in hybrid poplar trees (Populus alba x grandidentata). The growth characteristics of the reduced lignin trees were significantly impaired, resulting in smaller stems and reduced root biomass when compared to wild-type trees, as well as altered leaf morphology and architecture. The severe inhibition of cell wall lignification produced trees with a collapsed xylem phenotype, resulting in compromised vascular integrity, and displayed reduced hydraulic conductivity and a greater susceptibility to wall failure and cavitation. In the reduced lignin trees, photosynthetic carbon assimilation and stomatal conductance were also greatly reduced, however, shoot xylem pressure potential and carbon isotope discrimination were higher and water-use efficiency was lower, inconsistent with water stress. Reductions in assimilation rate could not be ascribed to increased stomatal limitation. Starch and soluble sugars analysis of leaves revealed that photosynthate was accumulating to high levels, suggesting that the trees with substantially reduced cell wall lignin were not carbon limited and that reductions in sink strength were, instead, limiting photosynthesis.  相似文献   

20.
Abstract: Eastern red bats (Lasiurus borealis) have been found to overwinter in areas that can experience severe fluctuations in temperature. We examined the red bat's use of winter roosts in southwest Missouri, USA, for 2 winters (2003–2005). We found tree roosts in eastern red cedars (Juniperus virginiana) and hardwoods. Tree roost sites were located on the south side of trees, and we found roost trees on south-facing slopes. Roost sites occurred more frequently in the location with least canopy cover. Bats switched from tree roosts to leaf litter roosts when ambient temperatures approached or fell below freezing. We found habitat characteristics and aspect to be determining factors in the selection of leaflitter roosts. Management of overwintering red bats requires a diverse forest structure, including canopy gaps, stand-density variation, and leaf-bearing trees, including oaks (Quercus spp.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号