首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis is an essential biological process in the development and maintenance of immune system homeostasis. Caspase proteins constitute the core of the apoptotic machinery and can be categorized as either initiators or effectors of apoptosis. Although the genes encoding caspase proteins have been described in vertebrates and in almost all invertebrate phyla, there are few reports describing the initiator and executioner caspases or the modulation of their expression by different stimuli in different apoptotic pathways in bivalves. In the present work, we characterized two initiator and four executioner caspases in the mussel Mytilus galloprovincialis. Both initiators and executioners showed structural features that make them different from other caspase proteins already described. Evaluation of the genes' tissue expression patterns revealed extremely high expression levels within the gland and gills, where the apoptotic process is highly active due to the clearance of damaged cells. Hemocytes also showed high expression values, probably due to of the role of apoptosis in the defense against pathogens. To understand the mechanisms of caspase gene regulation, hemocytes were treated with UV-light, environmental pollutants and pathogen-associated molecular patterns (PAMPs) and apoptosis was evaluated by microscopy, flow cytometry and qPCR techniques. Our results suggest that the apoptotic process could be tightly regulated in bivalve mollusks by overexpression/suppression of caspase genes; additionally, there is evidence of caspase-specific responses to pathogens and pollutants. The apoptotic process in mollusks has a similar complexity to that of vertebrates, but presents unique features that may be related to recurrent exposure to environmental changes, pollutants and pathogens imposed by their sedentary nature.  相似文献   

2.
Air pollution is the single largest environmental risk today and is increasing in developing countries. In addition, exposure to air pollution is correlated to poor socioeconomic conditions owing to political processes and cultural and historic occupation of land. Ports have several structures that are potential emitters of pollutants such as large ship engines, diesel trucks, and trains. Owing to the considerable costs of implementing direct monitoring networks, alternatives like biomonitoring are an interesting approach to evaluate the environmental status of a particular area using living organisms or their parts such as bark, even though the use of bark as a biomonitor has several problems such as difficulties in determining the exposure period and its correlation with human exposure. Therefore, the use of a complementary mathematical logic is necessary. This study describes a methodological approach to evaluate the environmental risk from air pollution integrating data on environmental pollutants from tree bark using Fuzzy logic, based in the port city of Paranaguá in the state of Paraná in Brazil, and validated using income indicators. The results indicate that the risk distribution patterns have an inverse relationship with the income indicator, i.e., higher risk levels indicate lower income levels and vice versa. It was concluded that the system was able to identify the distribution of risk and that there is a context of environmental injustice in the region, where the environmental risk related to air pollution is inversely proportional to income levels. This type of information provides a decision making tool for environmental risk analysis from air pollution and can be used in the definition of public policies.  相似文献   

3.
Pollution-related changes in diets of two insectivorous passerines   总被引:1,自引:0,他引:1  
Eeva T  Ryömä M  Riihimäki J 《Oecologia》2005,145(4):629-639
Insectivorous birds living in polluted areas are not only exposed to pollutants but they may also be affected by changes in their invertebrate food. The populations of many invertebrate species are affected by environmental pollution and such changes may lead to differences in the diet of insectivorous birds. We examined nestling food quality (invertebrate composition and heavy metal levels) and breeding performance of two cavity-nesting passerines, the Great tit, Parus major, and the pied flycatcher, Ficedula hypoleuca, in an area with long-term heavy metal pollution by a copper smelter. There were no differences in feeding frequencies or the amount of food that parents provided to their nestlings between polluted and unpolluted sites, but food quality in a polluted area differed from that of the control area in both bird species. P. major took more beetles and variable “flying insects” and less caterpillars (of smaller size) and moths in the polluted area as compared to the unpolluted one. F. hypoleuca ate more beetles and larvae and less moths and spiders in the polluted area. Breeding success of P. major was better when the nestling diet contained a large proportion of caterpillars and the relationship was especially strong in the polluted area. On the contrary, F. hypoleuca broods succeeded equally well with variable diets. Our data suggest that a more opportunistic forager, F. hypoleuca, is less vulnerable to a changing invertebrate composition caused by human environmental impacts than a caterpillar specialist, P. major. In a heavy metal polluted area, F. hypoleuca seems to be more sensitive to a decreased amount of Ca rich food items (e.g. snails) while P. major suffers especially from the lack of carotenoid rich caterpillars. Our results emphasize the importance of secondary environmental changes, like food quality, in addition to direct impacts of pollutants.  相似文献   

4.
Soil invertebrates are assumed to play a major role in ecosystem dynamics, since they are involved in soil functioning. Functional traits represent one of the main opportunities to bring new insights into the understanding of soil invertebrate responses to environmental changes. They are properties of individuals which govern their responses to their environment. As no clear conceptual overview of soil invertebrate trait definitions is available, we first stress that previously-described concepts of trait are applicable to soil invertebrate ecology after minor modification, as for instance the inclusion of behavioural traits. A decade of literature on the use of traits for assessing the effects of the environment on soil invertebrates is then reviewed. Trait-based approaches may improve the understanding of soil invertebrate responses to environmental changes as they help to establish relationships between environmental changes and soil invertebrates. Very many of the articles are dedicated to the effect of one kind of stress at limited spatial scales. Underlying mechanisms of assembly rules were sometimes assessed. The patterns described seemed to be similar to those described for other research fields (e.g. plants). The literature suggests that trait-based approaches have not been reliable over eco-regions. Nevertheless, current work gives some insights into which traits might be more useful than others to respond to a particular kind of environmental change. This paper also highlights methodological advantages and drawbacks. First, trait-based approaches provide complementary information to taxonomic ones. However the literature does not allow us to differentiate between trait-based approaches and the use of a priori functional groups. It also reveals methodological shortcomings. For instance, the ambiguity of the trait names can impede data gathering, or the use of traits at a species level, which can hinder scientific interpretation as intra-specific variability is not taken into account and may lead to some biases. To overcome these shortcomings, the last part aims at proposing some solutions and prospects. It concerns notably the development of a trait database and a thesaurus to improve data management.  相似文献   

5.
饲养方式、社会环境和化学污染是影响动物发育不稳定的重要环境胁迫因素,会使动物种群的适应和竞争能力等指数降低。而波动性不对称FA(Fluctuating asymmetry)的水平可用来指示某一种群对这种环境压力的进化和适应能力。FA的测量方法比常规的参数更加灵敏,而且可将环境压力的影响定量化,同时其测定和分析都比较简单,不需要昂贵的设备和试剂,使研究和监测成本大大降低。  相似文献   

6.
Oxidative stress can take place in marine bivalves under a series of environmental adverse conditions. The study of different systems related to oxidative stress in these organisms can give important information about their physiological status and also about environmental health. Bivalves have been proposed as good sentinel organisms in pollution monitoring studies through the analysis of biochemical biomarkers, and most of the biomarkers analyzed are those related to oxidative stress. However, it is very important to know how other environmental factors not associated to the presence of pollutants might affect these parameters. We have studied a series of mechanisms related to oxidative stress in mussels which inhabit the Brazilian coast, especially in Perna perna species, subjected to different stress conditions, such as the exposure to different contaminants in the laboratory and in the field, the exposure of mussels to air and re-submersion, simulating the tidal oscillations, and in mussels collected at different seasons. Both oxidative damage levels and antioxidant defense systems were strongly affected by the different environmental stress. This review summarizes the data obtained in some studies carried out in bivalves from the Brazilian coast.  相似文献   

7.
Al Arsh Basheer 《Chirality》2018,30(4):402-406
The chiral pollution is a serious issue for our health and environment due to the enantio‐selective biodegradation of the chiral pollutants. It has adverse impact on our society and science. There is a big loss of our economy due to the use of racemic agrochemicals. The most notorious chiral pollutants are pesticides, polychloro biphenyls, polyaromatic hydrocarbons, brominated flame retardants, drugs, and pharmaceuticals. More than 1500 chiral pollutants are present in the environment. Unfortunately, there is no regulation and control of the chiral pollutants. Therefore, it is an urgent need of the present 21st century to develop a data bank on the chiral pollutants, guidelines for controlling the production, sale and use of the racemic agrochemicals and the other industrial products. The Governments of the different countries should come forward to initiate the regulations. US, FDA, US EPA, and WHO are the most important regulatory authorities and should think about the chiral pollutants. The present article highlights the impact of the chiral pollution on the society and science. Besides, the efforts have also been made to emphasize the need of the regulations to control the chiral pollution.  相似文献   

8.
Oxidative stress can take place in marine bivalves under a series of environmental adverse conditions. The study of different systems related to oxidative stress in these organisms can give important information about their physiological status and also about environmental health. Bivalves have been proposed as good sentinel organisms in pollution monitoring studies through the analysis of biochemical biomarkers, and most of the biomarkers analyzed are those related to oxidative stress. However, it is very important to know how other environmental factors not associated to the presence of pollutants might affect these parameters. We have studied a series of mechanisms related to oxidative stress in mussels which inhabit the Brazilian coast, especially in Perna perna species, subjected to different stress conditions, such as the exposure to different contaminants in the laboratory and in the field, the exposure of mussels to air and re-submersion, simulating the tidal oscillations, and in mussels collected at different seasons. Both oxidative damage levels and antioxidant defense systems were strongly affected by the different environmental stress. This review summarizes the data obtained in some studies carried out in bivalves from the Brazilian coast.  相似文献   

9.
The nature of spatial autocorrelation of biota may reveal much about underlying ecological and biological factors responsible for producing those patterns, especially dispersal processes (drift, adult flight, etc.). We report here on assemblage‐level autocorrelation in the benthic‐invertebrate assemblages (retained in sieves of 300 µm mesh) of riffles in two adjacent, relatively pristine rivers in southeastern Victoria, Australia (40‐km reaches of the Wellington and Wonnangatta Rivers). These are related to patterns of autocorrelation in physical and catchment conditions (‘environmental variables’) in the vicinity of the sampling points. Both the invertebrate assemblages and environmental variables were autocorrelated at small scales (= 8 km) in the Wellington River in one of the sampling years (1996). Dissimilarities of invertebrate assemblages were correlated with dissimilarities of environmental variables in both sampling years (1996 and 1997) in that river. Environmental variables were autocorrelated in the Wonnangatta River, but this was not expressed as autocorrelation in the assemblages of invertebrates, which were not autocorrelated at any scale studied. Individual environmental variables showed different spatial patterns between the two rivers. These results suggest that individual rivers have their own idiosyncratic patterns and one cannot assume that even similar, geographically adjacent rivers will have the same patterns, which is a difficulty for ecological assessment and restoration.  相似文献   

10.
In this review, recent developments in monitoring toxicological responses in estuarine animals are analyzed, considering the biomarker responses to different classes of pollutants. The estuarine environment imposes stressful conditions to the organisms that inhabit it, and this situation can alter their sensitivity to many pollutants. The specificity of some biomarkers like metallothionein tissue concentration is discussed in virtue of its dependence on salinity, which is highly variable in estuaries. Examples of cholinesterase activity measurements are also provided and criteria to select sensitive enzymes to detect pesticides and toxins are discussed. Regarding non-specific biomarkers, toxic responses in terms of antioxidant defenses and/or oxidative damage are also considered in this review, focusing on invertebrate species. In addition, the presence of an antioxidant gradient along the body of the estuarine polychaete Laeonereis acuta (Nereididae) and its relationship to different strategies, which deal with the generation of oxidative stress, is reviewed. Also, unusual antioxidant defenses against environmental pro-oxidants are discussed, including the mucus secreted by L. acuta. Disruption of osmoregulation by pollutants is of paramount importance in several estuarine species. In some cases such as in the estuarine crab Chasmagnathus granulatus, there is a trade off between bioavailability of toxicants (e.g. metals) and their interaction with key enzymes such as Na(+)-K(+)-ATPase and carbonic anhydrase. Thus, the metal effect on osmoregulation is also discussed in the present review. Finally, field case studies with fish species like the croaker Micropogonias furnieri (Scianidae) are used to illustrate the application of DNA damage and immunosuppressive responses as potential biomarkers of complex mixture of pollutants.  相似文献   

11.
Globally, moss associated invertebrates remain poorly studied and it is largely unknown to what extent their diversity is driven by local environmental conditions or the landscape context. Here, we investigated small scale drivers of invertebrate communities in a moss landscape in a temperate forest in Western Europe. By comparing replicate quadrats of 5 different moss species in a continuous moss landscape, we found that mosses differed in invertebrate density and community composition. Although, in general, richness was similar among moss species, some invertebrate taxa were significantly linked to certain moss species. Only moss biomass and not relative moisture content could explain differences in invertebrate densities among moss species. Second, we focused on invertebrate communities associated with the locally common moss species Kindbergia praelonga in isolated moss patches on dead tree trunks to look at effects of patch size, quality, heterogeneity and connectivity on invertebrate communities. Invertebrate richness was higher in patches under closed canopies than under more open canopies, presumably due to the higher input of leaf litter and/or lower evaporation. In addition, increased numbers of other moss species in the same patch seemed to promote invertebrate richness in K. praelonga, possibly due to mass effects. Since invertebrate richness was unaffected by patch size and isolation, dispersal was probably not limiting in this system with patches separated by tens of meters, or stochastic extinctions may be uncommon. Overall, we conclude that invertebrate composition in moss patches may not only depend on local patch conditions, in a particular moss species, but also on the presence of other moss species in the direct vicinity.  相似文献   

12.
Although many studies have investigated the influence of environmental patterns on local stream invertebrate diversity, there has been little consistency in reported relationships between diversity and particular environmental variables. Here we test the hypothesis that local stream invertebrate diversity is determined by a combination of factors occurring at multiple spatial scales. We developed predictive models relating invertebrate diversity (species richness and equitability) to environmental variables collected at various spatial scales (bedform, reach and catchment, respectively) using data from 97 sampling sites dispersed throughout the Taieri River drainage in New Zealand. Models based on an individual scale of perception (bedform, reach or catchment) were not able to match predictions to observations (r < 0.26, P > 0.01, between observed and predicted equitability and species richness). In contrast, models incorporating all three scales simultaneously were highly significant (P < 0.01; r = 0.55 and 0.64, between observed and predicted equitability and species richness, respectively). The most influential variables for both richness and equitability were median particle size at the bedform scale, adjacent land use at the reach scale, and relief ratio at the catchment scale. Our findings suggest that patterns observed in local assemblages are not determined solely by local mechanisms acting within assemblages, but also result from processes operating at larger spatial scales. The integration of different spatial scales may be the key to increasing model predictability and our understanding of the factors that determine local biodiversity.  相似文献   

13.
Large-scale diversity patterns in relationship to environmental factors at multiple spatial scales have been well-studied for many taxonomic groups; however, freshwater ecosystems remain understudied. Biodiversity is now widely recognized to encompass many more factors than just species numbers, particularly the inclusion of functional attributes. In this study, we examined richness patterns of stream invertebrate genera and their biological traits (“functional” richness) across 364 sites in the contiguous USA. In particular, we focused on the relationship between taxonomy- and trait-based richness to test for functional redundancy in stream communities. Further, we obtained environmental data to model the relative importance of local and watershed-scale environmental factors and residual spatial (latitude, longitude) influences on taxonomy- and trait-based richness. Trait richness increased linearly with genus richness (slope ≪ 1), although this appears to be an artifact of the restricted range of genus richness in our study (32 genera maximum). Furthermore, trait richness was significantly lower than expected under random community assembly. In contrast, the Ephemeroptera, Plecoptera, and Trichoptera (EPT) genera exhibited a saturating pattern between trait and genus richness and trait richness was no different from random. Our study indicates that there is functional redundancy among stream invertebrate genera, likely as a result of harsh habitat filters limiting trait diversity. Environmental factors (including spatially structured environmental factors) were always more important than spatial factors (latitude, longitude) in structuring richness despite strong longitudinal patterns of all richness measures (these differences were only significant for EPT genera). Finally, we found no significant difference in the relative importance of local and watershed scale environmental factors for taxonomy- and trait-based richness.  相似文献   

14.
赵秀玲  李伟  王伟民  韩立建  周伟奇 《生态学报》2020,40(17):5894-5903
目前国内外许多城市面临严重的空气污染问题,严重制约城市发展、影响人体健康。同时,部分城市(如深圳)空气质量已经达到并保持在良好的水平。探究这些城市空气质量演变过程及其调控,可为我国大量仍面临严重空气污染问题的城市提供参考和借鉴。以深圳市为案例,利用环境质量公报数据和统计年鉴数据,通过分析多个社会经济因子与典型污染物的相关关系,探究其空气质量演变特征与调控经验。结果表明,深圳市各类型空气污染物与城市社会经济发展均符合EKC模型假说,但不同污染物所处阶段不同。颗粒物、SO2和NO2均处于下降阶段,而O3目前处于高水平平稳阶段。总结深圳市空气质量改善历程及调控措施,发现主要有两大方面:宏观上严格把控;微观上精准治理。宏观上,重点放在产业结构和能源结构的快速调整上,对于空气质量的改善起到了非常明显的作用。而在微观精细化的管理上,对于空气污染的治理政策要具有持续性、精准性和及时性。当下,针对首要的O3污染问题,深圳市应重点关注城市人为排放VOCs和植物释放VOCs对O3生成的影响,以及城市热环境对O3浓度的影响。  相似文献   

15.
随着工业化进程不断加快,重金属污染日益加剧,尤其是水体的重金属污染,已严重威胁人类健康,迫切需要进行有效的污染修复.相比传统物理和化学修复,生物修复具有绿色环保和可持续性的特点.因为微生物生长繁殖迅速、生物被膜具有动态可调节和环境适应性好等特点,使其能更好耐受胁迫环境,在环境修复中有重要作用.合成生物学改造微生物及生物...  相似文献   

16.
Environmental pollutants are associated with honeybee colony losses and may show seasonal concentration variations with respect to the environment and plants. In this study, we examined arsenic (As), lead (Pb), and mercury (Hg) seasonal variations in honey and honeybees in urban areas. Seasonal trends in detoxification (CYP9Q1, CYP9Q2, and CYP9Q3) and antioxidant genes encoding catalase (CAT) and superoxide dismutase (SOD1) were also determined in honeybees. Accordingly, As, Pb, and Hg concentrations were significantly increased in summer in both honey and honeybee samples when compared with other seasons. Similarly, the expression level of CYP9Q1, CYP9Q2, CYP9Q3, SOD1, and CAT showed a significant increase in summer honeybees. This increased expression level particularly in summer honeybees indicating an increased summer honeybee exposure and adaptive oxidative stress responses to environmental pollutants, including heavy metals due to increased flight activity when compared with other seasons. Thus, active season honeybees were subjected to environmental oxidative and detoxification stressors when exposed to environmental pollutants, including heavy metals.  相似文献   

17.
18.
In aerobic organisms, oxygen is essential for efficient energy production but paradoxically, produces chronic toxic stress in cells. Diverse protective systems must exist to enable adaptation to oxidative environments. Oxidative stress (OS) results when production of reactive oxidative species (ROS) exceeds the capacity of cellular antioxidant defenses to remove these toxic species. Epidemiological and clinical studies have linked environmental factors such as diet and lifestyle to cancer, diabetes, atherosclerosis, and neurodegenerative disorders. All of these conditions, as well as the aging process, are associated with OS due to elevation of ROS or insufficient ROS detoxification. Many environmental pollutants engage signaling pathways that are activated in response to OS. The same sequences of events are also associated with the etiology and early pathology of many chronic diseases. Investigations of oxidative responses in different in vivo models suggest that, in complex organisms such as mammals, organs and tissues contain distinct antioxidant systems, and this may form the basis for differential susceptibility to environmental toxic agents Thus, understanding the pathways leading to the induction of antioxidant responses will enable development of strategies to protect against oxidative damage. We shall review evidence of organ-specific antioxidant responses elicited by environmental pollutants in humans and animal models.  相似文献   

19.
重金属污染对鸟类的影响   总被引:8,自引:0,他引:8  
李峰  丁长青 《生态学报》2007,27(1):296-303
鸟类属于高等脊椎动物,是食物链中的高级消费者,由于生物富集作用,鸟类容易受到环境中污染物质的影响。鸟类羽毛和卵壳中的重金属浓度可以反映其所处环境中重金属的污染状况,因此可以用鸟类作为指示生物来监测环境中的重金属污染。对重金属污染的来源和特征进行了介绍,阐述了重金属污染对环境安全构成威胁的原因,分析了汞、铅、镉、砷、铜等几种重金属元素在鸟体内富集的特点及其对鸟类的危害。重金属污染物在不同生物体内的浓度存在差异,反映出它们通过食物链的生物富集和放大,对环境和鸟类的毒害作用有所增加。建议选择野生鹭类、麻雀和喜鹊等鸟类作为指示生物监测环境中的重金属污染。  相似文献   

20.
环境污染物对水生生物产生氧化压力的分子生物标志物   总被引:12,自引:0,他引:12  
王丽平  郑丙辉  孟伟 《生态学报》2007,27(1):380-388
为了能够建立一种简单、快速、准确的环境污染监测预警体系,人们进行了广泛的研究,其中有关环境污染物对分子生物标志物的影响已成为研究热点。生物体内的氧自由基和其它活性氧分子(ROS)对组织和细胞成分造成的伤害,称之为氧化压力,环境中的有毒物质能够对生物体产生不同程度的氧化压力。生物体内的强氧化剂或体外因素(如环境污染物)引起的强氧化物与抗氧化防御系统之间的平衡能够用于评估环境压力对生物体产生影响的程度,尤其适合于评估不同种化学物质引起氧化损伤的程度。这些抗氧化防御系统及其对氧化压力的敏感性在环境毒物学研究中占有非常重要的地位,大量研究结果表明:过渡金属、多环芳烃、有机氯和有机磷农药、多氯联苯、二氧芑和其它异型物质都能够对生物体产生氧化压力。这些有毒物质能够引起各种有害影响,如对膜脂、DNA和蛋白产生损伤;改变抗氧化酶的活性等。总结了这种氧化压力的研究进展情况,并讨论了这些分子生物标志物在水生生物中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号