首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
植物细胞色素P450   总被引:11,自引:0,他引:11  
对植物细胞色素P450(CYP450)基因的分离,植物CYP450在苯丙烷类物质、芥子油苷及IAA和萜类等物质的生物合成中的功能,以及对天然生物合成与人工合成物质的解毒功能等研究进展作了简要的综述。指出分离植物细胞色素P450基因,并对其生物学功能进行分析以及植物细胞色素P450降解除草剂的机制及其在环境生物修复等方面的应用是今后一段时间内植物CYP450领域的研究热点。  相似文献   

3.
Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s), heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence). Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea), Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis) and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala), revealed the presence of numerous putative P450s ranging from 267 (A. mellea) to 14 (M. osmundae). Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host/ecological niche can influence shaping the P450 content of an organism. The present study initiates our understanding of P450 family patterns in basidiomycete biotrophic plant pathogens.  相似文献   

4.
The metabolism of xenobiotics has mainly been investigated in higher plant species. We studied them in various marine macroalgae of the phyla Chlorophyta, Chromophyta, and Rhodophyta. Microsomes contained high oxidative activities for known cytochrome (Cyt) P450 substrates (fatty acids, cinnamic acid, 3- and 4-chlorobiphenyl, 2,3-dichlorobiphenyl, and isoproturon; up to 54 pkat/mg protein). The presence of Cyt P450 (approximately 50 pmol/mg protein) in microsomes of the three algal families was demonstrated by CO-difference absorption spectra. Intact algal tissue converted 3-chlorobiphenyl to the same monohydroxy-metabolite formed in vitro. This conversion was 5-fold stimulated upon addition of phenobarbital, and was abolished by the known P450 inhibitor, 1-aminobenzotriazole. It is concluded that marine macroalgae contain active species of Cyt P450 and could act as a metabolic sink for marine pollutants.  相似文献   

5.
植物细胞色素P450基因的异源表达系统研究进展   总被引:5,自引:1,他引:5  
细胞色素P450氧化酶是一类具有多种催化功能含血红素的氧化酶系。由于参与多种类型的氧化反应,在植物生命活动中有重要功能,其研究一直受到重视。自1990年第一个植物P450基因成功克隆以来,到2002年年底,已有600多个P450基因被克隆,有100多个基因在细菌、酵母、杆状病毒昆虫细胞等异源表达系统中成功表达并鉴定了功能。拟对植物P450的大肠杆菌、酵母、杆状病毒昆虫细胞表达系统的特点进行比较,对在各表达系统中成功表达并进行了功能鉴定的植物P450进行归纳,并对目前植物P450异源表达的现状和应用进行概述。  相似文献   

6.
Cytochrome P450   总被引:1,自引:0,他引:1  
Since 1993, three new cytochrome P450 X-ray structures have been determined, giving a total of four known structures. Two of the new structures are in the substrate-free form and one is substrate-bound. These new structures, together with a wealth of mutagenesis studies on various P450s, have provided considerable information on what structural features control substrate specificity in P450s. In addition, some important insights into the catalytic mechanism have been made.  相似文献   

7.
α-Solanine and α-chaconine, steroidal glycoalkaloids (SGAs) found in potato (Solanum tuberosum), are among the best-known secondary metabolites in food crops. At low concentrations in potato tubers, SGAs are distasteful; however, at high concentrations, SGAs are harmful to humans and animals. Here, we show that POTATO GLYCOALKALOID BIOSYNTHESIS1 (PGA1) and PGA2, two genes that encode cytochrome P450 monooxygenases (CYP72A208 and CYP72A188), are involved in the SGA biosynthetic pathway, respectively. The knockdown plants of either PGA1 or PGA2 contained very little SGA, yet vegetative growth and tuber production were not affected. Analyzing metabolites that accumulated in the plants and produced by in vitro enzyme assays revealed that PGA1 and PGA2 catalyzed the 26- and 22-hydroxylation steps, respectively, in the SGA biosynthetic pathway. The PGA-knockdown plants had two unique phenotypic characteristics: The plants were sterile and tubers of these knockdown plants did not sprout during storage. Functional analyses of PGA1 and PGA2 have provided clues for controlling both potato glycoalkaloid biosynthesis and tuber sprouting, two traits that can significantly impact potato breeding and the industry.Potato (Solanum tuberosum) is the world’s fourth most important food crop after maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum). Potato steroidal glycoalkaloids (SGAs) are abundant poisons in tuber sprouts and green tubers and are described as bitter tasting, burning, scratchy, or acrid (Friedman, 2006; Ginzberg et al., 2009; Taylor et al., 2007). SGAs in the tuber are induced by exposure to light, low temperature, and mechanical injury (Valkonen et al., 1996). Producers and consumers have called for the removal of SGAs from potatoes. Only potato with SGAs of major food crops has such broad industry consensus on the need to solve this important worldwide problem. Controlling the SGA content is also important for potato breeding. Wild germplasm has been used in potato breeding programs as a source of pest and disease resistance. Since high SGA concentrations are found in most wild tuber-bearing species, introgression of wild germplasm may increase the risk for high SGA levels. Although the initial concentrations are still low in new breeding lines, dangerous levels of SGAs can accumulate due to environmental factors, pathogen infections, and postharvest treatments (Valkonen et al., 1996).SGAs are biosynthesized from a common precursor, cholesterol (CHR; Sawai et al., 2014), but little is known about intermediates and enzymes in the SGA biosynthetic pathway. To change a biosynthetic flow to CHR and decrease SGA contents, transgenic potatoes overexpressing a heterologous soybean sterol methyltransferase gene were produced (Arnqvist et al., 2003). Three genes responsible for glycosylating potato SGA have been identified (McCue et al., 2005, 2006, 2007). However, changing the expression of the sterol methyltransferase or glycosyltransferase genes does not effectively decrease SGA levels. To control the SGA content of potato, we focused on the biosynthetic steps from CHR to the aglycone, solanidine. Few details about the biosynthetic pathway are verified; however, the pathway is hypothesized to require at least three oxidization steps at positions C16, C22, and C26 of CHR structure and the addition of one nitrogen atom at the position C26 (Fig. 1; Kaneko et al., 1977; Erich, 1983; Eich, 2008). The later step was shown to be another oxidation and an amination reaction at the position C26 (Ohyama et al., 2013). Here, we identified two cytochrome P450 monooxygenase (CYPs) genes, POTATO GLYCOALKALOID BIOSYNTHESIS1 (PGA1) and PGA2 that encode enzymes mediating two oxidation steps. Silencing PGA1 and PGA2 resulted in a significant reduction in SGA composition and the creation of novel phenotypes, including the suppression of flower development and tuber sprouting. Sprouting reduces the quality and yield of potato tubers in storage. Suppression of tuber sprouting is of significant benefit to the industry for the long-term storage of tubers. Thus, controlling tuber sprouting is another important objective in potato breeding (Sonnewald and Sonnewald, 2014).Open in a separate windowFigure 1.Biosynthetic pathway for SGAs in potato. The structures of CHR and solanidine, two biosynthetic intermediates of potato SGAs, are shown with the structures of the SGA products. Circles indicate putative carbon positions that are oxidized in the hypothesized pathway.  相似文献   

8.
Plants depend on cytochrome P450 (CYP) enzymes for nearly every aspect of their biology. In several sequenced angiosperms, CYP genes constitute up to 1% of the protein coding genes. The angiosperm sequence diversity is encapsulated by 59 CYP families, of which 52 families form a widely distributed core set. In the 20 years since the first plant P450 was sequenced, 3,387 P450 sequences have been identified and annotated in plant databases. As no new angiosperm CYP families have been discovered since 2004, it is now apparent that the sampling of CYP diversity is beginning to plateau. This review presents a comparison of 1,415 cytochrome P450 sequences from the six sequenced genomes of Vitis vinifera (grape), Carica papaya (papaya), Populus trichocarpa (poplar), Oryza sativa (rice), Arabidopsis thaliana (Arabidopsis or mouse ear’s cress) and Physcomitrella patens (moss). An evolutionary analysis is presented that tracks land plant P450 innovation over time from the most ancient and conserved sequences to the newest dicot-specific families. The earliest or oldest P450 families are devoted to the essential biochemistries of sterol and carotenoid synthesis. The next evolutionary radiation of P450 families appears to mediate crucial adaptations to a land environment. And, the newest CYP families appear to have driven the diversity of angiosperms in mediating the synthesis of pigments, odorants, flavors and order-/genus-specific secondary metabolites. Family-by-family comparisons allow the visualization of plant genome plasticity by whole genome duplications and massive gene family expansions via tandem duplications. Molecular evidence of human domestication is quite apparent in the repeated P450 gene duplications occurring in the grape genome.  相似文献   

9.
细胞色素P450基因及其在植物改良中的应用   总被引:6,自引:0,他引:6  
杨致荣  毛雪  杨致芬  李润植 《遗传》2003,25(2):237-240
细胞色素P450是一类含血红素的氧化还原酶类,它参与多种生化反应,在防御生物免受病虫害及逆境胁迫等方面具有重要作用。生物基因组序列分析表明,它是一个基因超家族。许多细胞色素P450基因已被鉴定和克隆,并应用于植物遗传改良;在转基因培育多抗性植物、创造植物雄性不育系,提高植物降解化学农药残留等污染物的能力和有效生产具有药用价值的化合物等方面已取得可喜进展,显示出广阔的应用前景。 Abstract:Cytochrome P450s are heme-containing mixed-function oxidases,involving in lots of biochemical reactions.They play an important role in preventing plants from pathogen and insect attacks and environmental stress.Sequence analysis of genomes has revealed that P450 is a gene super-family.Many cytochrome P450s have been characterized and cloned.Some of them have been used in plant genetic improvement.A great progress has been made in using these P450 genes to create the transgenic plants with multiple resistances,male sterility,higher capability to dissolve toxic chemicals and pollutants and effective productivity of high valuable compounds,indicating P450 genes have a broad prospect with great potential application.  相似文献   

10.
Cytochrome P450 (CYP) is a large family of enzymes containing heme as the active site. Since their discovery and the elucidation of their structure, they have attracted the interest of scientist for many years, particularly due to their catalytic abilities. Since the late 1970s attempts have concentrated on the construction and development of electrochemical sensors. Although sensors based on mediated electron transfer have also been constructed, the direct electron transfer approach has attracted most of the interest. This has enabled the investigation of the electrochemical properties of the various isoforms of CYP. Furthermore, CYP utilized to construct biosensors for the determination of substrates important in environmental monitoring, pharmaceutical industry and clinical practice.  相似文献   

11.
12.
细胞色素P450与肿瘤   总被引:4,自引:0,他引:4  
Lu H  Li Y 《生理科学进展》1997,28(2):178-180
本文综棕了细胞色素P450同工酶与致癌物代谢、与抗癌药的相互作用以及化的关系,并对调控P450同工酶以防治肿瘤的策略进行了论述。由于P450同工酶具有多态性、工物特异性及可诱导性的特点,在调控P450同工酶以防治肿瘤的问题上,针对不同人群、不同疾病状况及不同用药方案可能需采取抑制或诱导的不同策略。  相似文献   

13.
14.
细胞色素P450介导的昆虫抗药性   总被引:6,自引:0,他引:6  
本文介绍了昆虫细胞色素P450(简称P450)及其介导抗性的分子基础的研究进展。细胞色素:P450在转录水平上的过量表达是P450介导抗性的主要机制,P450的氨基酸残基改变也可能改变昆虫的抗药性。  相似文献   

15.
The cytochrome P450 mono-oxygenase system represents a major defence against chemical challenge from the environment, constituting part of an adaptive response mounted by an organism following exposure to harmful agents. Cytochrome P450s are also able to catalyse the activation of compounds to toxic products, and participate in a variety of essential 'housekeeping' functions, such as biosynthesis of steroid hormones and fatty acid oxidation. It is clear that the modulation of expression of these enzymes can have a significant effect on chemical toxicity, carcinogenicity and mutagenicity. The concept of cancer chemoprevention, i.e. the administration of a (non-toxic) chemical or dietary component in order to prevent neoplastic disease or to inhibit its progression, is an attractive one. Despite this, relatively little work has been done to characterize the ability of putative chemopreventive agents to modulate P450 expression, or to understand the interaction between P450s and chemopreventive agents. Before chemopreventive treatment can become a reality, it is essential that this complex issue is addressed; for instance, it is likely that any single chemopreventive agent will induce more than one P450 isoenzyme, and while altered expression of a particular P450 may attenuate the effects of one toxic agent, the effects of others might well be potentiated. Our laboratory has created a transgenic mouse line in which the rat CYP1A1 promoter drives expression of the beta-galactosidase gene. These mice can be used to define which compounds act via the Ah receptor, in which tissues, and at which stage of development. We are currently developing another mouse line in which beta1-galactosidase expression is controlled by the mouse GstA1 promoter, allowing us to define the role of the antioxidant responsive element in the action of chemopreventive agents. Finally, using cre-loxP transgenic technology, we have generated a mouse line in which P450 reductase can be deleted in a conditional, i.e. tissue-specific, manner, permitting us to investigate the role of P450s in chemoprevention in a more defined manner.  相似文献   

16.
红球菌 (Rhodococcus sp.) R04基因组有15种细胞色素P450单加氧酶,其中CYP125A18与结核分枝杆菌 (Mycobacterium tuberculosis) 和马红球菌 (Rhodococcus equi) 的CYP125有较高同源性。利用NCBI蛋白质数据库搜索同源序列,对Rhodococcus sp. R04的15种CYP450一级结构序列进行比对和系统发育分析;对CYP125A18基因进行了克隆表达,并用紫外分光光度法对蛋白质的光谱学特性以及与唑类药物互作情况进行分析。实验结果表明,Rhodococcus sp. R04 15种CYP450均含有保守的氨基酸序列和铁血红素催化中心。SDS-PAGE分析表明,CYP125A18分子量约为50 kD,CYP125A18还原态和CO结合后与CYP125A18氧化态的差示光谱表现为典型的CYP450光谱特性。CYP125A18与底物4-胆甾烯-3-酮结合后,血红素铁全部转变为高自旋状态;与唑类药物滴定后发生了II型光谱转变。解离常数表明,7种唑类药物与CYP125A18的亲和力由强到弱依次为酮康唑、益康唑、4-苯基咪唑、氟康唑、4-甲基-2-苯基咪唑、克霉唑、甲硝唑。上述发现对研究CYP125代谢胆固醇具有重要意义,同时为疾病耐药性研究及药物选择提供数据和理论支持。  相似文献   

17.
Summary Cytochrome P450 in the mitochondria of the adrenal cortex functions in the monooxygenation reactions for the biosynthesis of various steroid hormones, such as cholesterol side chain cleavage, hydroxylation at 11-position and that at 18-position of the steroid structure. The cytochrome is firmly associated with the mitochondrial membrane and therefore can be isolated only by the aid of ionic or non-ionic detergent. Recently, two cytochromes P450 each catalyzing a specified reaction have been purified to a homogeneous state, that is, P450scc having cholesterol side chain cleavage activity and P45011 having 11-hydroxylation activity. The properties of these purified P450's as well as the other components of the monooxygenase system, adrenodoxin and adrenodoxin reductase, are, therefore, summarized and compared to those of P450 in the mitochondria) preparation in situ.Among many findings, both purified cytochromes P450 were revealed to be a low-spin type hemoprotein and their spin states were changed to a high-spin state by being complexed with the corresponding substrate. The binding of a substrate also facilitated the reduction of the cytochrome and appeared to increase the stability of the oxygenated form of cytochrome P450. These effects are important from the point of view that the primary role of the heme of cytochrome P450 is the activation of molecular oxygen. In addition, the results of our detailed kinetic studies on the transfer of electrons from adrenodoxin to cytochrome P450 in the reconstituted system have also been described Finally, the topology of adrenodoxin and the reductase were shown to be on the inner mitochondrial membrane by a peroxidase-labeled antibody method.  相似文献   

18.
The pattern suggested for the structure-function superfamily of cytochromes P450 is composed by combining the conserved amino acid motifs. The sizes of P450 cytochromes were estimated according to their length. The empirical coefficients reflecting the peculiarities of the primary structure of these enzymes are calculated. We propose an approach for determining novel proteins sequences to the mentioned superfamily on the ground of the complex of these parameters. A number of the hypothetical proteins from the international databases is related to the cytochromes P450 by means of our pattern.  相似文献   

19.
细胞色素P450与除草剂代谢   总被引:1,自引:0,他引:1  
细胞色素P450是广泛存在于生物中的一类具有混合功能的血红素氧化酶。P450对除草剂代谢的机制及反应类型是多样的,与除草剂代谢相关的P450基因的植物转基因研究得到了具有不同除草剂抗性的转基因植物。文章就这方面的研究进展作介绍。  相似文献   

20.
李梅  曾凡荣 《微生物学通报》2008,35(7):1107-1112
链霉菌中存在大量的细胞色素P450,它们在链霉菌次生代谢产物的生物合成和外来化学物质代谢过程中发挥了重要作用.本文综述了链霉菌中发现的细胞色素P450及其功能的研究进展,分析了存在的问题和研究应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号