首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the early stages of lung development, the endoderm undergoes extensive and stereotypic branching morphogenesis. During this process, a simple epithelial bud develops into a complex tree-like system of tubes specialized for the transport and exchange of gas with blood. The endodermal cells in the distal tips of the developing lung express a special set of genes, have a higher proliferation rate than proximal part, undergo shape change and initiate branching morphogenesis. In this study, we found that of the four p38 genes, only p38α mRNA is localized specifically to the distal endoderm suggesting a role in the regulation of budding morphogenesis. Chemical inhibitors specific for the p38α and p38β isoforms suppress budding of embryonic mouse lung explants and isolated endoderm in vitro. Specific knockdown of p38α in cultured lung endoderm using shRNA also inhibited budding morphogenesis, consistent with the chemical inhibition of the p38 signaling pathway. Disruption of p38α did not affect proliferation or expression of the distal cell markers, Sox9 and Erm. However, the amount of E-cadherin protein increased significantly and ectopic expression of E-cadherin also impaired budding of endoderm in vitro. These results suggest that p38α modulates epithelial cell-cell interactions and possibly cell rearrangement during branching morphogenesis. This study provides the first evidence that p38α is involved in the morphogenesis of an epithelial organ.  相似文献   

2.
The lung is a highly branched fluid-filled structure, that develops by repeated dichotomous branching of a single bud off the foregut, of epithelium invaginating into mesenchyme. Incorporating the known stress response of developing lung tissues, we model the developing embryonic lung in fluid mechanical terms. We suggest that the repeated branching of the early embryonic lung can be understood as the natural physical consequence of the interactions of two or more plastic substances with surface tension between them. The model makes qualitative and quantitative predictions, as well as suggesting an explanation for such observed phenomena as the asymmetric second branching of the embryonic bronchi.  相似文献   

3.
Hox proteins control structural morphogenesis, pattern formation and cell fate in the developing embryo. To determine if Hoxb-5 participates in patterning of early airway branching during lung morphogenesis, gestational day 11.5 embryonic lung cultures were treated with retinoic acid (RA) to up-regulate and antisense oligonucleotides to down-regulate Hoxb-5 protein expression. RA (10?6 M) and Hoxb-5 antisense oligonucleotide (20 μM) treatment each significantly decreased branching morphogenesis (P<0.001), but the morphology of branching under these conditions was very different. RA-treated lungs had elongated primary branches but decreased further branching with increased Hoxb-5 immunostaining in subepithelial regions underlying these elongated airways. Western blots confirmed that Hoxb-5 protein was increased by 189±20% (mean±S.E.M., P<0.05) in RA-treated lungs compared to controls. In contrast, lungs treated with Hoxb-5 antisense oligos plus RA had foreshortened primary branches with rudimentary distal clefts resulting in decreased numbers of primary and subsequent branches. Immunohistochemistry confirmed that Hoxb-5 antisense oligos inhibited Hoxb-5 protein expression even in the presence of RA. We conclude that regional and quantitative changes in Hoxb-5 protein expression influence morphogenesis of the first airway divisions from the mainstem bronchi. RA-induced alterations in branching are mediated in part through regulated Hoxb-5 expression.  相似文献   

4.
The primary lung bud originates from the foregut and develops into the bronchial tree by repetitive branching and outgrowing of the airway. The Sry related HMG box protein Sox2 is expressed in a cyclic manner during initiation and branching morphogenesis of the lung. It is highly expressed in non-branching regions and absent from branching regions, suggesting that downregulation of Sox2 is mandatory for airway epithelium to respond to branch inducing signals. Therefore, we developed transgenic mice that express a doxycycline inducible Sox2 in the airway epithelium. Continuous expression of Sox2 hampers the branching process resulting in a severe reduction of the number of airways. In addition, the bronchioli transiently go over into enlarged, alveolar-like airspaces, a pathology described as bronchiolization of alveoli. Furthermore, a substantial increase was observed of cGRP positive neuroendocrine cells and ΔNp63 isoform expressing (pre-) basal cells, which are both committed precursor-like cells. Thus, Sox2 prevents airways from branching and prematurely drives cells into committed progenitors, apparently rendering these committed progenitors unresponsive to branch inducing signals. However, Sox2 overexpression does not lead to a complete abrogation of the epithelial differentiation program.  相似文献   

5.
Key gene families such as FGFs and BMPs are important mediators of branching morphogenesis. To understand whether Wnt genes, and in particular, the canonical Wnt signaling pathway also function in the branching process, we have used a combination of experimental and genetic gain and loss of function approaches to perturb the levels of canonical Wnt signaling in two arborized structures, the lung and the lacrimal gland. Here, we show that the addition of Wnt3a conditioned medium or LiCl strongly represses growth and proliferation of the lung and lacrimal gland, a result that was confirmed in vivo using a dominant stable mutation of beta-catenin conditionally expressed in the lacrimal gland epithelium. In agreement with these data, knockdown of Wnt signaling with beta-catenin morpholinos results in a greater number of branches and increased cell proliferation. In addition, we show that canonical Wnt signaling is able to modulate the levels of Fgf10 and suppress BMP-induced proliferation in the lacrimal gland. Thus, canonical Wnt signaling negatively regulates branching morphogenesis providing a balance to FGFs and BMPs which positively regulate this process. This multilayered control of growth and proliferation ensures that branched structures attain the morphology required to function efficiently.  相似文献   

6.
Heparan sulfate-FGF10 interactions during lung morphogenesis   总被引:3,自引:0,他引:3  
Signaling by fibroblast growth factor 10 (FGF10) through FGFR2b is essential for lung development. Heparan sulfates (HS) are major modulators of growth factor binding and signaling present on cell surfaces and extracellular matrices of all tissues. Although recent studies provide evidence that HS are required for FGF-directed tracheal morphogenesis in Drosophila, little is known about the HS role in FGF10-mediated bud formation in the vertebrate lung. Here, we mapped HS expression in the early lung and we investigated how HS interactions with FGF10-FGFR2b influence lung morphogenesis. Our data show that a specific set of HS low in O-sulfates is dynamically expressed in the lung mesenchyme at the sites of prospective budding near Fgf10-expressing areas. In turn, highly sulfated HS are present in basement membranes of branching epithelial tubules. We show that disrupting endogenous gradients of HS or altering HS sulfation in embryonic lung culture systems prevents FGF10 from inducing local responses and markedly alters lung pattern formation and gene expression. Experiments with selectively sulfated heparins indicate that O-sulfated groups in HS are critical for FGF10 signaling activation in the epithelium during lung bud formation, and that the effect of FGF10 in pattern is in part determined by regional distribution of O-sulfated HS. Moreover, we describe expression of a HS 6-O-sulfotransferase preferentially at the tips of branching tubules. Our data suggest that the ability of FGF10 to induce local budding is critically influenced by developmentally regulated regional patterns of HS sulfation.  相似文献   

7.
8.
While it is clear that the normal branching morphogenesis of the ureteric bud (UB) is critical for development of the metanephric kidney, the specific patterns of branching and growth have heretofore only been inferred from static images. Here, we present a systematic time-lapse analysis of UB branching morphogenesis during the early development of the mouse kidney in organ culture. Metanephric primordia from Hoxb7/GFP transgenic embryos were cultured for 3-4 days, and GFP images of the UB taken every 30 min were assembled into movies. Analysis of these movies (available as )revealed that the UB is a highly plastic structure, which can branch in a variety of complex patterns, including terminal bifid, terminal trifid, and lateral branching. To examine kinetic parameters of branching and elongation, skeletal representations of the UB were used to measure the number of segments and branch points and the length of each segment as a function of time and of branch generation. These measurements provide a baseline for future studies on mutant kidneys with defects in renal development. To illustrate how these quantitative methods can be applied to the analysis of abnormal kidney development, we examined the effects of the MEK1 inhibitor PD98059 on renal organ cultures and confirmed a previous report that the drug has a specific inhibitory effect on UB branching as opposed to elongation.  相似文献   

9.
With their continuous growth, understanding how plant shapes form is fundamentally linked to understanding how growth rates are controlled across different regions of the plant. Much of a plant's architecture is generated in shoots and roots, where fast growth in tips contrasts with slow growth in supporting stalks. Shapes can be determined by where the boundaries between fast- and slow-growing regions are positioned, determining whether tips elongate, branch, or cease to grow. Across plants, there is a diversity in the cell wall chemistry through which growth operates. However, prototypical morphologies, such as tip growth and branching, suggest there are common dynamic constraints in localizing chemical growth catalysts. We have used Turing-type reaction-diffusion mechanisms to model this spatial localization and the resulting growth trajectories, characterizing the chemistry-growth feedback necessary for maintaining tip growth and for inducing branching. The mechanism defining the boundaries between fast- and slow-growing regions not only affects tip shape, it must be able to form new boundaries when the pattern-forming dynamics break symmetry, for instance in the branching of a tip. In previous work, we used an arbitrary concentration threshold to switch between two dynamic regimes of the growth catalyst in order to define growth boundaries. Here, we present a chemical dynamic basis for this threshold, in which feedback between two pattern-forming mechanisms controls the extent of the regions in which fast growth occurs. This provides a general self-contained mechanism for growth control in plant morphogenesis (not relying on external cues) which can account for both simple tip extension and symmetry-breaking branching phenomena.  相似文献   

10.
11.
In the early kidney development, a simple epithelial tube called ureteric bud is derived from the intermediate mesoderm and undergoes a complex process of growth and terminal bifid branching. The branching of the ureteric bud is achieved by different cellular behaviors including cell proliferation and chemotaxis. In this paper, we examine how the branching morphology depends on different physical or chemical factors by constructing a cell-based model to describe the simple tube branching in the early kidney development. We conclude that a proper balance between growth speed of epithelial sheet due to cell proliferation and cell mobility due to chemotaxis is necessary to realize the development of normal Y-shaped pattern. When cell proliferation is fast compared to chemotaxis, kinked pattern is formed, and when cell proliferation is slow, bloated pattern is formed. These are consistent with experimental observations in different morphological anomalies of mutants. We show that the different branching patterns are accurately predicted by growth-chemotaxis ratio.  相似文献   

12.
Prostatic branching morphogenesis is an intricate event requiring precise temporal and spatial integration of numerous hormonal and growth factor-regulated inputs, yet relatively little is known about the downstream signaling pathways that orchestrate this process. In this study, we use a novel mesenchyme-free embryonic prostate culture system, newly available mTOR inhibitors and a conditional PTEN loss-of-function model to investigate the role of the interconnected PI3K and mTOR signaling pathways in prostatic organogenesis. We demonstrate that PI3K levels and PI3K/mTOR activity are robustly induced by androgen during murine prostatic development and that PI3K/mTOR signaling is necessary for prostatic epithelial bud invasion of surrounding mesenchyme. To elucidate the cellular mechanism by which PI3K/mTOR signaling regulates prostatic branching, we show that PI3K/mTOR inhibition does not significantly alter epithelial proliferation or apoptosis, but rather decreases the efficiency and speed with which the developing prostatic epithelial cells migrate. Using mTOR kinase inhibitors to tease out the independent effects of mTOR signaling downstream of PI3K, we find that simultaneous inhibition of mTORC1 and mTORC2 activity attenuates prostatic branching and is sufficient to phenocopy combined PI3K/mTOR inhibition. Surprisingly, however, mTORC1 inhibition alone has the reverse effect, increasing the number and length of prostatic branches. Finally, simultaneous activation of PI3K and downstream mTORC1/C2 via epithelial PTEN loss-of-function also results in decreased budding reversible by mTORC1 inhibition, suggesting that the effect of mTORC1 on branching is not primarily mediated by negative feedback on PI3K/mTORC2 signaling. Taken together, our data point to an important role for PI3K/mTOR signaling in prostatic epithelial invasion and migration and implicates the balance of PI3K and downstream mTORC1/C2 activity as a critical regulator of prostatic epithelial morphogenesis.  相似文献   

13.
The RET receptor tyrosine kinase is activated by GDNF and controls outgrowth and invasion of the ureteric bud epithelia in the developing kidney. In renal epithelial cells and in enteric neuronal precursor cells, activation of RET results in chemotaxis as Ret expressing cells invade the surrounding GDNF expressing tissue. One potential downstream signaling pathway governing RET mediated chemotaxis may require phosphatidylinositol 3-kinase (PI3K), which generates PI(3,4,5) triphosphate. The PTEN tumor suppressor gene encodes a protein and lipid phosphatase that regulates cell growth, apoptosis and many other cellular processes. PTEN helps regulate cellular chemotaxis by antagonizing the PI3K signaling pathway through dephosphorylation of phosphotidylinositol triphosphates. In this report, we show that PTEN suppresses RET mediated cell migration and chemotaxis in cell culture assays, that RET activation results in asymmetric localization of inositol triphosphates and that loss of PTEN affects the pattern of branching morphogenesis in developing mouse kidneys. These data suggest a critical role for the PI3K/PTEN axis in shaping the pattern of epithelial branches in response to RET activation.  相似文献   

14.
Class 3 semaphorins are guidance proteins involved in axon pathfinding, vascular patterning and lung branching morphogenesis in the developing mouse embryo. Semaphorin3a (Sema3a) is expressed in renal epithelia throughout kidney development, including podocytes and ureteric bud cells. However, the role of Sema3a in ureteric bud branching is unknown. Here we demonstrate that Sema3a plays a role in patterning the ureteric bud tree in both metanephric organ cultures and Sema3a mutant mice. In vitro ureteric bud injection with Sema3a antisense morpholino resulted in increased branching, whereas recombinant SEMA3A inhibited ureteric bud branching and decreased the number of developing glomeruli. Additional studies revealed that SEMA3A effects on ureteric bud branching involve downregulation of glial cell-line derived neurotrophic factor (GDNF) signaling, competition with vascular endothelial growth factor A (VEGF-A) and decreased activity of Akt survival pathways. Deletion of Sema3a in mice is associated with increased ureteric bud branching, confirming its inhibitory role in vivo. Collectively, these data suggest that Sema3a is an endogenous antagonist of ureteric bud branching and hence, plays a role in patterning the renal collecting system as a negative regulator.  相似文献   

15.
Many epithelial tissues expand rapidly during embryonic development while remaining surrounded by a basement membrane. Remodeling of the basement membrane is assumed to occur during branching morphogenesis to accommodate epithelial growth, but how such remodeling occurs is not yet clear. We report that the basement membrane is highly dynamic during branching of the salivary gland, exhibiting both local and global remodeling. At the tip of the epithelial end bud, the basement membrane becomes perforated by hundreds of well-defined microscopic holes at regions of rapid expansion. Locally, this results in a distensible, mesh-like basement membrane for controlled epithelial expansion while maintaining tissue integrity. Globally, the basement membrane translocates rearward as a whole, accumulating around the forming secondary ducts, helping to stabilize them during branching. Both local and global dynamics of the basement membrane require protease and myosin II activity. Our findings suggest that the basement membrane is rendered distensible by proteolytic degradation to allow it to be moved and remodeled by cells through actomyosin contractility to support branching morphogenesis.  相似文献   

16.
A system for modelling cell-cell interactions during plant morphogenesis   总被引:2,自引:0,他引:2  
  相似文献   

17.
There is increasing evidence that epithelial-vascular interactions are essential for tissue patterning. Here we identified components of the molecular cross talk between respiratory epithelial cells and pulmonary capillaries necessary for the formation of the gas exchange surface of the lung. Selective inactivation of the Vegf-A gene in respiratory epithelium results in an almost complete absence of pulmonary capillaries, demonstrating the dependence of pulmonary capillary development on epithelium-derived Vegf-A. Deficient capillary formation in Vegf-A deficient lungs is associated with a defect in primary septae formation, a morphogenetic process critical for distal lung morphogenesis, coupled with suppression of epithelial cell proliferation and decreased hepatocyte growth factor (Hgf) expression. Lung endothelial cells express Hgf, and selective deletion of the Hgf receptor gene in respiratory epithelium phenocopies the malformation of septae, confirming the requirement for epithelial Hgf signaling in normal septae formation and suggesting that Hgf serves as an endothelium-derived factor that signals to the epithelium. Our findings support a mechanism for primary septae formation dependent on reciprocal interactions between respiratory epithelium and the underlying vasculature, establishing the dependence of pulmonary capillary development on epithelium-derived Vegf-A, and identify Hgf as a putative endothelium-derived factor that mediates the reciprocal signaling from the vasculature to the respiratory epithelium.  相似文献   

18.
Development of salivary glands is a highly complex and dynamic process termed branching morphogenesis, where branched structures differentiate into mature glands. Tight junctions (TJ) are thought to play critical roles in physiological functions of tubular organs, contributing to cell polarity and preventing lateral movement of membrane proteins. Evidence demonstrated that claudins are directly involved in TJ formation and function. Using immunohistochemistry and immunofluorescence we have mapped the distribution of claudins-1, 2, 3, 4, 5, 7 and 11 and compared it with the expression of differentiation markers in human salivary glands obtained from foetuses ranging from weeks 4 to 24 of gestation. Expression of all claudins, except claudin-2 was detected in the various phases of human salivary gland development, up to fully mature salivary gland. The expression of all claudins increased according to the progression of salivary gland maturation evidenced by the classical markers-cytokeratin 14, cytokeratin low molecular weight, smooth muscle actin and human secretory component. Tight junction proteins-claudins appear to be important in the final shape and physiological functions of human salivary glands and are parallel related with markers of salivary gland differentiation.  相似文献   

19.
During embryonic development, the vertebrate vasculature is undergoing vast growth and remodeling. Blood vessels can be formed by a wide spectrum of different morphogenetic mechanisms, such as budding, cord hollowing, cell hollowing, cell wrapping and intussusception. Here, we describe the vascular morphogenesis that occurs in the early zebrafish embryo. We discuss the diversity of morphogenetic mechanisms that contribute to vessel assembly, angiogenic sprouting and tube formation in different blood vessels and how some of these complex cell behaviors are regulated by molecular pathways.  相似文献   

20.
We present a mathematical model of the genetic regulation controlling skeletogenesis and the influence of the physical environment on a branching sponge with accretive growth (e.g. Haliclona oculata or Lubomirskia baikalensis). From previous work, it is known that high concentrations of silicate induce spicule formation and upregulate the silicatein gene. The upregulation of this gene activates locally the production of spicules in the sponge and the deposition of the skeleton. Furthermore, it is known that the expression of the gene Iroquois induces the formation of an aquiferous system, consisting of exhalant and inhalant pores. We propose a model of the regulatory network controlling the separation in time and space of the skeletogenesis and the formation of the aquiferous system. The regulatory network is closely linked with environmental influences. In building a skeleton, silicate is absorbed from the environment. In our model, silicate is transported by diffusion through the environment and absorbed at the surface of a geometric model of the sponge, resulting in silicate gradients emerging in the neighbourhood of the sponge. Our model simulations predict sponge morphology and the positioning of the exhalant pores over the surface of the sponge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号