首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A triple (aphr ara-Ar and araCr) mutant (AP7) of Chinese hamster ovary cells resistant to DNA polymerase inhibitors is described. The aphidicolin-resistance of the mutant was stable and inherited as a dominant genetic trait. The DNA polymerase alpha from the wild type (aphs) and the mutant (aphr) cells differed in their elution profiles on DEAE-cellulose chromatography and in their molecular weights which were 192,000 for the wild type (CHO-K-1, AC6a) and 165,000 for the mutant (AP7) enzymes.  相似文献   

2.
Using a genetic approach, Chinese hamster ovary (CHO) cells sensitive (aphS) and resistant (aphR) to aphidicolin were grown in the presence or absence of various DNA polymerase inhibitors, and the newly synthesized DNA isolated from [32P]dNMP-labelled, detergent-permeabilized cells, was characterized after fractionation by gel electrophoresis. The particular aph Rmutant CHO cell line used was one selected for resistance to aphidicolin and found to possess an altered DNA polymerase of the a-family. The synthesis of a 24 kb replication intermediate was inhibited in wild-type CHO cells grown in the presence of aphidicolin, whereas the synthesis of this replication intermediate was not inhibited by this drug in the mutant CHO cells or in the aphidicolin-resistant somatic cell hybrid progeny constructed by fusion of wild-type and mutant cell lines. Arabinofuranosylcytosine (ara-C), like aphidicolin, inhibited the synthesis of this 24 kb DNA replication intermediate in the wild-type CHO cells but not in the aphR mutant cells. However, carbonyldiphosphonate (COMDP) inhibited the synthesis of the 24 kb replication intermediate in both wild-type and mutant cells. N2-(p-n-Butylphenyl)-2 deoxyguanisine-5-triphosphate (BuPdGTP) was found to inhibit the formation of Okazaki fragments equally well in the wild-type and mutant cell lines and thus led to inhibition of synthesis of DNA intermediates in both cases. It appears that aphidicolin and ara-C both affect a common target on the DNA polymerase, which is different from that affected by COMDP in vivo. These data also show that aphidicolin, ara-C and COMDP affect the elongation activity of DNA polymerase but not the initiation activity of the enzyme during DNA replication. This is the first report of such differentiation of the DNA polymerase activities during nuclear DNA replication in mammalian cells. The method of analysis described here for replication intermediates can be used to examine the inhibitory activities of other chemicals on DNA synthesis.  相似文献   

3.
Summary Isolation and characterization of Chinese hamster ovary cell mutants resistant to different DNA polymerase ase inhibitors (aphidicolin, ara-A and ara-C) have been described. A particular mutant (JK3-1-2A) characterized in detail was found to grow and synthesize DNA in medium containing an amount of aphidicolin tenfold greater than that which completely inhibited the growth and the DNA synthesis of the wild-type cells. An almost twofold increase in the specific activity of the DNA polymerase was seen in this mutant. The mutant DNA polymerase showed altered aphidicolin inhibition kinetics of dCMP incorporation; the apparent K m for dCTP and the apparent K i for aphidicolin were increased in the mutant. These alterations in the kinetic parameters were, however, abolished upon further purification of the enzyme. Ara-CTP was found to act as a competitive inhibitor of the dCMP incorporation by both the wild type and mutant enzymes. In contrast, the effect of aphidicolin on dCMP incorporation was either competitive (wild-type enzymes) or noncompetitive (mutant enzyme). The data presented showed that the sites of action for aphidicolin and ara-CTP were distinct; likewise the dCTP binding site appeared to be separate from other dNTP(s) binding sites. The drug resistance of the mutant was inherited as a dominant trait.Abbreviations ara-A 9--d-arabinofuranosyl adenine - ara-C 1--d-arabinofuranosyl cytosine - aph aphidicolin  相似文献   

4.
We describe the mapping and sequencing of mutations within the DNA polymerase gene of herpes simplex virus type 1 which confer resistance to aphidicolin, a DNA polymerase inhibitor. The mutations occur near two regions which are highly conserved among DNA polymerases related to the herpes simplex enzyme. They also occur near other herpes simplex mutations which affect the interactions between the polymerase and deoxyribonucleoside triphosphate substrates. Consequently, we argue in favor of the idea that the aphidicolin binding site overlaps the substrate binding site and that the near-by conserved regions are functionally required for substrate binding. Our mutants also exhibit abnormal sensitivity to another DNA polymerase inhibitor, phosphonoacetic acid. This drug is thought to bind as an analogue of pyrophosphate. A second-site mutation which suppresses the hypersensitivity of one mutant to phosphonoacetic acid (but not its aphidicolin resistance) is described. This second mutation may represent a new class of mutations, which specifically affects pyrophosphate, but not substrate, binding.  相似文献   

5.
Characterization of a mutant of Toxoplasma gondii resistant to aphidicolin   总被引:1,自引:0,他引:1  
Aphidicolin, a mycotoxin that inhibits eucaryotic DNA polymerase alpha, blocked the growth of Toxoplasma gondii in confluent cultured human fibroblasts. Aphidicolin immediately inhibited DNA synthesis by T. gondii while it had a delayed and less dramatic effect on RNA synthesis. A mutant of T. gondii resistant to aphidicolin was isolated with the aid of mutagenesis by ethylnitrosourea. Parasite growth measured three days after drug treatment and parasite DNA synthesis measured immediately after drug treatment were, respectively, five- and four-fold more resistant to aphidicolin in the mutant as compared with the wild type parasite. The mutant had a three-fold greater capacity than the wild type to incorporate uracil into its deoxycytidine triphosphate pool. This increased deoxycytidine triphosphate pool is the probable explanation for the mutant's resistance because this deoxynucleotide is known, in mammalian cells, to reverse the inhibition of DNA synthesis by aphidicolin in a competitive manner.  相似文献   

6.
We describe novel mutants of herpes simplex virus which are resistant to aphidicolin. Their mutant phenotypes suggest that they encode DNA polymerases with altered substrate recognition. This conclusion is based on their abnormal sensitivity to polymerase inhibitors and to the abnormal mutation rates exhibited by two of the mutants.  相似文献   

7.
Aphidicolin, a mycotoxin that inhibits eucaryotic DNA polymerase alpha, blocked the growth of Toxoplasma gondii in confluent cultured human fibroblasts. Aphidicolin immediately inhibited DNA synthesis by T. gondii while it had a delayed and less dramatic effect on RNA synthesis. A mutant of T. gondii resistant to aphidicolin was isolated with the aid of mutagenesis by ethylnitrosourea. Parasite growth measured three days after drug treatment and parasite DNA synthesis measured immediately after drug treatment were, respectively, five- and four-fold more resistant to aphidicolin in the mutant as compared with the wild type parasite. The mutant had a three-fold greater capacity than the wild type to incorporate uracil into its deoxycytidine triphosphate pool. This increased deoxycytidine triphosphate pool is the probable explanation for the mutant's resistance because this deoxynucleotide is known, in mammalian cells, to reverse the inhibition of DNA synthesis by aphidicolin in a competitive manner.  相似文献   

8.
Mutants resistant to aphidicolin, a specific inhibitor of DNA polymerase α of eukaryotic cells, were selected from cultured FM3A cells, derived from mouse mammary carcinoma. One of them, designated as Aph 212, grew in the presence of 1 μg/ml of the drug, which did not permit wild type cells to grow. The resistance of Aph 212 cells to aphidicolin seems to be due to the increment of the activity of DNA polymerase α when Aph 212 cells were cultivated in the presence of the drug.  相似文献   

9.
G Li  M Simm  M J Potash    D J Volsky 《Journal of virology》1993,67(7):3969-3977
Human immunodeficiency virus type 1 (HIV-1) replicates efficiently in nonproliferating monocytes and macrophages but not in resting primary T lymphocytes. To determine the contribution of cell division to the HIV-1 replicative cycle in T cells, we evaluated HIV-1 expression, integration of proviral DNA, and production of infectious progeny virus in C8166 T-lymphoid cells blocked in cell division by treatment with either mitomycin, a DNA cross-linker, or aphidicolin, a DNA polymerase alpha inhibitor. The arrest of cell division was confirmed by assay of [3H]thymidine uptake; the nondividing cells remained viable for at least 3 days after treatment. HIV-1 was expressed and replicated equally well in nondividing and dividing C8166 cells, as judged by the comparison of the levels of p24 core antigens in culture supernatants, the proportion of cells expressing HIV-1 specific antigens, the pattern and quantity of HIV-1 DNA present in the extrachromosomal and total cellular DNA fractions, and the biological activity of progeny viruses. A polymerase chain reaction-based viral DNA integration assay indicated that HIV-1 provirus was integrated in C8166 cells treated with either of the two inhibitors of cell division. Similar results were obtained by using growth-arrested Jurkat T-lymphoid cells. We conclude that cell division and cellular DNA synthesis are not required for efficient HIV-1 expression in T cells.  相似文献   

10.
Studies of repair enzyme activities in a uv-sensitive cell line (V79/UC) derived from Chinese hamster V79 cells have revealed levels of total DNA polymerase that are about 50% of the levels in the parental cell line. There are a number of DNA polymerase inhibitors available which allow us to distinguish between the major forms of DNA polymerase (alpha, beta, gamma, and delta) identified in mammalian cells. Enzyme assays with these inhibitors indicate that the aphidicolin-sensitive DNA polymerase is defective in the V79/UC cell line. This could be either polymerase alpha or delta, or both. The V79/UC cells do not express resistance to aphidicolin in standard toxicity studies. However, when aphidicolin is added postirradiation in survival assays designed to measure the extent of inhibitable repair, V79/UC cells do not respond with the further decrease in survival seen in the parental line. Further evidence of a polymerase-dependent repair defect is evident from alkaline elution data. In this case the V79/UC cells show the appearance of single-strand breaks following uv irradiation in the absence of any added inhibitor. Cells of the V79/M12G parental line, on the other hand, show the appearance of single-strand breaks only when aphidicolin is present.  相似文献   

11.
An aphidicolin-resistant (Aphr) mutant of herpes simplex virus (HSV) type 2 strain 186 previously has been shown to induce an altered viral DNA polymerase that is more resistant to aphidicolin and more sensitive to phosphonoacetic acid (PAA) than is wild-type DNA polymerase. In this study the mutation responsible for the aphidicolin-resistant phenotype was physically mapped by marker transfer experiments. The physical map limits for the Aphr mutation were contained in a 1.1-kilobase pair region within the HSV DNA polymerase locus. The 1.1-kilobase-pair fragment of the Aphr mutant also conferred hypersensitivity to PAA, and DNA sequence analysis revealed an AT to GC transition within this fragment of the Aphr mutant. Analysis of the three potential open reading frames within the 1,147-base-pair fragment and comparison with the amino acid sequence of DNA polymerase of HSV type 1 indicated that the Aphr mutant polymerase had an amino acid substitution from a tyrosine to a histidine in the well-conserved region of the DNA polymerase. These results indicate that this single amino acid change can confer altered sensitivity to aphidicolin and PAA and suggest that this region may form a domain that contains the binding sites for substrates, PPi, and aphidicolin.  相似文献   

12.
Deinococcus radiodurans and other species of the same genus share extreme resistance to ionizing radiation and many other agents that damage DNA. Two different DNA damage-sensitive strains generated by chemical mutagenesis were found to be defective in a gene that has extended DNA and protein sequence homology with polA of Escherichia coli. Both mutant strains lacked DNA polymerase, as measured in activity gels. Transformation of this gene from wild-type D. radiodurans restored to the mutants both polymerase activity and DNA damage resistance. A technique for targeted insertional mutagenesis in D. radiodurans is presented. This technique was employed to construct a pol mutant isogenic with the wild type (the first example of targeted mutagenesis in this eubacterial family). This insertional mutant lacked DNA polymerase activity and was even more sensitive to DNA damage than the mutants derived by chemical mutagenesis. In the case of ionizing radiation, the survival of the wild type after receiving 1 Mrad was 100% while survival of the insertional mutant extrapolated to 10(-24). These results demonstrate that the gene described here encodes a DNA polymerase and that defects in this pol gene cause a dramatic loss of resistance of D. radiodurans to DNA damage.  相似文献   

13.
Aphidicolin is a potent inhibitor of both host cell DNA polymerase alpha and herpes simplex virus (HSV)-induced DNA polymerase but has no effect on DNA polymerases beta and gamma of host cells. By using an aphidicolin-resistant mutant (Aphr) of HSV, a possible involvement of DNA polymerase alpha in host cell reactivation of UV-damaged HSV was studied. Plaque formation by UV-irradiated Aphr was markedly inhibited by 1 microgram of aphidicolin per ml, which did not affect the plating efficiency of nonirradiated Aphr. Aphidicolin added before 12 h postinfection inhibited plaque formation by irradiated Aphr, which became aphidicolin insensitive after 36 h postinfection. The results strongly suggest that host cell DNA polymerase alpha is involved in the repair of UV-irradiated HSV DNA.  相似文献   

14.
A study was made of the repair of ionizing radiation-induced DNA single-strand breaks (SSB) in proliferating and quiescent mouse Swiss 3T6 cells and in those stimulated from the quiet status by epidermal growth factor in combination with insulin, in the presence of specific inhibitors of DNA polymerase alpha and delta (aphidicolin) and DNA polymerase beta (2', 3'-dideoxythymidine-5'-triphosphate). The repair of DNA SSB induced by X-ray-irradiation (10 Gr) or by gamma-ray irradiation (150 Gr) is more sensitive to aphidicolin independently of cell proliferating status. Aphidicolin inhibits the recovery of single-strand DNA in quiescent and mitogen-stimulated cells three times stronger than in proliferating cells. The influence of 2', 3'-dideoxythymidine-5'-triphosphate on the rate of DNA SSB repair in cells of all the three types does not differ. Thus, the decrease in DNA repair efficiency in quiescent cells is connected with a decrease in the activity of aphidicolin-sensitive DNA polymerase, apparently DNA polymerase alpha. It is suggested that the regulation action of mitogens on the DNA SSB repair may be determined by qualitative changes of this enzyme or of some conditions in which it functions. The involvement of DNA polymerase delta in this process is not excluded.  相似文献   

15.
16.
A class of mutants of Ustilago maydis selected on a fungitoxic oxathiin lack of antimycin A-tolerant respiratory system which is present in wild-type cells. This system provides, directly or indirectly, for considerable resistance to antimycin A because growth of mutant cells lacking the system is much more sensitive to the antibiotic than that of the wild type. Antimycin A-sensitive O(2) uptake and growth is found in half of the progeny from crosses of mutant to wild type. All antimycin A-sensitive segregants are somewhat more resistant to oxathiins than the antimycin A-resistant segregants. The respiration of the mutant is strongly inhibited by cyanide and azide at concentrations which stimulate respiration of the wild type. Respiration of both mutant and wild type is about equally inhibited by rotenone. It appears that the mutation alters some component of the respiratory system located between the rotenone inhibition site and the antimycin A inhibition site that permits shift of electron transport to an alternate terminal oxidase when the normal electron transport pathway is blocked.  相似文献   

17.
Summary We have found that the cells possessing the polA6 mutation affecting DNA polymerase I are unable to accept another mutation (uvr502) leading to UV-sensitivity. The introduction of the polA12 mutation determining the synthesis of a temperature sensitive DNA polymerase I into the uvr502 mutant results in the temperature sensitivity of colony forming ability of the double mutant. These data show that the uvr502 derivatives lacking DNA polymerase I are inviable. Reversions to temperature resistance in the population of the double mutant uvr502 polA12 may occur because of reverse mutations at one of the mutated sites or because of mutations suppressing DNA polymerase I deficiency but not UV- or MMS-sensitivity of revertants. DNA and protein synthesis in uvr502 polA12 cells continues after a shift to 45°C with rates almost indistinguishable from those in single mutants or wild type cells. No differences in DNA degradation were observed during incubation of single and double mutants at 45°C. The single strand molecular weight distribution of parent DNA from the double mutant as well as that from wild type cells is not affected by the shift to 45°C and 3 hours incubation at this temperature. We suggest that DNA polymerase I and/or the product altered by the uvr502 mutation are required for some step(s) of discontinuous DNA replication nonessential for the formation of acid insoluble DNA. The DNA polymerase I and the uvr gene product seem to be able to substitute for each other in accomplishing this process.  相似文献   

18.
The antibiotic, aphidicolin, is a potent inhibitor of DNA polymerase alpha and consequently of de novo DNA synthesis in human cells. We report here that in gamma-irradiated normal human cells, aphidicolin (at 5 micrograms/ml and less) had no significant effect on the rate of the rejoining of DNA single strand breaks or rate of removal of DNA lesions assayed as sites sensitive to incising activities present in crude protein extracts of Micrococcus luteus cells. gamma-irradiated human ataxia telangiectasia cells are known to demonstrate enhanced cell killing and exhibit resistance to the inhibiting effects of radiation on DNA synthesis. Under conditions of minimal aphidicolin cytotoxicity but extensive inhibition of de novo DNA synthesis, the radiation responses of neither normal nor ataxia telangiectasia cells were significantly modified by aphidicolin. Firstly, we conclude that human DNA polymerase alpha is not primarily involved in the repair of the two classes of radiogenic DNA lesions examined. Secondly, the radiation hypersensitivity of ataxia telangiectasia cells cannot be explained on the basis of premature replication of damaged cellular DNA resulting from the resistance of de novo DNA synthesis to inhibition by ionizing radiation.  相似文献   

19.
Protoplasts from two green pigment mutants of Porphyridium sp. (UTEX 637) containing a low phycoerythrin level were fused by exposure to polyethylene glycol (MW 6000) combined with a short heat shock (45° C, 5 min). Following regeneration on agar plates, red colonies arose in which complementation of the phycoerythrin deficiency had occurred. The complementation frequency was estimated to be 0.2%. Eight progeny showing red pigmentation were isolated and purified by consecutive transfers on agar plates. Characterization of the fusion progeny revealed that their phycobiliprotein and chlorophyll contents per cell were higher than those of their parental mutant strains and, in most strains, similar to that of the wild type. The fusion products proved to be stable over many growth cycles. The DNA content of the wild type and of the parental mutant strains was about 0.05 pg-cell?1. Fusion progeny strains showed a variable DNA content: a few fusants contained the same amount of DNA as the wild type and the parental strains, while others had about 50% more DNA per cell. The DNA content of one of the progeny strains (CF1c) was double that of the wild type (0.1 pg. cell?1). Cells of this fusion progeny contained one nucleus per cell, which suggests that nuclear fusion and the formation of a stable diploid followed cell fusion. Analysis of phycobilisome components of CF1c revealed complementation of linker polypeptides associated with phycoerythrin (γ subunits). CF1c contained, like the wild-type strain, four linker polypeptides; all of these were absent in one parental strain and one was absent in the second. To the best of our knowledge, this is the first report of protoplast fusion, formation of somatic hybrids, and the apparent completion of a parasexual cycle in a red microalga.  相似文献   

20.
In an enzyme-specific drug screening system nalidixic acid and 3'-FTdR, inhibitors of DNA synthesis, both reduce the growth of wild type and temperature-sensitive point mutants of phage T3 with different efficiencies. The wild type shows the strongest sensitivity against the drugs, while an exonuclease mutant is the most insensitive variant. The DNA polymerase mutants exhibit an intermediate degree of inhibition. The anthracycline antibiotics violamycin BI and adriblastin which preferentially inhibit RNA synthesis show the same degree of inhibition for all mutants. This is true also for the RNA synthesis inhibitor lambdamycin, which is identical with chartreusin. The protein synthesis inhibitors chloramphenicol and o-phenanthroline, a chelating agent, impair all mutants to the same extent. Our data confirm the hypothesis that structural variants of essential viral enzymes, when compared with the wild type should reveal different sensitivities against specific inhibitors and show that this T3 system could be used for the indication of specific inhibitors of DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号