首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We screened a Fusarium sporotrichioides NRRL 3299 cDNA expression library in a toxin-sensitive Saccharomyces cerevisiae strain lacking a functional PDR5 gene. Fourteen yeast transformants were identified as resistant to the trichothecene 4,15-diacetoxyscirpenol, and each carried a cDNA encoding the trichothecene 3-O-acetyltransferase that is the F. sporotrichioides homolog of the Fusarium graminearum TRI101 gene. Mutants of F. sporotrichioides NRRL 3299 produced by disruption of TRI101 were altered in their abilities to synthesize T-2 toxin and accumulated isotrichodermol and small amounts of 3,15-didecalonectrin and 3-decalonectrin, trichothecenes that are not observed in cultures of the parent strain. Our results indicate that TRI101 converts isotrichodermol to isotrichodermin and is required for the biosynthesis of T-2 toxin.  相似文献   

2.
A UV-generated mutant of Fusarium sporotrichioides NRRL 3299 was altered in its ability to biosynthesize T-2 toxin, as shown by a rapid screen with monoclonal antibodies to T-2. This stable mutant accumulated two trichothecenes that were not observed in liquid cultures of the parent strain. The two compounds were identified as 3,15-diol 12,13-epoxytrichothec-9-ene and 3,15-diol 12,13-epoxytrichothec-9-ene 3-acetate on the basis of their nuclear magnetic resonance and mass spectra. This is the first report of either of these two compounds as secondary metabolites of F. sporotrichioides and of a trichothecene acetylated at C-3 by this species.  相似文献   

3.
Liquid cultures of a mutant strain of Fusarium sporotrichioides NRRL 3299 that accumulates trichodiene rather than T-2 toxin converted tricho-9-ene-2 alpha,3 alpha,11 alpha-triol, trichotriol (tricho-10-ene-2 alpha,3 alpha,9 alpha-triol), tricho-10-ene-2 alpha,3 alpha,9 beta-triol, 3 alpha-hydroxytrichothecene, and 3 alpha-acetoxytrichothecene to T-2 toxin. Other possible oxygenated precursors of T-2 toxin, including trichodiol (tricho-10-ene-2 alpha,9 alpha-diol), trichothecene, 4 alpha-hydroxytrichothecene, and 15-hydroxytrichothecene, were not metabolized. The results indicate that in the biosynthesis of T-2 toxin by F. sporotrichioides, (i) oxygenation at C-3 occurs prior to the second cyclization, (ii) this second cyclization involves two steps that may be nonenzymatic, and (iii) oxidation at C-3 precedes that at C-4 or C-15.  相似文献   

4.
Liquid cultures of a mutant strain of Fusarium sporotrichioides NRRL 3299 that accumulates trichodiene rather than T-2 toxin converted tricho-9-ene-2 alpha,3 alpha,11 alpha-triol, trichotriol (tricho-10-ene-2 alpha,3 alpha,9 alpha-triol), tricho-10-ene-2 alpha,3 alpha,9 beta-triol, 3 alpha-hydroxytrichothecene, and 3 alpha-acetoxytrichothecene to T-2 toxin. Other possible oxygenated precursors of T-2 toxin, including trichodiol (tricho-10-ene-2 alpha,9 alpha-diol), trichothecene, 4 alpha-hydroxytrichothecene, and 15-hydroxytrichothecene, were not metabolized. The results indicate that in the biosynthesis of T-2 toxin by F. sporotrichioides, (i) oxygenation at C-3 occurs prior to the second cyclization, (ii) this second cyclization involves two steps that may be nonenzymatic, and (iii) oxidation at C-3 precedes that at C-4 or C-15.  相似文献   

5.
A UV-generated mutant of Fusarium sporotrichioides NRRL 3299 was altered in its ability to biosynthesize T-2 toxin, as shown by a rapid screen with monoclonal antibodies to T-2. This stable mutant accumulated two trichothecenes that were not observed in liquid cultures of the parent strain. The two compounds were identified as 3,15-diol 12,13-epoxytrichothec-9-ene and 3,15-diol 12,13-epoxytrichothec-9-ene 3-acetate on the basis of their nuclear magnetic resonance and mass spectra. This is the first report of either of these two compounds as secondary metabolites of F. sporotrichioides and of a trichothecene acetylated at C-3 by this species.  相似文献   

6.
The trichothecenes T-2 toxin and deoxynivalenol (DON) are natural fungal products that are toxic to both animals and plants. Their importance in the pathogenicity of Fusarium spp. on crop plants has inspired efforts to understand the genetic and biochemical mechanisms leading to trichothecene synthesis. In order to better understand T-2 toxin biosynthesis by Fusarium sporotrichioides and DON biosynthesis by F. graminearum, we compared the nucleotide sequence of the 23-kb core trichothecene gene cluster from each organism. This comparative genetic analysis allowed us to predict proteins encoded by two trichothecene genes, TRI9 and TRI10, that had not previously been described from either Fusarium species. Differences in gene structure also were correlated with differences in the types of trichothecenes that the two species produce. Gene disruption experiments showed that F. sporotrichioides TRI7 (FsTRI7) is required for acetylation of the oxygen on C-4 of T-2 toxin. Sequence analysis indicated that F. graminearum TRI7 (FgTRI7) is nonfunctional. This is consistent with the fact that the FgTRI7 product is not required for DON synthesis in F. graminearum because C-4 is not oxygenated.  相似文献   

7.
We previously characterized Tri1, a gene required for hydroxylation of the C-8 position during trichothecene mycotoxin biosynthesis in Fusarium sporotrichioides NRRL 3299. Sequence analysis of the region surrounding Tri1 revealed a gene, named Tri16, which could encode an acyltransferase. Unlike the wild-type parent strain NRRL 3299, which accumulates primarily T-2 toxin along with low levels of diacetoxyscirpenol (DAS) and neosolaniol (NEO) and trace amounts of 8-propionyl-neosolaniol (P-NEO) and 8-isobutyryl-neosolaniol (B-NEO), mutants containing a disruption of Tri16 were blocked in the production of the three C-8 esterified compounds T-2 toxin, P-NEO, and B-NEO and accumulated the C-8-hydroxylated compound NEO along with secondary levels of DAS. These data indicate that Tri16 encodes an acyltransferase that catalyzes the formation of ester side groups at C-8 during trichothecene biosynthesis. We also report the presence of a Tri16 ortholog in Gibberella pulicaris R-6380 that is likely linked to a presumably inactive ortholog for Tri1.  相似文献   

8.
Species of the genus Fusarium produce a great diversity of agriculturally important trichothecene toxins that differ from each other in their pattern of oxygenation and esterification. T-2 toxin, produced by Fusarium sporotrichioides, and nivalenol (NIV), produced by some strains of F. graminearum, contain an oxygen at the C-4 position. Deoxynivalenol (DON), produced by other strains of F. graminearum, lacks a C-4 oxygen. NIV and DON are identical except for this difference, whereas T-2 differs from these trichothecenes at three other carbon positions. Sequence and Northern analyses of the F. sporotrichioides genomic region upstream of the previously described core trichothecene gene cluster have extended the cluster by two genes: TRI13 and TRI14. TRI13 shares significant similarity with the cytochrome P-450 class of enzymes, but TRI14 does not share similarity with any previously characterized proteins. Gene disruption and fermentation studies in F. sporotrichioides indicate that TRI13 is required for the addition of the C-4 oxygen of T-2 toxin, but that TRI14 is not required for trichothecene biosynthesis. PCR and sequence analyses indicate that the TRI13 homolog is functional in NIV-producing strains of F. graminearum but nonfunctional in DON-producing strains of the fungus. These genetic observations are consistent with chemical observations that biosynthesis of T-2 toxin and NIV requires a C-4 hydroxylase while biosynthesis of DON does not.  相似文献   

9.
Fusarium Tri8 encodes a trichothecene C-3 esterase   总被引:2,自引:0,他引:2  
Mutant strains of Fusarium graminearum Z3639 produced by disruption of Tri8 were altered in their ability to biosynthesize 15-acetyldeoxynivalenol and instead accumulated 3,15-diacetyldeoxynivalenol, 7,8-dihydroxycalonectrin, and calonectrin. Fusarium sporotrichioides NRRL3299 Tri8 mutant strains accumulated 3-acetyl T-2 toxin, 3-acetyl neosolaniol, and 3,4,15-triacetoxyscirpenol rather than T-2 toxin, neosolaniol, and 4,15-diacetoxyscirpenol. The accumulation of these C-3-acetylated compounds suggests that Tri8 encodes an esterase responsible for deacetylation at C-3. This gene function was confirmed by cell-free enzyme assays and feeding experiments with yeast expressing Tri8. Previous studies have shown that Tri101 encodes a C-3 transacetylase that acts as a self-protection or resistance factor during biosynthesis and that the presence of a free C-3 hydroxyl group is a key component of Fusarium trichothecene phytotoxicity. Since Tri8 encodes the esterase that removes the C-3 protecting group, it may be considered a toxicity factor.  相似文献   

10.
Many Fusarium species produce one or more agriculturally important trichothecene mycotoxins, and the relative level of toxicity of these compounds is determined by the pattern of oxygenations and acetylations or esterifications on the core trichothecene structure. Previous studies with UV-induced Fusarium sporotrichioides NRRL 3299 trichothecene mutants defined the Tri1 gene and demonstrated that it was required for addition of the oxygen at the C-8 position during trichothecene biosynthesis. We have cloned and characterized the Tri1 gene from NRRL 3299 and found that it encodes a cytochrome P450 monooxygenase. The disruption of Tri1 blocks production of C-8-oxygenated trichothecenes and leads to the accumulation of 4,15-diacetoxyscirpenol, the same phenotype observed in the tri1 UV-induced mutants MB1716 and MB1370. The Tri1 disruptants and the tri1 UV-induced mutants do not complement one another when coinoculated, and the Tri1 gene sequence restores T-2 toxin production in both MB1716 and MB1370. The DNA sequence flanking Tri1 contains another new Tri gene. Thus, Tri1 encodes a C-8 hydroxylase and is located either in a new distal portion of the trichothecene gene cluster or in a second separate trichothecene gene cluster.  相似文献   

11.
Mutants of Fusarium sporotrichioides NRRL 3299 that were blocked or altered in the biosynthesis of the trichothecene T-2 toxin were generated by UV treatment and identified by a rapid screen in which monoclonal antibodies to T-2 were used. Three stable mutants were isolated and chemically characterized. Two mutants accumulated diacetoxyscirpenol, which suggests that they were defective in the step required for the addition of a hydroxyl group to the C-8 position in the trichothecene core structure. The third mutant appeared to be partially blocked at an early step or regulatory point in the pathway. This represents the first isolation of mutants in a trichothecene biosynthetic pathway.  相似文献   

12.
Isolation and characterization of mutants blocked in T-2 toxin biosynthesis   总被引:1,自引:0,他引:1  
Mutants of Fusarium sporotrichioides NRRL 3299 that were blocked or altered in the biosynthesis of the trichothecene T-2 toxin were generated by UV treatment and identified by a rapid screen in which monoclonal antibodies to T-2 were used. Three stable mutants were isolated and chemically characterized. Two mutants accumulated diacetoxyscirpenol, which suggests that they were defective in the step required for the addition of a hydroxyl group to the C-8 position in the trichothecene core structure. The third mutant appeared to be partially blocked at an early step or regulatory point in the pathway. This represents the first isolation of mutants in a trichothecene biosynthetic pathway.  相似文献   

13.
A mutant strain of Fusarium sporotrichioides NRRL 3299 produced by disruption of Tri11, a gene encoding a cytochrome P-450 monooxygenase, was shown to be altered in its ability to biosynthesize T-2 toxin. This mutant strain produced four trichothecenes that were not observed in cultures of the parent strain. The compounds were identified as isotrichodermin, 8-hydroxyisotrichodermin, 8-hydroxyisotrichodermol, and 3,4,8-trihydroxytricothecene on the basis of their nuclear magnetic resonance and mass spectra. This is the first report of these 8-hydroxytrichothecenes as metabolites of F. sporotrichioides. The accumulation of isotrichodermin and the results of whole-cell feeding experiments with a Tri11(sup-) strain confirm that oxygenation of C-15 is blocked.  相似文献   

14.
15.
Fusarium graminearum and Fusarium sporotrichioides produce the trichothecene mycotoxins 15-acetyldeoxynivalenol and T-2 toxin, respectively. In both species, disruption of the P450 monooxygenase-encoding gene, Tri4, blocks production of the mycotoxins and leads to the accumulation of the trichothecene precursor trichodiene. To further characterize its function, the F. graminearum Tri4 (FgTri4) was heterologously expressed in the trichothecene-nonproducing species Fusarium verticillioides. Transgenic F. verticillioides carrying the FgTri4 converted exogenous trichodiene to the trichothecene biosynthetic intermediates isotrichodermin and trichothecene. Conversion of trichodiene to isotrichodermin requires seven biochemical steps. The fifth and sixth steps can occur nonenzymatically. Precursor feeding studies done in the current study indicate that wild-type F. verticillioides has the enzymatic activity necessary to carry out the seventh step, the C-3 acetylation of isotrichodermol to form isotrichodermin. Together, the results of this study indicate that the Tri4 protein catalyzes the remaining four steps and is therefore a multifunctional monooxygenase required for trichothecene biosynthesis.  相似文献   

16.
The biosynthetic pathway for trichothecenes in the filamentous fungus Fusarium sporotrichioides NRRL 3299 has been further characterized. Experiments using the techniques of mutational analysis and the incorporation of radiolabeled precursors indicated that leucine is a direct precursor to the isovalerate moiety present in the trichothecene, T-2 toxin. Analysis of trichothecene production in a UV-induced leucine auxotroph also revealed the existence of a branched biosynthetic pathway which results in the coproduction of T-2 toxin and the T-2 toxin analogs neosolaniol, 8-isobutyryl-neosolaniol, and 8-propionyl-neosolaniol. Leucine limitation imposed by the leucine auxotroph simultaneously led to underproduction of T-2 toxin and overproduction of these T-2 toxin analogs, which are produced in small amounts by the wild-type parent. Furthermore, it was shown that the ratio of T-2 toxin to T-2 toxin analogs produced by the leucine auxotroph can be modulated by the concentration of leucine in the medium. These results suggest that the four trichothecenes mentioned above are derived from a common intermediate and that there is competition for this intermediate among the branched pathways leading to these four cometabolites.  相似文献   

17.
The biosynthetic pathway for trichothecenes in the filamentous fungus Fusarium sporotrichioides NRRL 3299 has been further characterized. Experiments using the techniques of mutational analysis and the incorporation of radiolabeled precursors indicated that leucine is a direct precursor to the isovalerate moiety present in the trichothecene, T-2 toxin. Analysis of trichothecene production in a UV-induced leucine auxotroph also revealed the existence of a branched biosynthetic pathway which results in the coproduction of T-2 toxin and the T-2 toxin analogs neosolaniol, 8-isobutyryl-neosolaniol, and 8-propionyl-neosolaniol. Leucine limitation imposed by the leucine auxotroph simultaneously led to underproduction of T-2 toxin and overproduction of these T-2 toxin analogs, which are produced in small amounts by the wild-type parent. Furthermore, it was shown that the ratio of T-2 toxin to T-2 toxin analogs produced by the leucine auxotroph can be modulated by the concentration of leucine in the medium. These results suggest that the four trichothecenes mentioned above are derived from a common intermediate and that there is competition for this intermediate among the branched pathways leading to these four cometabolites.  相似文献   

18.
19.
The trichothecene mycotoxin deoxynivalenol (DON) is a common contaminant of small grains, such as wheat and barley, in the United States. New strategies to mitigate the threat of DON need to be developed and implemented. TRI101 and TRI201 are trichothecene 3-O-acetyltransferases that are able to modify DON and reduce its toxicity. Recent work has highlighted differences in the activities of TRI101 from two different species of Fusarium (F. graminearum and F. sporotrichioides), but little is known about the relative activities of TRI101/TRI201 enzymes produced by other species of Fusarium. We cloned TRI101 or TRI201 genes from seven different species of Fusarium and found genetic identity between sequences ranging from 66% to 98%. In vitro feeding studies using transformed yeast showed that all of the TRI101/TRI201 enzymes tested were able to acetylate DON; conversion of DON to 3-acetyl-deoxynivalenol (3ADON) ranged from 50.5% to 100.0%, depending on the Fusarium species from which the gene originated. A time course assay showed that the rate of acetylation varied from species to species, with the gene from F. sporotrichioides having the lowest rate. Steady-state kinetic assays using seven purified enzymes produced catalytic efficiencies for DON acetylation ranging from 6.8 × 10(4) M(-1)·s(-1) to 4.7 × 10(6) M(-1)·s(-1). Thermostability measurements for the seven orthologs ranged from 37.1°C to 43.2°C. Extended sequence analysis of portions of TRI101/TRI201 from 31 species of Fusarium (including known trichothecene producers and nonproducers) suggested that other members of the genus may contain functional TRI101/TRI201 genes, some with the potential to outperform those evaluated in the present study.  相似文献   

20.
The range and comparative yields of T-2 toxin and related trichothecenes from five toxicologically important strains of Fusarium sporotrichioides, i.e., NRRL 3299, NRRL 3510, M-1-1, HPB 071178-13, and F-38, were determined. Lyophilized cultures of the five strains maintained in the International Toxic Fusarium Reference Collection were used to inoculate autoclaved corn kernels. Corn cultures were incubated at 15 degrees C for 21 days and analyzed for trichothecenes by thin-layer chromatography and capillary gas chromatography. All five strains produced T-2 toxin, HT-2 toxin, T-2 triol, and neosolaniol. Two strains also produced T-2 tetraol, and two others produced diacetoxyscirpenol. The highest producer of T-2 toxin (1,300 mg/kg), HT-2 toxin (200 mg/kg), T-2 triol (1.9 mg/kg), and neosolaniol (170 mg/kg) was NRRL 3510, which was originally isolated from millet associated with outbreaks of alimentary toxic aleukia in the USSR. The second highest producer of T-2 toxin (930 mg/kg) was NRRL 3299. The other three strains produced T-2 toxin at levels ranging from 130 to 660 mg/kg. Thus, the five strains differed considerably in the amounts of T-2 toxin and other trichothecenes produced under identical laboratory conditions. These strains are being maintained under optimal conditions for the preservation of Fusarium cultures and are available from the Fusarium Research Center, The Pennsylvania State University, University Park.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号