首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The biochemical and cell cycle-dependent properties of proliferating cell nuclear antigen (OsPCNA) and flap endonuclease-1 (OsFEN-1) were characterized from rice (Oryza sativa). OsPCNA was physically associated with OsFEN-1 and increased the flap-endonuclease activity of OsFEN-1 by 2.5-fold. Northern and Western blotting analysis revealed that OsPCNA and OsFEN-1 were present in meristematic tissues such as cultured cells, shoot apical meristem and root apical meristem. No expression was detected in the mature leaves, although they were exposed to UV. Both of these proteins were localized in the nuclei of the interphase cells including G1, S and G2, and in the nuclear region at telophase. The distribution patterns of plant PCNA and FEN-1 in meiotic cell progression were investigated using microsporocytes of lily (Lilium longiflorum cv. Hinomoto). During the leptotene to pachytene stages, PCNA and FEN-1 were localized in the nuclear region. The florescence gradually disappeared from diplotene to metaphase I. Interestingly, signals for PCNA formed 10-20 intense spots at leptotene. The number of spots decreased to 1-5 at zygotene and finally to 1 at pachytene. The roles of OsPCNA and OsFEN-1 in mitotic and meiotic cell cycles are discussed.  相似文献   

3.
Uchiyama Y  Suzuki Y  Sakaguchi K 《Planta》2008,227(6):1233-1241
In plants, there are no DNA polymerase β (Pol β) and DNA ligase III (Lig3) genes. Thus, the plant short-patch base excision repair (short-patch BER) pathway must differ considerably from that in mammals. We characterized the rice (Oryza Sativa L. cv. Nipponbare) homologue of the mammalian X-ray repair cross complementing 1 (XRCC1), a well-known BER protein. The plant XRCC1 lacks the N-terminal domain (NTD) which is required for Pol β binding and is essential for mammalian cell survival. The recombinant rice XRCC1 (OsXRCC1) protein binds single-stranded DNA (ssDNA) as well as double-stranded DNA (dsDNA) and also interacts with rice proliferating cell nuclear antigen (OsPCNA) in a pull-down assay. Through immunoprecipitation, we demonstrated that OsXRCC1 forms a complex with PCNA in vivo. OsXRCC1 mRNA was expressed in all rice organs and was induced by application of bleomycin, but not of MMS, H2O2 or UV-B. Bleomycin also increased the fraction of OsXRCC1 associated with chromatin. These results suggest that OsXRCC1 contributes to DNA repair pathways that differ from the mammalian BER system.  相似文献   

4.
Little is known about the functions of DNA polymerase lambda (Pol lambda) recently identified in mammals. From the genomic sequence information of rice and Arabidopsis, we found that Pol lambda may be the only member of the X-family in higher plants. We have succeeded in isolating the cDNA and recombinant protein of Pol lambda in a higher plant, rice (Oryza sativa L. cv. Nipponbare) (OsPol lambda). OsPol lambda had activities of DNA polymerase, terminal deoxyribonucleotidyl transferase and deoxyribose phosphate lyase, a marker enzyme for base excision repair. It also interacted with rice proliferating cell nuclear antigen (OsPCNA) in a pull-down assay. OsPCNA increased the processivity of OsPol lambda. Northern blot analysis showed that the level of OsPol lambda expression correlated with cell proliferation in meristematic and meiotic tissues, and was induced by DNA-damaging treatments. These properties suggest that plant Pol lambda is a DNA repair enzyme which functions in plant meristematic and meiotic tissues, and that it can substitute for Pol beta and terminal deoxyribonucleotidyl transferase.  相似文献   

5.
6.
Proliferating cell nuclear antigen is best known as a DNA polymerase accessory protein but has more recently also been shown to have different functions in important cellular processes such as DNA replication, DNA repair, and cell cycle control. PCNA has been found in quaternary complexes with the cyclin kinase inhibitor p21 and several pairs of cyclin-dependent protein kinases and their regulatory partner, the cyclins. Here we show a direct interaction between PCNA and Cdk2. This interaction involves the regions of the PCNA trimer close to the C termini. We found that PCNA and Cdk2 form a complex together with cyclin A. This ternary PCNA-Cdk2-cyclin A complex was able to phosphorylate the PCNA binding region of the large subunit of replication factor C as well as DNA ligase I. Furthermore, PCNA appears to be a connector between Cdk2 and DNA ligase I and to stimulate phosphorylation of DNA ligase I. Based on our results, we propose the model that PCNA brings Cdk2 to proteins involved in DNA replication and possibly might act as an "adaptor" for Cdk2-cyclin A to PCNA-binding DNA replication proteins.  相似文献   

7.
8.
DnaK/Hsp70 proteins are universally conserved ATP-dependent molecular chaperones that help proteins adopt and maintain their native conformations. DnaJ/Hsp40 and GrpE are co-chaperones that assist DnaK. CbpA is an Escherichia coli DnaJ homolog. It acts as a multicopy suppressor for dnaJ mutations and functions in vitro in combination with DnaK and GrpE in protein remodeling reactions. CbpA binds nonspecifically to DNA with preference for curved DNA and is a nucleoid-associated protein. The DNA binding and co-chaperone activities of CbpA are modulated by CbpM, a small protein that binds specifically to CbpA. To identify the regions of CbpA involved in the interaction of CbpA with CbpM and those involved in DNA binding, we constructed and characterized deletion and substitution mutants of CbpA. We discovered that CbpA interacted with CbpM through its N-terminal J-domain. We found that the region C-terminal to the J-domain was required for DNA binding. Moreover, we found that the CbpM interaction, DNA binding, and co-chaperone activities were separable; some mutants were proficient in some functions and defective in others.  相似文献   

9.
Proliferating cell nuclear antigen (PCNA) is a DNA sliding clamp interacting with multiple partners in DNA transactions such as DNA replication/repair and recombination as well as chromatin assembly. We previously detected and purified by chromatographic procedures a 31 kDa PCNA from cultured wheat cells (Triticum monococcum L). Here we report the complete sequence of the wheat 31 kDa PCNA showing a very high aminoacid identity with its plant counterparts (maize and rice). This recombinant PCNA has been used as a bait in an affinity chromatography procedure, in order to capture PCNA interacting proteins. We detected by liquid chromatography, tandem mass spectrometry and search in plant protein databases, several specific bands from wheat cell lysates in fractions bound to wheat PCNA-affinity column. One of them is the wheat elongation factor 1A. Its putative regulatory role in DNA replication/repair is discussed.  相似文献   

10.
DnaK, the Hsp70 chaperone of Escherichia coli interacts with protein substrates in an ATP-dependent manner, in conjunction with DnaJ and GrpE co-chaperones, to carry out protein folding, protein remodeling, and assembly and disassembly of multisubunit protein complexes. To understand how DnaJ targets specific proteins for recognition by the DnaK chaperone system, we investigated the interaction of DnaJ and DnaK with a known natural substrate, bacteriophage P1 RepA protein. By characterizing RepA deletion derivatives, we found that DnaJ interacts with a region of RepA located between amino acids 180 and 200 of the 286-amino acid protein. A peptide corresponding to amino acids 180-195 inhibited the interaction of RepA and DnaJ. Two site-directed RepA mutants with alanine substitutions in this region were about 4-fold less efficiently activated for oriP1 DNA binding by DnaJ and DnaK than wild type RepA. We also identified by deletion analysis a site in RepA, in the region of amino acids 35-49, which interacts with DnaK. An alanine substitution mutant in amino acids 36-39 was constructed and found defective in activation by DnaJ and DnaK. Taken together the results suggest that DnaJ and DnaK interact with separate sites on RepA.  相似文献   

11.
12.
Proliferating cell nuclear antigen (PCNA) is a well-known multifunctional protein involved in eukaryotic and archaeal DNA transactions. The homotrimeric PCNA ring encircles double-stranded DNA within its central hole and tethers many proteins on DNA. Plural genes encoding PCNA-like proteins have been found in the genome sequence of crenarchaeal organisms . We describe here the biochemical properties of the three PCNAs, PCNA1, PCNA2 and PCNA3, from the hyperthermophilic archaeon, Aeropyrum pernix . PCNA2 can form a trimeric structure by itself, and it also forms heterotrimeric structures with PCNA1 and PCNA3. However, neither PCNA1 nor PCNA3 can form homotrimers. The DNA synthesis activity of DNA polymerase I and II, the endonuclease activity of FEN1, and the nick-sealing activity of DNA ligase were stimulated by the complex of PCNA2 and 3 or PCNA1, 2 and 3. These results suggest that the heterotrimeric PCNA at least including PCNA2 and 3 function as the clamp in the replisome. However, PCNA2 is the most abundant in the cells throughout the growth stages among the three PCNAs, and therefore, PCNA2 may perform multitasks by changing complex composition.  相似文献   

13.
Proliferating cell nuclear antigen (PCNA) is thought to play a role in DNA mismatch repair at the DNA synthesis step as well as in an earlier step. Studies showing that PCNA interacts with mispair-binding protein complexes, MSH2.MSH3 and MSH2.MSH6, and that PCNA enhances MSH2.MSH6 mispair binding specificity suggest PCNA may be involved in mispair recognition. Here we show that PCNA and MSH2.MSH6 form a stable ternary complex with a homoduplex (G/C) DNA, but MSH2.MSH6 binding to a heteroduplex (G/T) DNA disrupts MSH2.MSH6 binding to PCNA. We also found that the addition of ATP or adenosine 5'-O-(thiotriphosphate) restores MSH2.MSH6 binding to PCNA, presumably by disrupting MSH2.MSH6 binding to the heteroduplex (G/T) DNA. These results support a model in which MSH2.MSH6 binds to PCNA loaded on newly replicated DNA and is transferred from PCNA to mispaired bases in DNA.  相似文献   

14.
The DnaK chaperone system, consisting of DnaK, DnaJ, and GrpE, remodels and refolds proteins during both normal growth and stress conditions. CbpA, one of several DnaJ analogs in Escherichia coli, is known to function as a multicopy suppressor for dnaJ mutations and to bind nonspecifically to DNA and preferentially to curved DNA. We found that CbpA functions as a DnaJ-like co-chaperone in vitro. CbpA acted in an ATP-dependent reaction with DnaK and GrpE to remodel inactive dimers of plasmid P1 RepA into monomers active in P1 DNA binding. Additionally, CbpA participated with DnaK in an ATP-dependent reaction to prevent aggregation of denatured rhodanese. The cbpA gene is in an operon with an open reading frame, yccD, which encodes a protein that has some homology to DafA of Thermus thermophilus. DafA is a protein required for the assembly of ring-like particles that contain trimers each of T. thermophilus DnaK, DnaJ, and DafA. The E. coli YccD was isolated because of its potential functional relationship to CbpA. Purified YccD specifically inhibited both the co-chaperone activity and the DNA binding activity of CbpA, suggesting that YccD modulates the activity of CbpA. We named the product of the yccD gene CbpM for "CbpA modulator."  相似文献   

15.
The identity of DNA replication proteins and cell cycle regulatory proteins which can be found in complexes involving PCNA were investigated by the use of PCNA immobilized on Sepharose 4B. A column containing bovine serum albumin (BSA) bound to Sepharose was used as a control. Fetal calf thymus extracts were chromatographed on PCNA-Sepharose and BSA-Sepharose. The columns were washed and then eluted with 0.5 M KCl. The salt eluates were examined for the presence of both DNA replication proteins (Pol alpha, delta, straightepsilon, PCNA, RFC, RFA, DNA ligase I, NDH II, Topo I and Topo II) and cell cycle proteins (Cyclins A, B1, D1, D2, D3, E, CDK2, CDK4, CDK5 and p21) by western blotting with specific antibodies. The DNA replication proteins which bound to PCNA-Sepharose included DNA polymerase delta and straightepsilon, PCNA, the 37 and 40 kDa subunits of RFC, the 70 kDa subunit of RPA, NDH II and topoisomerase I. No evidence for the binding of DNA polymerase alpha, DNA ligase I or topoisomerase II was obtained. Of the cell cycle proteins investigated, CDK2, CDK4 and CDK5 were bound. This study presents strong evidence that PCNA is a component of protein complexes containing DNA replication, repair and cell cycle regulatory proteins.  相似文献   

16.
Gur E  Katz C  Ron EZ 《FEBS letters》2005,579(9):1935-1939
DnaJ, DjlA and CbpA are the J-domain proteins of DnaK, the major Hsp70 of Escherichia coli. CbpA was originally discovered as a DNA binding protein. Here, we show that DNA binding is a property of DnaJ and DjlA as well. Of special interest in this respect is DjlA, as this cytoplasmic protein is membrane bound and, as shown here, its affinity for DNA is extremely high. The finding that all the three J-proteins of DnaK are DNA binding proteins sheds new light on the cellular activity of these proteins.  相似文献   

17.
Adeno-associated virus (AAV) replicates its DNA by a modified rolling-circle mechanism that exclusively uses leading strand displacement synthesis. To identify the enzymes directly involved in AAV DNA replication, we fractionated adenovirus-infected crude extracts and tested them in an in vitro replication system that required the presence of the AAV-encoded Rep protein and the AAV origins of DNA replication, thus faithfully reproducing in vivo viral DNA replication. Fractions that contained replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) were found to be essential for reconstituting AAV DNA replication. These could be replaced by purified PCNA and RFC to retain full activity. We also found that fractions containing polymerase delta, but not polymerase epsilon or alpha, were capable of replicating AAV DNA in vitro. This was confirmed when highly purified polymerase delta complex purified from baculovirus expression clones was used. Curiously, as the components of the DNA replication system were purified, neither the cellular single-stranded DNA binding protein (RPA) nor the adenovirus-encoded DNA binding protein was found to be essential for DNA replication; both only modestly stimulated DNA synthesis on an AAV template. Also, in addition to polymerase delta, RFC, and PCNA, an as yet unidentified factor(s) is required for AAV DNA replication, which appeared to be enriched in adenovirus-infected cells. Finally, the absence of any apparent cellular DNA helicase requirement led us to develop an artificial AAV replication system in which polymerase delta, RFC, and PCNA were replaced with T4 DNA polymerase and gp32 protein. This system was capable of supporting AAV DNA replication, demonstrating that under some conditions the Rep helicase activity can function to unwind duplex DNA during strand displacement synthesis.  相似文献   

18.
A cDNA library was screened for plant proliferating-cell nuclear antigen (PCNA) from Catharanthus roseus (periwinkle). A lambda gt11 cDNA library was constructed using poly(A)-rich RNA isolated from the cells in the S phase. A cDNA clone for PCNA was isolated by using a rice genomic clone, pCJ-1, which contains PCNA-related gene sequences. The cDNA contains an open reading frame of 804 nucleotides, encoding a protein of 268 amino acids with a molecular mass of 29,765 Da. When conservative substitutions were included, a high degree of similarity (about 85%) was observed between the predicted amino acid sequence of periwinkle PCNA and that of human PCNA. Expression of mRNA for periwinkle PCNA was undetectable or very weak in quiescent cells, such as phosphate-starved cells, auxin-starved cells and cells in the stationary phase. In the synchronous progression of the cell cycle induced by the addition of phosphate or auxin, the active accumulation of periwinkle PCNA mRNA was observed preferentially in the S phase. When an inhibitor of DNA synthesis, aphidicolin, was added to the cells at the G1 phase, an increase in the level of PCNA mRNA was observed. The partial inhibition of protein synthesis at the G1 phase by a protein inhibitor, anisomycin, caused the arrest of cells in the G1 phase. No increase of the level of periwinkle PCNA mRNA was observed in cells arrested at the G1 phase by the inhibition of protein synthesis. These results indicate that the induction of mRNA for periwinkle PCNA occurred independently of the initiation of DNA replication, but that synthesis of certain proteins at the G1 phase was required for the induction of periwinkle PCNA mRNA at the S phase.  相似文献   

19.
The proliferating cell nuclear antigen (PCNA) is a key component of the eukaryotic DNA replication machinery. It also plays an important role in DNA repair mechanisms. Despite the intense scientific research on yeast and human PCNA, information describing the function of this protein in plants is still very limited. In the previous study Arabidopsis PCNA2 but not PCNA1 was proposed to be functionally important in DNA polymerase η-dependent postreplication repair. In addition to the above study, PCNA2 but not PCNA1 was also shown to be necessary for Arabidopsis DNA polymerase λ-dependent oxidative DNA damage bypass. Taking into account the reported differences between PCNA1 and PCNA2, we tested the idea of a possible cooperation between PCNA1 and PCNA2 in the plant cell. In a bimolecular fluorescence complementation assay an interaction between PCNA1 and PCNA2 was observed in the nucleus, as well as in the cytoplasm. This finding, together with our previous results, indicates that PCNA1 and PCNA2 may cooperate in planta by forming homo- and heterotrimeric rings. The observed interaction might be relevant when distinct functions for PCNA1 and PCNA2 are considered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号