首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hereditary ataxias are genetic disorders characterized by uncoordinated gait and often poor coordination of hands, speech, and eye movements. Frequently, atrophy of the cerebellum occurs. Many ataxias are autosomal dominant, but autosomal recessive (AR) disease occurs as well. Homozygosity mapping in a consanguineous family with three affected children with progressive cerebellar ataxia and atrophy revealed a candidate locus on chromosome 1, containing the CABC1/ADCK3 (the chaperone, ABC1 activity of bc1 complex homologue) gene. CABC1/ADCK3 is the homologue of the yeast Coq8 gene, which is involved in the ubiquinone biosynthesis pathway. Mutation analysis of this gene showed a homozygous nonsense mutation (c.1042C > T, p.R348X). Eight additional patients with AR cerebellar ataxia and atrophy were screened for mutations in the CABC1/ADCK3 gene. One patient was compound heterozygous for the same c.1042C > T mutation and a second nonsense mutation (c.1136T > A, p.L379X). Both mutations created a premature stop codon, triggering nonsense mediated mRNA decay as the pathogenic mechanism. We found no evidence of a Dutch founder for the c.1042C > T mutation in AR ataxia. We report here the first nonsense mutations in CABC1 that most likely lead to complete absence of a functional CABC1 protein. Our results indicate that CABC1 is an important candidate for mutation analysis in progressive cerebellar ataxia and atrophy on MRI to identify those patients, who may benefit from CoQ10 treatment.  相似文献   

2.
Recessive mutations in the alsin gene cause three clinically distinct motor neuron diseases: juvenile amyotrophic lateral sclerosis (ALS2), juvenile primary lateral sclerosis (JPLS) and infantile-onset ascending hereditary spastic paraplegia (IAHSP). A total of 23 different ALS2 mutations have been described for the three disorders so far. Most of these mutations result in a frameshift leading to a premature truncation of the alsin protein. We report the novel ALS2 truncating mutation c.2761C > T; p.R921X detected by homozygosity mapping and sequencing in two infants affected by IAHSP with bulbar involvement. The mutation c.2761C > T resides in the pleckstrin domain, a characteristic segment of guanine nucleotide exchange factors of the Rho GTPase family, which is involved in the overall neuronal development or maintenance. This study highlights the importance of using homozygosity mapping combined with candidate gene analysis to identify the underlying genetic defect as in this Saudi consanguineous family.  相似文献   

3.
Nucleotide sequences of exon 51, adjacent intron areas, and regulatory region of the α1 chain of type I collagen (COL1A1) gene were analyzed in 41 patients with osteogenesis imperfecta (OI) from 33 families and their 68 relatives residing at Bashkortostan Republic (BR). Six mutations (four nonsense mutations c.967G>T (p.Gly323X), c.1081C>T (p.Arg361X), c.1243C>T (p.Arg415X), and c.2869C>T (p.Gln957X)) in patients of the Russian origin and two frameshift mutations (c.579delT (p.Gly194ValfsX71), and c.2444delG (p.Gly815AlafsX293)) in patients with OI of Tatar ethnicity as well as 14 single nucleotide polymorphisms in the COL1A1 gene were revealed. Mutations c.967G>T (p.Gly323X) and three alterations in the nucleotide sequence c.544-24C>T, c.643-36delT, and c.957 + 10insA were described for the first time.  相似文献   

4.
We performed a limited DNA sequence analysis of the CARD15 gene in 89 patients with Crohn’s disease (CD), 19 patients with ulcerative colitis (UC), and three patients with indeterminate colitis (IC), who were heterozygous carriers of one of the common CARD15 mutations [c.2104C>T (p.R702W), c.2722G>C (p.G908R), or c.3019_3020insC (p.Leu1007fsX1008)], the c.2462+10A>C variant, or of a new amino acid substitution in the 3′-end of exon 4. CARD15 exons 4, 5, 6, 8, and 11 were amplified by PCR and completely sequenced, thereby theoretically covering 73.9% of the described CARD15 variants and 96.6% of the mutated alleles. Using this approach, eight novel amino acid substitutions [c.1171C>T (p.R391C), c.1387C>G (p.P463A), c.2138G>A (p.R713H), c.2278C>T (p.R760C), c.2368C>T (p.R790W), c.2371C>T (p.R791W), c.2475C>G (p.N825K), and c.2546C>T (p.A849V)] were detected in six CD and two IC patients, and one UC patient. A severe disease phenotype was observed especially in patients who are compound-heterozygous for a common and a novel CARD15 mutation.Schnitzler and Brand contributed equally  相似文献   

5.
Cystathionine β-synthase (CBS) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes the condensation of homocysteine with serine to generate cystathionine. Homocystinuria is an autosomal recessive disorder commonly caused by a deficiency of CBS activity. Here, we characterized a novel CBS mutation (c.260C > A (p.T87N)) and a previously reported variant (c.700G > A (p.D234N)) found in Venezuelan homocystinuric patients, one nonresponsive and one responsive to vitamin B6. Both mutant proteins were expressed in vitro in prokaryotic and eukaryotic cells, finding lower soluble expression in HEK-293 cells (19% T87N and 23% D234N) compared to wild-type CBS. Residual activities obtained for the mutant proteins were 3.5% T87N and 43% D234N. Gel exclusion chromatography demonstrated a tendency of the T87N mutant to aggregate while the distribution of the D234N mutant was similar to wild-type enzyme. Using immunofluorescence microscopy, an unexpected difference in intracellular localization was observed between the wild-type and mutant proteins. While the T87N mutant exhibited a punctate appearance, the wild-type protein was homogeneously distributed inside the cell. Interestingly, the D234N protein showed both distributions. This study demonstrates that the pathogenic CBS mutations generate unstable proteins that are unable (T87N) or partially unable (D234N) to assemble into a functional enzyme, implying that these mutations might be responsible for the homocystinuria phenotype.  相似文献   

6.
7.
Frequent mutations in the isocitrate dehydrogenase 1 and 2 genes (IDH1 and IDH2) have been identified in gliomas and acute myeloid leukemia (AML). Our aim is to assess whether IDH mutations were presented in Chinese patients with various hematological disorders. In this study, we screened the IDH1 and IDH2 mutations in a cohort of 456 Chinese patients with various hematological malignancies and disorders. We found three missense (p.R132C, p.R132G, and p.I99M; occurred in five patients) and one silent mutation (c.315C>T; occurred in two patients) in the IDH1 gene and two missense mutations (p.R140Q and p.R172K; occurred in four AML patients) and one silent mutation (c.435G>A) in the IDH2 gene. Except for one non-Hodgkin lymphoma (NHL) patient harboring IDH1 mutation p.R132C, all IDH1 and IDH2 missense mutations were observed in patients with AML. Intriguingly, the IDH2 mutation p.R140Q and novel IDH1 mutation p.I99M co-occurred in a 75-year-old patient with AML developed from myelodysplastic syndromes (MDS). The frequency of IDH1 and IDH2 missense mutations in Chinese AML patients reached 5.9% and 8.3%, respectively. Our results supported the recent findings that IDH gene mutations were common in AML. Conversely, IDH mutations were rather rare in Chinese patients with other types of hematological disorders.  相似文献   

8.
Dysequilibrium syndrome (DES, OMIM 224050) is a genetically heterogeneous condition that combines autosomal recessive non-progressive cerebellar ataxia with mental retardation. The subclass dysequilibrium syndrome type 1 (CAMRQ1) has been attributed to mutations in the VLDLR gene encoding the very low density lipoprotein receptor (VLDLR). This receptor is involved in the Reelin signaling pathway that guides neuronal migration in the cerebral cortex and cerebellum. Three missense mutations (c.1459G > T; p.D487Y, c.1561G > C; p.D521H and c.2117G > T; p.C706F) have been previously identified in VLDLR gene in patients with DES. However, the functional implications of those mutations are not known and therefore we undertook detailed functional analysis to elucidate the cellular mechanisms underlying their pathogenicity. The mutations have been generated by site-directed mutagenesis and then expressed in cultured cell lines. Confocal microscopy and biochemical analysis have been employed to examine the subcellular localization and functional activities of the mutated proteins relative to wild type. Our results indicate that the three missense mutations lead to defective intracellular trafficking and ER retention of the mutant VLDLR protein. This trafficking impairment prevents the mutants from reaching the plasma membrane and binding exogenous Reelin, the initiating event in Reelin signaling. Collectively, our results provide evidence that ER quality control is involved in the functional inactivation and underlying pathogenicity of these DES-associated mutations in the VLDLR.  相似文献   

9.
Ellis–van Creveld syndrome (EvC) is a rare autosomal recessive skeletal dysplasia characterized by short limbs, short ribs, postaxial polydactyly, and dysplastic nails and teeth. It is caused by biallelic mutations in the EVC or EVC2 gene. Here, we identified a novel nonsense mutation p.W828X (c.2484G>A) in exon 14 and a recurrent nonsense mutation p. R399X (c.1195C>T) in exon 10 of EVC2 gene in a Chinese boy with EvC. Identification of a novel genotype in EvC will provide clues to the phenotype–genotype relations and may assist not only in the clinical diagnosis of EvC but also in the interpretation of genetic information used for prenatal diagnosis and genetic counseling.  相似文献   

10.
Approximately half of the cases of hydroxysteroid (17β) dehydrogenase X (HSD10) deficiency are due to a missense C>T mutation in exon 4 of the HSD17B10 gene. The resulting HSD10 (p.R130C) loses most or all catalytic functions, and the males with this mutation have a much more severe clinical phenotype than those carrying p.V65A, p.L122V, or p.E249Q mutations. We found that the mutated cytosine which is + 2259 nucleotide from the ATG of the gene, is > 90% methylated in both the active and inactive X chromosomes in two normal females as well as in the X chromosome of a normal male. Since 5-methylcytosine is prone to conversion to thymine by deamination, the methylation of this cytosine in normal X chromosomes provides an explanation for the prevalence of the p.R130C mutation among patients with HSD10 deficiency. The substitution of arginine for cysteine eliminates several hydrogen bonds and reduces the van der Waals interaction between HSD10 subunits. The resulting disruption of protein structure impairs some if not all of the catalytic and non-enzymatic functions of HSD10. A meta-analysis of residual HSD10 activity in eight patients with the p.R130C mutation showed an average 2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) activity of only 6 (± 5) % of the normal control level. This is significantly lower than in cells of patients with other, clinically milder mutations and suggests that the loss of HSD10/MHBD activity is a marker for the disorder.  相似文献   

11.
Krabbe disease is an autosomal recessive leukodystrophy caused by the deficiency of the galactocerebrosidase (GALC) enzyme. It is pathologically characterized by demyelination of the central and peripheral nervous systems by accumulation of galactosylsphingosine. To date, more than 120 mutations in the GALC gene have been reported worldwide and genotype–phenotype correlations have been reported in some types of mutations. In this study, we analyzed 22 unreported Japanese patients with Krabbe disease and summarized a total of 51 Japanese patients, including 29 previously reported patients. To elucidate how GALC mutations impair enzymatic activity, multiple disease-causing mutations including common mutations and polymorphisms were investigated for enzymatic activity and precursor processing ability with transient expression system. We also performed 3-D enzyme structure analysis to determine the effect of each new mutation. Five novel mutations were detected including one deletion c.1808delT [p.L603X], one nonsense mutation c.1023C>G [p.Y341X], and three missense mutations c.209T>C [p.L70P], c.1054G>A [p.G352R], and c.1937G>C [p.G646A]. For the total of 51 patients, 59% had late-onset forms of Krabbe disease. Seven common mutations accounted for 58% of mutant alleles of patients with Krabbe disease in Japan. Infantile-onset mutations had almost no enzyme activity, while late-onset mutations had 4%–20% of normal enzyme activity. The processing rate of precursor GALC protein to mature form was slower for infantile-onset mutations. Heat stability of the mutant proteins revealed that p.G270D was more stable compared to the other mutations. The constructed 3D-model showed that the residues for Krabbe mutations were less solvent-accessible and located in the core region of GALC protein. In conclusion, we have demonstrated that the most common phenotype in Japan is the late-onset type, that the enzyme activity for GALC mutants is correlated with mutational severity, and that the most pathogenic factor is due to the processing rate from the precursor to the mature protein.  相似文献   

12.
Intellectual disability and developmental encephalopathies are mostly linked with infant epilepsy. Epileptic encephalopathy is a term that is used to define association between developmental delay and epilepsy. Mutations in the STXBP1 (Syntaxin-binding protein 1) gene have been previously reported in association with multiple severe early epileptic encephalopathies along with many neurodevelopmental disorders. Among the disorders produced due to any mutations in the STXBP1 gene is developmental and epileptic encephalopathy 4 (OMIM: 612164), is an autosomal dominant neurologic disorder categorized by the onset of tonic seizures in early infancy (usually in the first months of life). In this article, we report two Saudi families one with de novo heterozygous stop-gain mutation c.364C > T and a novel missense c. 305C > A p.Ala102Glu in exon 5 of the STXBP1 gene (OMIM: 602926) lead to development of epileptic encephalopathy 4. The variants identified in the current study broadened the genetic spectrum of STXBP1 gene related with diseases, which will help to add in the literature and benefit to the studies addressing this disease in the future.  相似文献   

13.

Cobalamin C defect is caused by pathogenic variants in the MMACHC gene leading to impaired conversion of dietary vitamin B12 into methylcobalamin and adenosylcobalamin. Variants in the MMACHC gene cause accumulation of methylmalonic acid and homocysteine along with decreased methionine synthesis. The spectrum of MMACHC gene variants differs in various populations. A total of 19 North Indian children (age 0–18 years) with elevated methylmalonic acid and homocysteine were included in the study, and their DNA samples were subjected to Sanger sequencing of coding exons with flanking intronic regions of MMACHC gene. The genetic analysis resulted in the identification of a common pathogenic nonsense mutation, c.394C > T (R132*) in 85.7% of the unrelated cases with suspected cobalamin C defect. Two other known mutations c.347T > C (7%) and c.316G > A were also detected. Plasma homocysteine was significantly elevated (> 100 µmol/L) in 75% of the cases and methionine was decreased in 81% of the cases. Propionyl (C3)-carnitine, the primary marker for cobalamin C defect, was found to be elevated in only 43.75% of cases. However, the secondary markers such as C3/C2 and C3/C16 ratios were elevated in 87.5% and 100% of the cases, respectively. Neurological manifestations were the most common in our cohort. Our findings of the high frequency of a single MMACHC R132* mutation in cases with combined homocystinuria and methylmalonic aciduria may be proven helpful in designing a cost-effective and time-saving diagnostic strategy for resource-constraint settings. Since the R132* mutation is located near the last exon–exon junction, this is a potential target for the read-through therapeutics.

  相似文献   

14.
The access of bone morphogenetic protein (BMP) to the BMP receptors on the cell surface is regulated by its antagonist noggin, which binds to heparan-sulfate proteoglycans on the cell surface. Noggin is encoded by NOG and mutations in the gene are associated with aberrant skeletal formation, such as in the autosomal dominant disorders proximal symphalangism (SYM1), multiple synostoses syndrome, Teunissen–Cremers syndrome, and tarsal–carpal coalition syndrome. NOG mutations affecting a specific function may produce a distinct phenotype. In this study, we investigated a Japanese pedigree with SYM1 and conductive hearing loss and found that it carried a novel heterozygous missense mutation of NOG (c.406C > T; p.R136C) affecting the heparin-binding site of noggin. As no mutations of the heparin-binding site of noggin have previously been reported, we investigated the crystal structure of wild-type noggin to investigate molecular mechanism of the p.R136C mutation. We found that the positively charged arginine at position 136 was predicted to be important for binding to the negatively charged heparan-sulfate proteoglycan (HSPG). An in silico docking analysis showed that one of the salt bridges between noggin and heparin disappeared following the replacement of the arginine with a non-charged cysteine. We propose that the decreased binding affinity of NOG with the p.R136C mutation to HSPG leads to an excess of BMP signaling and underlies the SYM1 and conductive hearing loss phenotype of carriers.  相似文献   

15.
Artemis is required for V(D)J recombination and the repair of a subset of radiation-induced DNA double strand breaks (DSBs). Artemis-null patients display radiosensitivity (RS) and severe combined immunodeficiency (SCID), classified as RS-SCID. Strongly impacting hypomorphic Artemis mutations confer marked infant immunodeficiency and a predisposition for EBV-associated lymphomas. Here, we provide evidence that a polymorphic Artemis variant (c.512C > G: p.171P > R), which has a world-wide prevalence of 15%, is functionally impacting. The c.512C > G mutation causes an ~3-fold decrease in Artemis endonuclease activity in vitro. Cells derived from a patient who expressed a single Artemis allele with the polymorphic mutational change, showed radiosensitivity and a DSB repair defect in G2 phase, with Artemis cDNA expression rescuing both phenotypes. The c.512C > G change has an additive impact on Artemis function when combined with a novel C-terminal truncating mutation (p.436C > X), which also partially inactivates Artemis activity. Collectively, our findings provide strong evidence that monoallelic expression of the c.512C > G variant impairs Artemis function causing significant radiosensitivity and a G2 phase DSB repair defect. The patient exhibiting monoallelic c.512C > G-Artemis expression showed immunodeficiency only in adulthood, developed bilateral carcinoma of the nipple and myelodysplasia raising the possibility that modestly decreased Artemis function can impact clinically.  相似文献   

16.
《Endocrine practice》2008,14(7):869-874
ObjectiveTo determine if there was a genetic contribution to our patient’s unusual clinical presentation of nephrolithiasis and nonhealing stress fracture.MethodsWe describe a 31-year-old man who had rickets as a child and developed a femur insufficiency fracture and recurrent nephrolithiasis as an adult after moving to the United States from India. The patient’s clinical course and results from radiographic and biochemical analyses are described. Analysis of the SLC34A3 gene was performed using genomic DNA samples from the patient and his family members.ResultsBefore referral to the Yale Bone Center, the patient was treated with calcitriol, ergocalciferol, and phosphate. Changing therapy to phosphate alone led to clinical improvement. Genetic analysis revealed that the patient is a compound heterozygote for mutations in the SLC34A3 gene. On 1 allele, he has a previously described missense mutation in exon 7: c.575C > T (p.Ser192Leu). The other allele carries a novel nonsense mutation in exon 3: c.145C > T (p.Gln49X). One unaffected sibling is a carrier of the missense mutation and 1 sister with a history of flank pain is a carrier of the novel mutation.ConclusionsHereditary hypophosphatemic rickets with hypercalciuria is a rare metabolic disorder associated with mutations in SLC34A3, the gene that encodes the renal sodium phosphate cotransporter NaPi-IIc. Although hypercalciuria is a distinguishing feature of the disease, nephrolithiasis is rarely described. The patient’s atypical clinical presentation illustrates that both environmental and genetic factors potentially affect phenotypic expression of SLC34A3 mutations. (Endocr Pract. 2008;14:869-874)  相似文献   

17.
18.
《Endocrine practice》2020,26(11):1255-1268
ObjectiveThere are numerous reasons for short stature, including mutations in osteochondral development genes. ACAN, one such osteochondral development gene in which heterozygous mutations can cause short stature, has attracted attention from researchers in recent years. Therefore, we analyzed six cases of short stature with heterozygous ACAN mutations and performed a literature review.MethodsClinical information and blood samples from 6 probands and their family members were collected after consent forms were signed. Gene mutations in the probands were detected by whole-exome sequencing. Then, we searched the literature, performed statistical analyses, and summarized the characteristics of all reported cases.ResultsWe identified six novel mutations in ACAN: c.1411C>T, c.1817C>A, c.1762C>T, c.2266G>C, c.7469G>A, and c.1733-1G>A. In the literature, more than 200 affected individuals have been diagnosed genetically with a similar condition (height standard deviation score &lsqb;SDS] -3.14 ± 1.15). Among affected individuals receiving growth-promoting treatment, their height before and after treatment was SDS -2.92 ± 1.07 versus SDS -2.14 ± 1.23 (P<.001). As of July 1, 2019, a total of 57 heterozygous ACAN mutations causing nonsyndromic short stature had been reported, including the six novel mutations found in our study. Approximately half of these mutations can lead to protein truncation.ConclusionsThis study used clinical and genetic means to examine the relationship between the ACAN gene and short stature. To some extent, clear diagnosis is difficult, since most of these affected individuals’ characteristics are not prominent. Growth-promoting therapies may be beneficial for increasing the height of affected patients.Abbreviations: AI = aromatase inhibitor; ECM = extracellular matrix; GnRHa = gonadotropin-releasing hormone analogue; IQR = interquartile range; MIM = Mendelian Inheritance in Man; PGHD = partial growth hormone deficiency; rhGH = recombinant human growth hormone; SDS = standard deviation score; SGA = small for gestational age; SGHD = severe growth hormone deficiency  相似文献   

19.
To develop a screening kit for detecting mutation hotspots of the phenylalanine hydroxylase (PAH) gene. Thirteen exons of the PAH gene were sequenced in 84 cases with phenylketonuria (PKU) diagnosed during neonatal genetic and metabolic disease screening in Shaanxi province, and their mutations were analyzed. We designed and developed a screening kit to detect nine mutation sites covering more than 50% of the PAH mutations found in Shaanxi province (c.728G>A, c.1197A>T, c.331C>T, c.1068C>A, c.611A>G, c.1238G>C, c.721C>T, c.442-1G>A, and c.158G>A) by using amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) combined with fluorescent probe technology. Peripheral blood and dried blood samples from PKU families were used for clinical verification of the newly developed kit. PAH gene mutations were detected in 84 children diagnosed with PKU. A total of 159 mutant alleles were identified, consisting of 100 missense mutations, 28 shear mutations, 24 nonsense mutations, and 7 deletion mutations. Exon 7 had the highest mutation frequency (32.08%). Among them, the mutation frequency of p.R243Q was the highest, accounting for 20.13% of all mutations, followed by p.R111X, IVS4-1G>A, EX6-96A>G, and p.R413P; these five loci accounted for 47.17% (75/159) of all mutations. In addition, we identified three previously unreported PAH gene mutations (p.C334X, p.G46D, and p.G256D). Fifteen mutation sites were identified in the 47 PAH carriers identified by next-generation sequencing (NGS), which were verified by the newly developed kit, with an agreement rate of 100%. This newly developed kit based on ARMS-PCR combined with fluorescent probe technology can be used to detect common PAH gene mutations.  相似文献   

20.
Yu L  Lv JC  Zhou XJ  Zhu L  Hou P  Zhang H 《Human genetics》2011,129(3):335-344
Familial renal glucosuria (FRG) is characterized by persistent glucosuria despite normal serum glucose and in the absence of overt tubular dysfunction. Mutation of sodium/glucose co-transporter 2 (SGLT2) has been identified and was recently reported to be involved in FRG. However, the functional and pathological consequences of such mutations remain unknown. In the current study, we collected four families with FRG. Sequencing of the SGLT2 coding region, intronic segments and cDNA revealed three missense mutations (294C>A: F98L; 1388T>G: L463R; 1435C>G: R479G) and two splice mutations (IVS 1-16 C>A: Del exon3; IVS 11 + 1 G>C: Del exon11). The probands were either heterozygous or compound heterozygous for SGLT2 mutations, and had glucosuria quantified at 6–27 g/day. Human 293 cells were transfected with the plasmid constructs to study the expression and function of SGLT2 mutants in vitro. Confocal microscopy using green fluorescent protein (GFP) revealed that the mutation results in a loss of punctate membrane pattern typical of the wild-type SGLT2 except in the 294C>A mutant. All mutants had significantly lower transport capacity in comparison to the wild-type control (26.49–71.48%). Renal biopsy in one consenting proband revealed significantly lower SGLT2 expression in the apical side of the proximal convoluted tubule in comparison to both healthy and disease controls (minimal change disease and diabetic nephropathy). The current study provides functional clues regarding the SGLT2 molecule from genotype to phenotype in FRG families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号