首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
Asian cultivated rice(Oryza sativa L.),an important cereal crop worldwide,was domesticated from its wild ancestor 8000 years ago.During its long-term cultivation and evolution under diverse agroecological conditions, Asian cultivated rice has differentiated into indica and japonica subspecies.An effective method is required to identify rice germplasm for its indica and japonica features,which is essential in rice genetic improvements.We developed a protocol that combined DNA extraction from a single rice seed and the insertion/deletion(InDel) molecular fingerprint to determine the indica and japonica features of rice germplasm.We analyzed a set of rice germplasm,including 166 Asian rice varieties,two African rice varieties,30 accessions of wild rice species,and 42 weedy rice accessions,using the single-seeded InDel fingerprints(SSIF).The results show that the SSIF method can efficiently determine the indica and japonica features of the rice germplasm.Further analyses revealed significant indica and japonica differentiation in most Asian rice varieties and weedy rice accessions.In contrast,African rice varieties and nearly all the wild rice accessions did not exhibit such differentiation.The pattern of cultivated and wild rice samples illustrated by the SSIF supports our previous hypothesis that indica and japonica differentiation occurred after rice domestication under different agroecological conditions.In addition,the divergent pattern of rice cultivars and weedy rice accessions suggests the possibility of an endoferal origin(from crop)of the weedy rice included in the present study.  相似文献   

3.
The origin and spread of novel agronomic traits during crop domestication are complex events in plant evolution. Wild rice (Oryza rufipogon) has red grains due to the accumulation of proanthocyanidins, whereas most cultivated rice (Oryza sativa) varieties have white grains induced by a defective allele in the Rc basic helix-loop-helix (bHLH) gene. Although the events surrounding the origin and spread of black rice traits remain unknown, varieties with black grains due to anthocyanin accumulation are distributed in various locations throughout Asia. Here, we show that the black grain trait originated from ectopic expression of the Kala4 bHLH gene due to rearrangement in the promoter region. Both the Rc and Kala4 genes activate upstream flavonol biosynthesis genes, such as chalcone synthase and dihydroflavonol-4-reductase, and downstream genes, such as leucoanthocyanidin reductase and leucoanthocyanidin dioxygenase, to produce the respective specific pigments. Genome analysis of 21 black rice varieties as well as red- and white-grained landraces demonstrated that black rice arose in tropical japonica and its subsequent spread to the indica subspecies can be attributed to the causal alleles of Kala4. The relatively small size of genomic fragments of tropical japonica origin in some indica varieties indicates that refined introgression must have occurred by natural crossbreeding in the course of evolution of the black trait in rice.  相似文献   

4.
African Rice ( Oryza glaberrima Steud.): Lost Crop of the Enslaved Africans Discovered in Suriname. African rice (Oryza glaberrima Steud.) was introduced to the Americas during the slave trade years and grown by enslaved Africans for decades before mechanical milling devices facilitated the shift towards Asian rice (O. sativa L.). Literature suggests that African rice is still grown in Guyana and French Guiana, but the most recent herbarium voucher dates from 1938. In this paper, evidence is presented that O. glaberrima is still grown by Saramaccan Maroons both for food and ritual uses. Saramaccan informants claim their forefathers collected their first “black rice” from a mysterious wild rice swamp and cultivated these seeds afterwards. Unmilled spikelets (grains with their husk still attached) are sold in small quantities for ancestor offerings, and even exported to the Netherlands to be used by Maroon immigrants. Little is known of the evolution of O. glaberrima, before and after domestication. Therefore, more research is needed on the different varieties of rice and other “lost crops” grown by these descendants of enslaved Africans who escaped from plantations in the 17th and 18th centuries and maintained much of their African cultural heritage in the deep rainforest.  相似文献   

5.
Global dissemination of a single mutation conferring white pericarp in rice   总被引:3,自引:0,他引:3  
Here we report that the change from the red seeds of wild rice to the white seeds of cultivated rice (Oryza sativa) resulted from the strong selective sweep of a single mutation, a frame-shift deletion within the Rc gene that is found in 97.9% of white rice varieties today. A second mutation, also within Rc, is present in less than 3% of white accessions surveyed. Haplotype analysis revealed that the predominant mutation originated in the japonica subspecies and crossed both geographic and sterility barriers to move into the indica subspecies. A little less than one Mb of japonica DNA hitchhiked with the rc allele into most indica varieties, suggesting that other linked domestication alleles may have been transferred from japonica to indica along with white pericarp color. Our finding provides evidence of active cultural exchange among ancient farmers over the course of rice domestication coupled with very strong, positive selection for a single white allele in both subspecies of O. sativa.  相似文献   

6.
Molecular Evolution of the TAC1 Gene from Rice (Oryza sativa L.)   总被引:1,自引:0,他引:1  
Tiller angle is a key feature of the architecture of cultivated rice(Oryza sativa),since it determines planting density and influences rice yield.Our previous work identified Tiller Angle Control 1(TACl) as a major quantitative trait locus that controls rice tiller angle.To further clarify the evolutionary characterization of the TACl gene,we compared a TACl-containing 3164-bp genomic region among 113 cultivated varieties and 48 accessions of wild rice,including 43 accessions of O.rufipogon and five accessions of O.nivara.Only one single nucleotide polymorphism(SNP),a synonymous substitution,was detected in TACl coding regions of the cultivated rice varieties, whereas one synonymous and one nonsynonymous SNP were detected among the TACl coding regions of wild rice accessions.These data indicate that little natural mutation and modification in the TACl coding region occurred within the cultivated rice and its progenitor during evolution.Nucleotide diversities in the TACl gene regions of O.sativa and O.rufipogon of 0.00116 and 0.00112,respectively, further indicate that TACl has been highly conserved during the course of rice domestication.A functional nucleotide polymorphism (FNP) of TACl was only found in the japonica rice group.A neutrality test revealed strong selection,especially in the 3’-flanking region of the TACl coding region containing the FNP in the japonica rice group.However,no selection occurred in the indica and wild-rice groups.A phylogenetic tree derived from TACl sequence analysis suggests that the indica and japonica subspecies arose independently during the domestication of wild rice.  相似文献   

7.
8.
The gene GS3 has major effect on grain size and plays an important role in rice breeding. The C to A mutation in the second exon of GS3 was reported to be functionally associated with enhanced grain length in rice. In the present study, besides the C-A mutation at locus SF28, three novel polymorphic loci, SR17, RGS1, and RGS2, were discovered in the second intron, the last intron and the final exon of GS3, respectively. A number of alleles at these four polymorphic loci were observed in a total of 287 accessions including Chinese rice varieties (Oryza sativa), African cultivated rice (O. glaberrima) and AA-genome wild relatives. The haplotype analysis revealed that the simple sequence repeats (AT)n at RGS1 and (TCC)n at RGS2 had differentiated in the wild rice whilst the C-A mutation occurred in the cultivated rice recently during domestication. It also indicated that A allele at SF28 was highly associated with long rice grain whilst various motifs of (AT)n at RGS1 and (TCC)n at RGS2 were mainly associated with medium to short grain in Chinese rice. The C-A mutation at SF28 explained 33.4% of the grain length variation in the whole rice population tested in this study, whereas (AT)n at RGS1 and (TCC)n at RGS2 explained 26.4 and 26.2% of the variation, respectively. These results would be helpful for better understanding domestication of GS3 and its manipulation for grain size in rice. The genic marker RGS1 based on the motifs (AT)n was further validated as a functional marker using two sets of backcross recombinant inbred lines. These results suggested that the functional markers developed from four different loci within GS3 could be used for fine marker-assisted selection of grain length in rice breeding.  相似文献   

9.
New insights into the history of rice domestication   总被引:6,自引:0,他引:6  
The history of rice domestication has long been a subject of debate. Recently obtained genetic evidence provides new insights into this complex story. Genome-wide studies of variation demonstrate that the two varietal groups in Oryza sativa (indica and japonica) arose from genetically distinct gene pools within a common wild ancestor, Oryza rufipogon, suggesting multiple domestications of O. sativa. However, the evolutionary history of recently cloned domestication genes adds another layer of complexity to the domestication of rice. Although some alleles exist only within specific subpopulations, as would be expected if the domestications occurred independently, other major domestication alleles are common to all cultivated O. sativa varieties. Our current view of rice domestication supports multiple domestications coupled with limited introgression that transferred key domestication alleles between divergent rice gene pools.  相似文献   

10.
区树俊  汪鸿儒  储成才  张帅 《遗传》2012,34(11):1389-1389
作物的驯化是人类从开始种植和储存的野生作物中选择优良性状,使之形态特征适应于农业生产方向进化的过程,因此,大部分种子作物驯化后在落粒性、种子休眠和植株形态等方面都出现了相似的变化。水稻是研究谷类作物驯化的良好模式生物。稻属包含2种栽培稻,分别为亚洲栽培稻(Oryza sativa L.)和非洲栽培稻(O. glaberrima Steud.),其中亚洲栽培稻遍布全世界,包含两个主要亚种,粳稻亚种(O. sativa L. ssp. japonica)和籼稻亚种(O. sativa L. ssp. indica)。稻属丰富的近缘种和广泛的地域分布非常有利于研究确定现代栽培稻的驯化地域。此外,水稻基因组较小、具高质量精细图谱,加上功能基因研究上的进展,也为深入开展水稻驯化进程研究奠定了基础。详见本期第XX-XX页区树俊,汪鸿儒,储成才“亚洲栽培稻主要驯化性状研究进展”,对水稻关键驯化性状研究进行的比较全面的综述。封面图中央是选取23株AA基因组的亚洲栽培稻及其近缘野生稻,利用水稻驯化过程中受到选择的控制稻壳颜色基因Bh4上下游各50 kb中的SNP位点所构建的进化树;图外从左下至右下沿顺时针方向,反映的是水稻驯化过程中稻壳颜色、谷粒形状、穗型的变化趋势。 区树俊,汪鸿儒,储成才(绘图:区树俊)  相似文献   

11.
Summary Oryza sativa grown in flooded soil were transferred to water culture solution and acetylene reduction activities (ARA) of intact plants and rootless plants were measured for 5 h. Relative rate of ARA associated with the rootless wetland rice plant as compared with an intact plant varied from 8 to 100 percent, depending on the growth stage and varieties of rice and highest at the early stage (3 weeks after transplanting) for all varieties tested (IR26, Latisail, Khao Lo, and JBS236). ARA of shoots was associated with basal parts of the shoots about 3 cm from the base of wetland cultivated rice andOryza australiensis. Phyllospheric ARA was negligible except for senescent outer leaf sheaths. Microaerophilic N2-fixing bacteria also inhabited basal parts of shoots (outer leaf sheaths and stems) of wetland rice. These findings suggest that N2-fixation is partly associated with the shoots of wetland rice plants.  相似文献   

12.
13.
China is rich of germplasm resources of common wild rice (Oryza rufipogon Griff.) and Asian cultivated rice (O. sativa L.) which consists of two subspecies, indica and japonica. Previous studies have shown that China is one of the domestication centers of O. sativa. However, the geographic origin and the domestication times of O. sativa in China are still under debate. To settle these disputes, six chloroplast loci and four mitochondrial loci were selected to examine the relationships between 50 accessions of Asian cultivated rice and 119 accessions of common wild rice from China based on DNA sequence analysis in the present study. The results indicated that Southern China is the genetic diversity center of O. rufipogon and it might be the primary domestication region of O. sativa. Molecular dating suggested that the two subspecies had diverged 0.1 million years ago, much earlier than the beginning of rice domestication. Genetic differentiations and phylogeography analyses indicated that indica was domesticated from tropical O. rufipogon while japonica was domesticated from O. rufipogon which located in higher latitude. These results provided molecular evidences for the hypotheses of (i) Southern China is the origin center of O. sativa in China and (ii) the two subspecies of O. sativa were domesticated multiple times.  相似文献   

14.
15.
Oryza nivara is the ancestral species of cultivated rice (Oryza sativa). It has been the source of novel alleles for resistance to biotic and abiotic stresses, as well as yield improvement, lost during the course of domestication. To determine the molecular changes that occurred during domestication, the O. sativa ssp. japonica variety, Nipponbare, from which a reference sequence (RefSeq) was developed, was crossed with the O. nivara accession (IRGC100897), from which BAC-end sequences (BES) were derived. The mapping population composed of 279 F2 progeny lines derived from this cross was phenotyped for 19 traits important to domestication and yield improvement, including basal sheath and culm color, culm angle, days to heading, plant height, seed shattering, flag leaf length and width, panicle type and length, awn length and color, pericarp color, and seed color, length, width, length to width ratio, volume and surface area. The population was genotyped using 95 SSR markers and 114 single nucleotide variation (SNV) markers, selected by comparing the Nipponbare RefSeq and O. nivara BES. At least one major QTL was identified for each trait evaluated, and for 28 of the 46 QTL, the trait increase was attributed to the allele contributed by the O. nivara parent. Candidate genes were identified in 37 of the QTL regions. This study validated SNV markers that can be used for mapping in populations with a wild species parent. In the future, SNVs could be used for marker-assisted selection to incorporate desirable, novel alleles for stress resistance and yield improvement, identified in rice wild species like O. nivara into elite, adapted O. sativa varieties.  相似文献   

16.
  • 1 Most crop plants are grown far from their region of origin and have been significantly altered by human selection. Given the importance of biodiversity in ecosystem function, surprisingly little is known about the effect of domestication on arthropod diversity and community composition.
  • 2 Arthropod diversity and species abundance were compared with three genotypes of cultivated rice Oryza sativa L. and two genotypes of wild rice O. rufipogon Griff. in southern Luzon, the Philippines.
  • 3 Domestication had a small but positive effect on total arthropod diversity. Arthropod species richness was highest on the cultivar IR64 and lowest on one of the O. rufipogon genotypes, although arthropod community composition was similar across rice genotypes.
  • 4 Total arthropod abundance and the relative abundance of guilds did not differ between wild and cultivated rice. All common herbivores, however, responded to rice domestication. Stem‐boring moths and several sap‐sucking herbivores benefited from domestication, although domestication reduced densities of the wolf spider Pardosa pseudoannulata Boesenberg et Strand.
  • 5 By contrast to previous assumptions, crop domestication may not always decrease arthropod diversity. We did not detect any changes in biodiversity or community composition suggesting that rice domestication has altered the capacity of the arthropod community to regulate herbivores.
  相似文献   

17.
Nucleotide variation in 14 unlinked nuclear genes was investigated in species-wide samples of African rice (Oryza glaberrima) and its wild progenitor (O. barthii). Average estimates of nucleotide diversity were extremely low in both species (θ sil = 0.0007 for O. glaberrima; θ sil = 0.0024 for O. barthii). About 70% less diversity was found in O. glaberrima than in its progenitor O. barthii. Coalescent simulation indicated that such dramatic reduction of nucleotide diversity in African rice could be explained mainly by a severe bottleneck during its domestication. The progenitor of African rice maintained also low genetic diversity, which may be attributed to small effective population size in O. barthii. Self-pollinating would be another factor leading to the unusually low diversity in both species. Genealogical analyses showed that all O. glaberrima accessions formed a strongly supported cluster with seven O. barthii individuals that were sampled exclusively from the proposed domestication centers of African rice. Population structure and principal component analyses found that the O. glaberrima group was homogeneous with no obvious genetic subdivision, in contrast to the heterogeneous O. barthii cluster. These findings support a single domestication origin of African rice in areas of the Upper Niger and Sahelian Rivers.  相似文献   

18.
Nitrogen-fixing bacteria were isolated from the stems of wild and cultivated rice on a modified Rennie medium. Based on 16S ribosomal DNA (rDNA) sequences, the diazotrophic isolates were phylogenetically close to four genera: Herbaspirillum, Ideonella, Enterobacter, and Azospirillum. Phenotypic properties and signature sequences of 16S rDNA indicated that three isolates (B65, B501, and B512) belong to the Herbaspirillum genus. To examine whether Herbaspirillum sp. strain B501 isolated from wild rice, Oryza officinalis, endophytically colonizes rice plants, the gfp gene encoding green fluorescent protein (GFP) was introduced into the bacteria. Observations by fluorescence stereomicroscopy showed that the GFP-tagged bacteria colonized shoots and seeds of aseptically grown seedlings of the original wild rice after inoculation of the seeds. Conversely, for cultivated rice Oryza sativa, no GFP fluorescence was observed for shoots and only weak signals were observed for seeds. Observations by fluorescence and electron microscopy revealed that Herbaspirillum sp. strain B501 colonized mainly intercellular spaces in the leaves of wild rice. Colony counts of surface-sterilized rice seedlings inoculated with the GFP-tagged bacteria indicated significantly more bacterial populations inside the original wild rice than in cultivated rice varieties. Moreover, after bacterial inoculation, in planta nitrogen fixation in young seedlings of wild rice, O. officinalis, was detected by the acetylene reduction and 15N2 gas incorporation assays. Therefore, we conclude that Herbaspirillum sp. strain B501 is a diazotrophic endophyte compatible with wild rice, particularly O. officinalis.  相似文献   

19.
Red rice is an interfertiie, weedy form of cultivated rice (Oryza sativa L.) that competes aggressively with the cropin the southern US, reducing yields and contaminating harvests. No wild Oryza species occur In North America andthe weed has been proposed to have evolved through multiple mechanisms, including "de-domestication" of UScrop cultivars, accidental introduction of Asian weeds, and hybridization between US crops and Asian wild/weedyOryza strains. The phenotype of US red rice ranges from "crop mimics", which share some domestication traitswith the crop, to strains closely resembling Asian wild Oryza species. Assessments of genetic diversity haveindicated that many weed strains are closely related to Asian taxa (including indica and aus rice varieties, whichhave never been cultivated in the US, and the Asian crop progenitor O. rufipogon), whereas others show geneticsimilarity to the tropical japonica varieties cultivated in the southern US. Herein, we review what is known aboutthe evolutionary origins and genetic diversity of US red rice and describe an ongoing research project to furthercharacterize the evolutionary genomics of this aggressive weed.  相似文献   

20.
A transposable element that is active in intact plants has been identified in rice (Oryza sativa L.). The 607-bp element itself, termed nonautonomous DNA-based active rice transposon (nDart), has no coding capacity. It was found inserted in the gene encoding Mg-protoporphyrin IX methyltransferase in a chlorophyll-deficient albino mutant isolated from backcross progeny derived from a cross between wild-type japonica varieties. The nDart has 19-bp terminal inverted repeats (TIRs) and, when mobilized, generates an 8-bp target-site duplication (TSD). At least 13 nDart elements were identified in the genome sequence of the japonica cultivar Nipponbare. Database searches identified larger elements, termed DNA-based active rice transposon (Dart) that contained one ORF for a protein that contains a region with high similarity to the hAT dimerization motif. Dart shares several features with nDart, including identical TIRs, similar subterminal sequences and the generation of an 8-bp TSD. These shared features indicate that the nonautonomous element nDart is an internal deletion derivative of the autonomous element Dart. We conclude that these active transposon systems belong to the hAT superfamily of class II transposons. Because the transposons are active in intact rice plants, they should be useful tools for tagging genes in studies of functional genomics.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号