首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The neonatal leptin surge, occurring from postnatal day (PND) 5 to 13 and peaking at PND9 in rodents, is important for the development of neuroendocrine circuits involved in metabolic control and reproductive function. We previously demonstrated that treatment with a leptin antagonist from PND 5 to 9, coincident with peak leptin levels in the neonatal surge, modified trophic factors and markers of cell turnover and neuronal maturation in the hypothalamus of peri-pubertal rats. The kisspeptin system and metabolic neuropeptide and hormone levels were also modified. Here our aim was to investigate if the timing of pubertal onset is altered by neonatal leptin antagonism and if the previously observed peripubertal modifications in hormones and neuropeptides persist into adulthood and affect male sexual behavior. To this end, male Wistar rats were treated with a pegylated super leptin antagonist (5 mg/kg, s.c.) from PND 5 to 9 and killed at PND102–103. The appearance of external signs of pubertal onset was delayed. Hypothalamic kiss1 mRNA levels were decreased in adult animals, but sexual behavior was not significantly modified. Although there was no effect on body weight or food intake, circulating leptin, insulin and triglyceride levels were increased, while hypothalamic leptin receptor, POMC and AgRP mRNA levels were decreased. In conclusion, alteration of the neonatal leptin surge can modify the timing of pubertal onset and have long-term effects on hypothalamic expression of reproductive and metabolic neuropeptides.  相似文献   

2.
Neuropeptide Y (NPY) is a 36-amino acid peptide which exerts several regulatory actions within peripheral and central nervous systems. Among NPY actions preclinical and clinical data have suggested that the anxiolytic and antidepressant actions of NPY may be related to its antagonist action on the hypothalamic-pituitary-adrenal (HPA) axis. The neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are proteins involved in the growth, survival and function of neurons. In addition to this, a possible role of neurotrophins, particularly BDNF, in HPA axis hyperactivation has been proposed. To characterize the effect of NPY on the production of neurotrophins in the hypothalamus we exposed young adult rats to NPY intraperitoneal administration for three consecutive days and then evaluated BDNF and NGF synthesis in this brain region. We found that NPY treatment decreased BDNF and increased NGF production in the hypothalamus. Given the role of neurotrophins in the hypothalamus, these findings, although preliminary, provide evidence for a role of NPY as inhibitor of HPA axis and support the idea that NPY might be involved in pathologies characterized by HPA axis dysfunctions.  相似文献   

3.
《Theriogenology》2016,85(9):1556-1564
The aim of this study was to assess whether changes in kisspeptin and GnRH levels could be attributed to sex steroids at puberty onset. We used the ovariectomy (OVX) model in rats treated with 17β-estradiol (E2; OVX + E2), or oil (OVX + oil), and in intact rats treated with E2 (intact + E2) or oil only (intact + oil) to determine gene expression changes of Kiss1 and Gnrh1 in the hypothalamus and protein expression of kisspeptin and GnRH in the different areas of the hypothalamus. In the intact + E2 and OVX + E2 rats on the day of the onset of puberty, GnRH-immunoreactive (ir) cell numbers decreased (P < 0.05) in the arcuate nucleus but were increased in the preoptic area; Kisspeptin-ir cells increased (P < 0.05) in the arcuate nucleus, periventricular nucleus, and preoptic area; no difference (P > 0.05) was found in the paraventricularis nucleus for GnRH-ir or kisspeptin-ir cells. Additionally, levels of Kiss1 and Gnrh1 messenger RNA in the hypothalamus were significantly higher (P < 0.05) in the OVX + E2 or intact + E2 rats than in the OVX + oil or intact + oil animals, respectively. In the OVX + oil rats, OVX significantly increased (P < 0.05) levels of Gnrh1 and Kiss1 messenger RNA and the expression of GnRH and kisspeptin in the hypothalamus compared to intact + oil animals. These results suggest that kisspeptin and GnRH play major roles in modulating the activity of estrogen circuits at the onset of puberty.  相似文献   

4.
Neurons that utilize melanin-concentrating hormone (MCH) as neuromodulator are located in the lateral hypothalamus and incerto-hypothalamic area. These neurons project throughout the central nervous system and play a role in sleep regulation. With the hypothesis that the MCHergic system function would be modified by the time of the day as well as by disruptions of the sleep-wake cycle, we quantified in rats the concentration of MCH in the cerebrospinal fluid (CSF), the expression of the MCH precursor (Pmch) gene in the hypothalamus, and the expression of the MCH receptor 1 (Mchr1) gene in the frontal cortex and hippocampus. These analyses were performed during paradoxical sleep deprivation (by a modified multiple platform technique), paradoxical sleep rebound and chronic sleep restriction, both at the end of the active (dark) phase (lights were turned on at Zeitgeber time zero, ZT0) and during the inactive (light) phase (ZT8).We observed that in control condition (waking and sleep ad libitum), Mchr1 gene expression was larger at ZT8 (when sleep predominates) than at ZT0, both in frontal cortex and hippocampus.In addition, compared to control, disturbances of the sleep–wake cycle produced the following effects: paradoxical sleep deprivation for 96 and 120 h reduced the expression of Mchr1 gene in frontal cortex at ZT0. Sleep rebound that followed 96 h of paradoxical sleep deprivation increased the MCH concentration in the CSF also at ZT0. Twenty-one days of sleep restriction produced a significant increment in MCH CSF levels at ZT8. Finally, sleep disruptions unveiled day/night differences in MCH CSF levels and in Pmch gene expression that were not observed in control (undisturbed) conditions.In conclusion, the time of the day and sleep disruptions produced subtle modifications in the physiology of the MCHergic system.  相似文献   

5.
Neuropeptide Y (NPY) is involved in the regulation of emotionality including fear and anxiety, which modulate autonomic control of cardiovascular function. We therefore investigated the central effects of porcine NPY, selective Y1, Y2 and Y5 receptor agonists and a Y1 receptor antagonist on heart rate (HR) and HR variability in freely moving mice using auditory fear conditioning. Intracerebroventricular (i.c.v.) injections were applied 15 min before the tone-dependent memory test. NPY dose-dependently induced bradycardia associated with decreased HR variability, and blunted the stress-induced tachycardic response. The selective Y1 receptor antagonist BIBO 3304 blocked the NPY- and Y1-receptor agonist-induced suppression of conditioned tachycardia without affecting basal HR. The tachycardia elicited by both conditioned and unconditioned stressor was effectively attenuated by the Y1 receptor agonist. These results suggest a specific contribution of Y1, but not Y2 and Y5 receptors, to modulation of emotional responses most likely unrelated to impairment or modulation of memory. The NPY-induced bradycardia is attributed to not yet characterized NPY receptor subtypes other than Y1, Y2 and Y5, or a complex receptor interaction. In conclusion, NPY mediates central inhibition of sympathetic outflow, potentially coupled with attenuation of parasympathetic tone, i.e., mechanisms that may be associated with the reported anxiolytic action.  相似文献   

6.
Kiss1 mRNA and its corresponding peptide products, kisspeptins, are expressed in two restricted brain areas of rodents, the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (ARC). The concentration of mature kisspeptins may not directly correlate with Kiss1 mRNA levels, because mRNA translation and/or posttranslational modification, degradation, transportation and release of kisspeptins could be regulated independently of gene expression, and there may thus be differences in kisspeptin expression even in species with similar Kiss1 mRNA profiles. We measured and compared kisspeptin-immunoreactivity in both nuclei and both sexes of rats and mice and quantified kisspeptin-immunoreactive nerve fibers. We also determined Kiss1 mRNA levels and measured kisspeptin-immunoreactivity in colchicine pretreated rats. Overall, we find higher levels of kisspeptin-immunoreactivity in the mouse compared to the rat, independently of brain region and gender. In the female mouse AVPV high numbers of kisspeptin-immunoreactive neurons were present, while in the rat, the female AVPV displays a similar number of kisspeptin-immunoreactive neurons compared to the level of Kiss1 mRNA expressing cells, only after axonal transport inhibition. Interestingly, the density of kisspeptin innervation in the anterior periventricular area was higher in female compared to male in both species. Species differences in the ARC were evident, with the mouse ARC containing dense fibers, while the rat ARC contains clearly discernable cells. In addition, we show a marked sex difference in the ARC, with higher kisspeptin levels in females. These findings show that the translation of Kiss1 mRNA and/or the degradation/transportation/release of kisspeptins are different in mice and rats.  相似文献   

7.
We investigated the role of endogenous neuropeptide Y (NPY) system in nicotine-mediated improvement of learning and memory in rat model of Alzheimer's disease (AD). Intracerebroventricular (icv) colchicine treatment induced AD-like condition in rats and showed increased escape latency (decreased learning), and amnesic condition in probe test in Morris water maze. In these rats, nicotine (0.5mg/kg, intraperitoneal), NPY (100 ng/rat, icv) or NPY Y1 receptor agonist [Leu(31), Pro(34)]-NPY (0.04 ng/rat, icv) decreased escape latency by 54.76%, 55.81% and 44.18%, respectively, on day 4 of the acquisition. On the other hand, selective NPY Y1 receptor antagonist, BIBP3226 (icv) produced opposite effect (44.18%). In the probe test conducted at 24h time point, nicotine, NPY or [Leu(31), Pro(34)]-NPY increased the time spent by 72.72%, 44.11% and 26.47%, respectively; while BIBP3226 caused reduction (8.82%). It seems that while NPY or [Leu(31), Pro(34)]-NPY potentiated, BIBP3226 attenuated the learning and memory enhancing effects of nicotine. Brains of colchicine treated rats showed significant reduction in NPY-immunoreactivity in the nucleus accumbens shell (cells 62.23% and fibers 50%), bed nucleus of stria terminalis (fibers 71.58%), central nucleus of amygdala (cells 74.33%), arcuate nucleus (cells 70.97% and fibers 69.65%) and dentate gyrus (cells 58.54%). However, in these rats nicotine treatment for 4 days restored NPY-immunoreactivity to the control level. We suggest that NPY, perhaps acting via NPY Y1 receptors, might interact with the endogenous cholinergic system and play a role in improving the learning and memory processes in the rats with AD-like condition.  相似文献   

8.
The establishment of endometrial receptivity is a prerequisite for successful pregnancy, which is controlled by a complex mechanism. MicroRNAs (miRNAs) are small non-coding RNAs that have emerged as important regulators of gene expression. However, the contribution of miRNAs in endometrial receptivity is still unknown. Here we used rhesus monkey as an animal model and compared the endometrial miRNA expression profiles during early-secretory (pre-receptive) phase and mid-secretory (receptive) phase by deep sequencing. A set of differentially expressed miRNAs were identified, 8 of which were selected and validated using quantitative RT-PCR. To facilitate the prediction of their target genes, the 3'-UTRome was also determined using tag sequencing of mRNA 3'-termini. Surprisingly, about 50% of the 10,677 genes expressed in the rhesus monkey endometrium exhibited alternative 3'-UTRs. Of special interest, the progesterone receptor (PGR) gene, which is necessary for endometrial receptivity, processes an ultra long 3'-UTR (~10 kb) along with a short variant (~2.5 kb). Evolutionary analysis showed that the 3'-UTR sequences of PGR are poorly conserved between primates and rodents, suggesting a species-biased miRNA binding pattern. We further demonstrated that PGR is a valid target of miR-96 in rhesus monkey and human but not in rodents, whereas the regulation of PGR by miR-375 is rhesus monkey-specific. Additionally, we found that miR-219-5p regulates PGR expression through a primate-specific long non-coding RNA immediately downstream of the PGR locus. Our study provides new insights into the molecular mechanisms underlying endometrial receptivity and presents intriguing species-specific regulatory roles of miRNAs.  相似文献   

9.
10.
The 24h changes of glutamate (GLU) and aspartate (ASP) were studied in the median eminence (ME) and hypothalamic areas. It was analyzed whether prolactin may change their daily patterns. The hypothalamic concentration of these amino acids was measured by high-performance liquid chromatography (HPLC) with fluorometric detection. Plasma prolactin levels increased over the 24h light-dark cycle after pituitary grafting compared to controls, and its circadian rhythm was disrupted. In controls, aspartate and glutamate in the hypothalamic areas studied followed a specific daily variation or showed no rhythmicity. In the median eminence, hyperprolactinemia seem to phase advance the aspartate or glutamate peaks from 16:00 to 12:00. In the mediobasal hypothalamus, hyperprolactinemia altered daily changes of aspartate and significantly decreased its concentration. Also, it seems to delay the nocturnal glutamate peak compared to controls. In the posterior hypothalamus, hyperprolactinemia did not change aspartate and glutamate concentrations and their daily changes, although it increased the glutamine concentration. These data show the existence of 24h changes of amino acid concentration in three of the hypothalamic regions studied. Increased plasma prolactin levels differentially affected these patterns depending on the hypothalamic area analyzed. (Chronobiology International, 17(5), 631-643, 2000)  相似文献   

11.
Primeaux SD 《Peptides》2011,32(6):1270-1275
Pyroglutamylated arginine-phenylalanineamide peptide (QRFP) is a neuropeptide involved in feeding behavior. Central administration of QRFP selectively increases the intake of a high fat diet in male rats. QRFP administration also stimulates the hypothalamic-pituitary-gonadal axis via gonadotrophin-releasing hormone in male and female rats. Prepro-QRFP mRNA is expressed in localized regions of the mediobasal hypothalamus which are abundant in neurotransmitters, neuropeptides and receptor systems important for food intake regulation and reproductive behaviors. The current experiments were conducted to investigate the effects of centrally administered QRFP-26 on the intake of a high fat diet (HFD, 60% kcal from fat) in female rats and to investigate alterations in hypothalamic prepro-QRFP and its receptors, GPR130a and GPR103b, mRNA levels over the estrous cycle. In Experiment 1, female rats were administered QRFP-26 (intracerebroventricular; 0.3 nmol, 0.5 nmol, 1.0 nmol) in rats consuming either a HFD or a low fat diet. All doses of QRFP-26 selectively increased the intake of the HFD in female rats. These data suggest that QRFP-26 regulates the intake of energy dense foods in female rats, which is similar to previous findings in male rats. In Experiment 2, hypothalamic levels of prepro-QRFP mRNA and its receptors were assessed during diestrus, proestrus, or estrus. The level of prepro-QRFP mRNA in the ventromedial/arcuate nucleus (VMH/ARC) of the hypothalamus was increased during proestrus, which suggests that endogenous estrogen levels regulate QRFP expression in the VMH/ARC. These data suggest that QRFP may play a role in coordinating feeding behaviors with reproductive function when energy demand is increased.  相似文献   

12.
Basal serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) and the responsiveness of these hormones to a challenge dose of luteinizing hormone releasing hormone (LHRH), were determined in juvenile, pubertal, and adult rhesus monkeys. The monkey gonadotrophins were analyzed using RIA reagents supplied by the World Health Organization (WHO) Special Programme of Human Reproduction. The FSH levels which were near the assay sensitivity in immature monkeys (2.4 +/- 0.8 ng/ml) showed a discernible increase in pubertal animals (6.4 +/- 1.8 ng/ml). Compared to other two age groups, the serum FSH concentration was markedly higher (16.1 +/- 1.8 ng/ml) in adults. Serum LH levels were below the detectable limits of the assay in juvenile monkeys but rose to 16.2 +/- 3.1 ng/ml in pubertal animals. When compared to pubertal animals, a two-fold increase in LH levels paralleled changes in serum LH during the three developmental stages. Response of serum gonadotrophins and T levels to a challenge dose of LHRH (2.5 micrograms; i.v.) was variable in the different age groups. The present data suggest: an asynchronous rise of FSH and LH during the pubertal period and a temporal correlation between the testicular size and FSH concentrations; the challenge dose of LHRH, which induces a significant rise in serum LH and T levels, fails to elicit an FSH response in all the three age groups; and the pubertal as compared to adult monkeys release significantly larger quantities of LH in response to exogenous LHRH.  相似文献   

13.
14.
Summary The purpose of this study was to examine the development and distribution of neuropeptide Y-immunoreactive fibers in the neurohypophysis of the rhesus monkey (Macaca mulatta) throughout life and the relationship of these fibers to the hypothalamo-hypophyseal portal vasculature. In rhesus monkeys, which varied in age from fetal life to 34 years, neuropeptide Y-immunoreactive fibers were present at all ages examined. In adult monkeys, varicose neuropeptide Y-labeled fibers were concentrated in the upper infundibular stem in association with capillary loops of the portal vasculature and the long portal vessels. Other fibers travelled down the infundibular stem and were distributed at the junction of the lower infundibular stem and infundibular process in the vicinity of the short portal vessels. In the infundibular process, neuropeptide Y-immunoreactive fibers were concentrated along the border of the intermediate lobe. Other stained fibers were sparsely distributed in the infundibular process and were often associated with small vessels. Neuropeptide Y-immunoreactivity was also located in a few fibers and cells of the intermediate lobe. Very few labeled fibers were seen in the fetal neurohypophysis, but their number increased gradually during the first postnatal year. At two years of age, a high density of stained fibers was observed, especially in the infundibular process. The number of axons in the infundibular process was lower at 12 years and continued to decline until 34 years of age. Neuropeptide Y may modulate hormone release at these sites and may also be released directly into vessels in the infundibular process. The close association of neuropeptide Y-labeled fibers with capillaries of the portal vasculature strongly suggests that neuropeptide Y is released into the portal blood of monkeys throughout life and may influence hormone secretion from the anterior pituitary gland.  相似文献   

15.
Long-term administration of progesterone or allopregnanolone was previously shown to increase Y1 receptor gene expression in the medial amygdala of Y1R/LacZ transgenic mice, which harbor a construct comprising the murine Y1 receptor gene promoter and a lacZ reporter. We have now investigated the effects of physiological fluctuations in the cerebrocortical concentrations of neuroactive steroids during pregnancy on Y1R/LacZ transgene expression by quantitative histochemical analysis of beta-galactosidase activity. Cerebrocortical concentrations of progesterone and its metabolites allopregnanolone and allotetrahydrodeoxycorticosterone were increased on day 18 of pregnancy and had returned to control values 2 days after delivery. Transgene expression in the medial amygdala was also increased on day 18 of pregnancy and had returned to control values 2 days after delivery. Similar results were obtained after analysis of Y1R mRNA levels in the medial amygdala of pregnant mice by in situ hybridization. Administration of the 5alpha-reductase inhibitor finasteride to pregnant mice prevented both the increase in the cerebrocortical concentrations of neuroactive steroids as well as the increase in transgene expression. These data suggest that fluctuations in the brain concentrations of endogenous neuroactive steroids during pregnancy are associated with changes in Y1 receptor gene expression in the medial amygdala, further supporting a functional interaction between the GABAergic and NPY-Y1 receptor systems.  相似文献   

16.
《Developmental cell》2022,57(7):901-913.e4
  1. Download : Download high-res image (153KB)
  2. Download : Download full-size image
  相似文献   

17.
18.
Physiological and behavioral adjustments of small mammals are important strategies in response to variations in food availability. Although numerous of studies have been carried out in rodents, behavioral patterns in response to food deprivation and re-feeding (FD–RF) are still inconsistent. Here we examined effects of a 24 h FD followed by RF on general activity, serum leptin concentrations and gene expression of orexigenic and anorexigenic hypothalamic neuropeptides in striped hamsters (Cricetulus barabensis) with/without leptin supplements. The time spent on activity was increased by 2.5 fold in FD hamsters compared with controls fed ad libitum (P < 0.01). Body mass, fat mass as well as serum leptin concentrations were significantly decreased in FD hamsters in comparison with ad libitum controls, which were in parallel with hyperactivity. During re-feeding, leptin concentrations increased rapidly to pre-deprivation levels by 12 h, but locomotor activity decreased gradually and did not return to pre-deprivation levels until 5 days after re-feeding. Leptin administration to FD hamsters significantly attenuated the increased activity. Gene expression of hypothalamic neuropeptide Y (NPY) was upregulated in FD hamsters and fell down to control levels when hamsters were re-fed ad libitum, similar to that observed in activity behavior. Leptin supplement induced increases in serum leptin concentrations (184.1%, P < 0.05) in FD hamsters and simultaneously attenuated the increase in activity (45.8%, P < 0.05) and NPY gene expression (35%, P < 0.05). This may allow us to draw a more generalized conclusion that decreased leptin concentrations function as a starvation signal in animals under food shortage; to induce an increase in activity levels, leading animals to forage and/or migrate, and consequently increasing the chance of survival. Decreased concentrations of serum leptin in animals subjected to food shortage may induce an upregulation of gene expression of hypothalamus NPY, consequently driving a significant increase in foraging behavior.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号