首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 519 毫秒
1.
Clostridium difficile infection (CDI) is characterized by dysbiosis of the intestinal microbiota and a profound derangement in the fecal metabolome. However, the contribution of specific gut microbes to fecal metabolites in C. difficile-associated gut microbiome remains poorly understood. Using gas-chromatography mass spectrometry (GC-MS) and 16S rRNA deep sequencing, we analyzed the metabolome and microbiome of fecal samples obtained longitudinally from subjects with Clostridium difficile infection (n = 7) and healthy controls (n = 6). From 155 fecal metabolites, we identified two sterol metabolites at >95% match to cholesterol and coprostanol that significantly discriminated C. difficile-associated gut microbiome from healthy microbiota. By correlating the levels of cholesterol and coprostanol in fecal extracts with 2,395 bacterial operational taxonomic units (OTUs) determined by 16S rRNA sequencing, we identified 63 OTUs associated with high levels of coprostanol and 2 OTUs correlated with low coprostanol levels. Using indicator species analysis (ISA), 31 of the 63 coprostanol-associated bacteria correlated with health, and two Veillonella species were associated with low coprostanol levels that correlated strongly with CDI. These 65 bacterial taxa could be clustered into 12 sub-communities, with each community containing a consortium of organisms that co-occurred with one another. Our studies identified 63 human gut microbes associated with cholesterol-reducing activities. Given the importance of gut bacteria in reducing and eliminating cholesterol from the GI tract, these results support the recent finding that gut microbiome may play an important role in host lipid metabolism.  相似文献   

2.
Kashin-Beck disease (KBD) is a severe osteochondral disorder that may be driven by the interaction between genetic and environmental factors. We aimed to improve our understanding of the gut microbiota structure in KBD patients of different grades and the relationship between the gut microbiota and serum metabolites. Fecal and serum samples collected from KBD patients and normal controls (NCs) were used to characterize the gut microbiota using 16S rDNA gene and metabolomic sequencing via liquid chromatography-mass spectrometry (LC/MS). To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria in the KBD patients, metagenomic sequencing of fecal samples from grade I KBD, grade II KBD and NC subjects was performed. The KBD group was characterized by elevated levels of Fusobacteria and Bacteroidetes. A total of 56 genera were identified to be significantly differentially abundant between the two groups. The genera Alloprevotella, Robinsoniella, Megamonas, and Escherichia_Shigella were more abundant in the KBD group. Consistent with the 16S rDNA analysis at the genus level, most of the differentially abundant species in KBD subjects belonged to the genus Prevotella according to metagenomic sequencing. Serum metabolomic analysis identified some differentially abundant metabolites among the grade I and II KBD and NC groups that were involved in lipid metabolism metabolic networks, such as that for unsaturated fatty acids and glycerophospholipids. Furthermore, we found that these differences in metabolite levels were associated with altered abundances of specific species. Our study provides a comprehensive landscape of the gut microbiota and metabolites in KBD patients and provides substantial evidence of a novel interplay between the gut microbiome and metabolome in KBD pathogenesis.Subject terms: Metagenomics, Metabolomics  相似文献   

3.
The effects of the antibiotic vancomycin (2 x 100 mg/kg/day) on the gut microbiota of female mice (outbred NMRI strain) were studied, in order to assess the relative contribution of the gut microbiome to host metabolism. The host's metabolic phenotype was characterized using (1)H NMR spectroscopy of urine and fecal extract samples. Time-course changes in the gut microbiotal community after administration of vancomycin were monitored using 16S rRNA gene PCR and denaturing gradient gel electrophoresis (PCR-DGGE) analysis and showed a strong effect on several species, mostly within the Firmicutes. Vancomycin treatment was associated with fecal excretion of uracil, amino acids and short chain fatty acids (SCFAs), highlighting the contribution of the gut microbiota to the production and metabolism of these dietary compounds. Clear differences in gut microbial communities between control and antibiotic-treated mice were observed in the current study. Reduced urinary excretion of gut microbial co-metabolites phenylacetylglycine and hippurate was also observed. Regression of urinary hippurate and phenylacetylglycine concentrations against the fecal metabolite profile showed a strong association between these urinary metabolites and a wide range of fecal metabolites, including amino acids and SCFAs. Fecal choline was inversely correlated with urinary hippurate. Metabolic profiling, coupled with the metagenomic study of this antibiotic model, illustrates the close inter-relationship between the host and microbial "metabotypes", and will provide a basis for further experiments probing the understanding of the microbial-mammalian metabolic axis.  相似文献   

4.
Irritable bowel syndrome (IBS) is one of the functional gastrointestinal disorders characterized by chronic and/or recurrent symptoms of abdominal pain and irregular defecation. Changed gut microbiota has been proposed to mediate IBS; however, contradictory results exist, and IBS-specific microbiota, metabolites, and their interactions remain poorly understood. To address this issue, we performed metabolomic and metagenomic profiling of stool and serum samples based on discovery (n = 330) and validation (n = 101) cohorts. Fecal metagenomic data showed moderate dysbiosis compared with other diseases, in contrast, serum metabolites showed significant differences with greater power to distinguish IBS patients from healthy controls. Specifically, 726 differentially abundant serum metabolites were identified, including a cluster of fatty acyl-CoAs enriched in IBS. We further identified 522 robust associations between differentially abundant gut bacteria and fecal metabolites, of which three species including Odoribacter splanchnicus, Escherichia coli, and Ruminococcus gnavus were strongly associated with the low abundance of dihydropteroic acid. Moreover, dysregulated tryptophan/serotonin metabolism was found to be correlated with the severity of IBS depression in both fecal and serum metabolomes, characterized by a shift in tryptophan metabolism towards kynurenine production. Collectively, our study revealed serum/fecal metabolome alterations and their relationship with gut microbiome, highlighted the massive alterations of serum metabolites, which empower to recognize IBS patients, suggested potential roles of metabolic dysregulation in IBS pathogenesis, and offered new clues to understand IBS depression comorbidity. Our study provided a valuable resource for future studies, and would facilitate potential clinical applications of IBS featured microbiota and/or metabolites.Subject terms: Clinical microbiology, Colitis, Metagenomics  相似文献   

5.
Cachexia is associated with decreased survival in cancer patients and has a prevalence of up to 80%. The etiology of cachexia is poorly understood, and limited treatment options exist. Here, we investigated the role of the human gut microbiome in cachexia by integrating shotgun metagenomics and plasma metabolomics of 31 lung cancer patients. The cachexia group showed significant differences in the gut microbial composition, functional pathways of the metagenome, and the related plasma metabolites compared to non-cachectic patients. Branched-chain amino acids (BCAAs), methylhistamine, and vitamins were significantly depleted in the plasma of cachexia patients, which was also reflected in the depletion of relevant gut microbiota functional pathways. The enrichment of BCAAs and 3-oxocholic acid in non-cachectic patients were positively correlated with gut microbial species Prevotella copri and Lactobacillus gasseri, respectively. Furthermore, the gut microbiota capacity for lipopolysaccharides biosynthesis was significantly enriched in cachectic patients. The involvement of the gut microbiome in cachexia was further observed in a high-performance machine learning model using solely gut microbial features. Our study demonstrates the links between cachectic host metabolism and specific gut microbial species and functions in a clinical setting, suggesting that the gut microbiota could have an influence on cachexia with possible therapeutic applications.Subject terms: Microbiome, Metagenomics, Next-generation sequencing, Metabolomics  相似文献   

6.
Since the outset of the coronavirus disease 2019 (COVID-19) pandemic, the gut microbiome in COVID-19 has garnered substantial interest, given its significant roles in human health and pathophysiology. Accumulating evidence is unveiling that the gut microbiome is broadly altered in COVID-19, including the bacterial microbiome, mycobiome, and virome. Overall, the gut microbial ecological network is significantly weakened and becomes sparse in patients with COVID-19, together with a decrease in gut microbiome diversity. Beyond the existence of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the gut microbiome of patients with COVID-19 is also characterized by enrichment of opportunistic bacteria, fungi, and eukaryotic viruses, which are also associated with disease severity and presentation. Meanwhile, a multitude of symbiotic bacteria and bacteriophages are decreased in abundance in patients with COVID-19. Such gut microbiome features persist in a significant subset of patients with COVID-19 even after disease resolution, coinciding with ‘long COVID’ (also known as post-acute sequelae of COVID-19). The broadly-altered gut microbiome is largely a consequence of SARS-CoV-2 infection and its downstream detrimental effects on the systemic host immunity and the gut milieu. The impaired host immunity and distorted gut microbial ecology, particularly loss of low-abundance beneficial bacteria and blooms of opportunistic fungi including Candida, may hinder the reassembly of the gut microbiome post COVID-19. Future investigation is necessary to fully understand the role of the gut microbiome in host immunity against SARS-CoV-2 infection, as well as the long-term effect of COVID-19 on the gut microbiome in relation to the host health after the pandemic.  相似文献   

7.
《遗传学报》2022,49(3):240-248
Gut microbiota plays an important role in coronary heart disease, but its compositional and functional changes in unstable angina (UA) remain unexplored. We performed metagenomic sequencing of 133 newly diagnosed UA patients and 133 sex- and age-matched controls, and profiled the fecal and plasma metabolomes in 30 case-control pairs. The alpha diversity of gut microbiota was increased in UA patients: the adjusted odds ratios (ORs) per standard deviation increase in Shannon and Simpson indices were 1.30 (95% confidence interval, 1.01–1.70) and 1.36 (1.05–1.81), respectively. Two common species (depleted Klebsiella pneumoniae and enriched Streptococcus parasanguinis; P ≤ 0.002) and three rare species (depleted Weissella confusa, enriched Granulicatella adiacens and Erysipelotrichaceae bacterium 6_1_45; P ≤ 0.005) were associated with UA. The UA-associated gut microbiota was depleted in the pathway of L-phenylalanine degradation (P = 0.001), primarily contributed by Klebsiella pneumoniae. Consistently, we found increased circulating phenylalanine in UA patients (OR = 2.76 [1.17–8.16]). Moreover, Streptococcus parasanguinis was negatively correlated with fecal citrulline (Spearman's rs = ?0.470, P = 0.009), a metabolite depleted in UA patients (OR = 0.26 [0.08–0.63]). These findings are informative to help understand the metabolic connection between gut microbiota and UA.  相似文献   

8.
BackgroundThere is an abundant link between the gut microbiota and human health and it plays a critical role in the clinic. It is recognized that microbial dysregulation contributes to the pathogenesis of tuberculosis (TB) but the underlying mechanisms remain unclear. In this study, we investigated the association of gut microbiome composition with TB as well as its possible roles in the development of this disease.MethodsFecal samples were collected from 10 TB patients and 20 healthy control samples. DNA extracted from fecal samples was subjected to 16S rDNA gene sequencing analysis on the Illumina MiSeq platform.ResultsCompared with healthy control samples, the gut microbiome of patients with TB was characterized by the decreased Alpha diversity. Perhaps, the decrease of microbial diversity which results in microbial dysregulation is the reason for clinical patients with more symptoms. The PTB group showed the most unique microbiota by higher abundance of Bifidobacteriaceae, Bifidobacteriales, Coriobacteriaceae, Coriobacteriales, Actinobacteria, Caulobacteraceae, Phyllobacteriaceae, Rhizobiales, Burkholderiaceae, Burkholderiaceae. Inflammatory status in PTB patients may be associated with the increased abundance of Clostridia and decreased abundance of Prevotella. We found that the abundance of Solobacterium and Actinobacteria was higher in the patients. There were 4 significant differences (p < 0.05) in the two groups which belonged to four metabolic categories, including endocytosis, phosphotransferase system (PTS), toluene degradation, and amoebiasis.ConclusionWe applied the approach of metagenomic sequencing to characterize the features of gut microbiota in PTB patients. The present study provided a detailed analysis of the characterization of the gut microbiota in patients based on the clinic. According to the metagenome analysis, our results indicated that the gut microbiota in PTB patients was significantly different from healthy control samples as characterized by the bacteria and metabolic pathway. The richness of the gut microbiota in patients was revealed. It was hypothesized that the above-mentioned changes of the gut microbiota could exert an impact on the development of PTB through the downstream regulation of the immune status of the host by way of the gut–lung axis.  相似文献   

9.
The epidemy of metabolic syndrome (MetS) is typically preceded by adoption of a “risky” lifestyle (e.g., dietary habit) among populations. Evidence shows that those with low socioeconomic status (SES) are at an increased risk for MetS. To investigate this, we recruited 123 obese subjects (body mass index [BMI] ≥ 30) from Chicago. Multi-omic data were collected to interrogate fecal microbiota, systemic markers of inflammation and immune activation, plasma metabolites, and plasma glycans. Intestinal permeability was measured using the sugar permeability testing. Our results suggest a heterogenous metabolic dysregulation among obese populations who are at risk of MetS. Systemic inflammation, linked to poor diet, intestinal microbiome dysbiosis, and gut barrier dysfunction may explain the development of MetS in these individuals. Our analysis revealed 37 key features associated with increased numbers of MetS features. These features were used to construct a composite metabolic-inflammatory (MI) score that was able to predict progression of MetS among at-risk individuals. The MI score was correlated with several markers of poor diet quality as well as lower levels of gut microbial diversity and abnormalities in several species of bacteria. This study reveals novel targets to reduce the burden of MetS and suggests access to healthy food options as a practical intervention.  相似文献   

10.
PurposeTo investigated the changes of gut microbiome and fecal metabolome during anti-tuberculosis chemotherapy with isoniazid (H)-rifampin (R)-pyrazinamide (Z)-ethambutol (E).Patients and methods(1) In this study, we recruited 168 stool specimens from 49 healthy volunteers without M. tuberculosis (Mtb), 30 healthy volunteers with latently infected by Mtb, 41 patients with active tuberculosis (ATB), 28 patients with 2-month HRZE treatment and 20 patients with 2-month HRZE followed by 4-month HR treatment. (2) We used 16S rRNA sequencing and an untargeted Liquid Chromatograph Mass Spectrometer-based metabolomics to investigate the changes of gut microbiome and the alteration of fecal metabolome, respectively, during anti-TB chemotherapy.ResultsMtb infection can reduce the diversity of intestinal flora of ATB patients and change their taxonomic composition, while the diversity of intestinal flora of ATB patients were restored during anti-TB chemotherapy. Especially, family Veillonellacea and Bateroidaceae and their genera Veillonella and Bacteroides significantly increased in the gut microbiota during anti-TB chemotherapy. Additionally, Mtb infection dynamically regulates fecal metabolism in ATB patients during anti-TB chemotherapy. Interestingly, the altered abundance of fecal metabolites correlated with the altered gut microbiota, especially the change of gut Clostridium, Bacteroides and Prevotella was closely related to the change of fecal metabolites such as Trans-4-Hydroxy-L-proline and Genistein caused by Mtb infection or anti-TB chemotherapy.ConclusionAnti-TB chemotherapy with HRZE can disrupt both gut microbiotas and metabolome in ATB patients. Some specific genera and metabolites are depleted or enriched during anti-TB chemotherapy. Therefore, revealing potential relevance between gut microbiota and anti-TB chemotherapy will provide potential biomarkers for evaluating the therapeutic efficacy in ATB patients.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12088-022-01003-2.  相似文献   

11.
Although the critical role that our gastrointestinal microbes play in host physiology is now well established, we know little about the factors that influenced the evolution of primate gut microbiomes. To further understand current gut microbiome configurations and diet–microbe co-metabolic fingerprints in primates, from an evolutionary perspective, we characterized fecal bacterial communities and metabolomic profiles in 228 fecal samples of lowland and mountain gorillas (G. g. gorilla and G. b. beringei, respectively), our closest evolutionary relatives after chimpanzees. Our results demonstrate that the gut microbiomes and metabolomes of these two species exhibit significantly different patterns. This is supported by increased abundance of metabolites and bacterial taxa associated with fiber metabolism in mountain gorillas, and enrichment of markers associated with simple sugar, lipid and sterol turnover in the lowland species. However, longitudinal sampling shows that both species'' microbiomes and metabolomes converge when hosts face similar dietary constraints, associated with low fruit availability in their habitats. By showing differences and convergence of diet–microbe co-metabolic fingerprints in two geographically isolated primate species, under specific dietary stimuli, we suggest that dietary constraints triggered during their adaptive radiation were potential factors behind the species-specific microbiome patterns observed in primates today.  相似文献   

12.

Background

Host-associated microbes comprise an integral part of animal digestive systems and these interactions have a long evolutionary history. It has been hypothesized that the gastrointestinal microbiome of humans and other non-human primates may have played significant roles in host evolution by facilitating a range of dietary adaptations. We have undertaken a comparative sequencing survey of the gastrointestinal microbiomes of several non-human primate species, with the goal of better understanding how these microbiomes relate to the evolution of non-human primate diversity. Here we present a comparative analysis of gastrointestinal microbial communities from three different species of Old World wild monkeys.

Methodology/Principal Findings

We analyzed fecal samples from three different wild non-human primate species (black-and-white colobus [Colubus guereza], red colobus [Piliocolobus tephrosceles], and red-tailed guenon [Cercopithecus ascanius]). Three samples from each species were subjected to small subunit rRNA tag pyrosequencing. Firmicutes comprised the vast majority of the phyla in each sample. Other phyla represented were Bacterioidetes, Proteobacteria, Spirochaetes, Actinobacteria, Verrucomicrobia, Lentisphaerae, Tenericutes, Planctomycetes, Fibrobacateres, and TM7. Bray-Curtis similarity analysis of these microbiomes indicated that microbial community composition within the same primate species are more similar to each other than to those of different primate species. Comparison of fecal microbiota from non-human primates with microbiota of human stool samples obtained in previous studies revealed that the gut microbiota of these primates are distinct and reflect host phylogeny.

Conclusion/Significance

Our analysis provides evidence that the fecal microbiomes of wild primates co-vary with their hosts, and that this is manifested in higher intraspecies similarity among wild primate species, perhaps reflecting species specificity of the microbiome in addition to dietary influences. These results contribute to the limited body of primate microbiome studies and provide a framework for comparative microbiome analysis between human and non-human primates as well as a comparative evolutionary understanding of the human microbiome.  相似文献   

13.
Uveitis (UVT), an inflammatory disease of the eye significantly contributes to vision impairment and blindness. Uveitis is associated with systemic infectious and autoimmune diseases, but in most cases, the aetiology remains unidentified. Dysbiosis in the gut microbiome has been implicated in autoimmune diseases, inflammatory diseases, cancers and mental disorders. In a mice model of autoimmune UVT, it was observed that manipulating the gut microbiome reduces the inflammation and disease severity. Further, alterations in the bacterial gut microbiome and their metabolites were reported in UVT patients from a Chinese cohort. Hence, it is worth comparing the bacterial gut microbiome of UVT patients with that of healthy controls (HC) to ascertain whether dysbiosis of the gut microbiome has implications in UVT. Our analyses showed reduced diversity of several anti-inflammatory organisms including Faecalibacterium, Bacteroides, Lachnospira, Ruminococcus and members of Lachnospiraceae and Ruminococcaceae families, and enrichment of Prevotella (proinflammatory) and Streptococcus (pathogenic) OTUs in UVT microbiomes compared to HC. In addition, decrease in probiotic and antibacterial organisms was observed in UVT compared to HC microbiomes. Heatmap and PCoA plots also indicated significant variations in the microbiomes of UVT versus HC. This is the first study demonstrating dysbiosis in the gut bacterial communities of UVT patients in an Indian cohort and suggests a role of the gut microbiome in the pathophysiology of UVT.  相似文献   

14.
The bacteria that colonize the gastrointestinal tracts of mammals represent a highly selected microbiome that has a profound influence on human physiology by shaping the host''s metabolic and immune system activity. Despite the recent advances on the biological principles that underlie microbial symbiosis in the gut of mammals, mechanistic understanding of the contributions of the gut microbiome and how variations in the metabotypes are linked to the host health are obscure. Here, we mapped the entire metabolic potential of the gut microbiome based solely on metagenomics sequencing data derived from fecal samples of 124 Europeans (healthy, obese and with inflammatory bowel disease). Interestingly, three distinct clusters of individuals with high, medium and low metabolic potential were observed. By illustrating these results in the context of bacterial population, we concluded that the abundance of the Prevotella genera is a key factor indicating a low metabolic potential. These metagenome-based metabolic signatures were used to study the interaction networks between bacteria-specific metabolites and human proteins. We found that thirty-three such metabolites interact with disease-relevant protein complexes several of which are highly expressed in cells and tissues involved in the signaling and shaping of the adaptive immune system and associated with squamous cell carcinoma and bladder cancer. From this set of metabolites, eighteen are present in DrugBank providing evidence that we carry a natural pharmacy in our guts. Furthermore, we established connections between the systemic effects of non-antibiotic drugs and the gut microbiome of relevance to drug side effects and health-care solutions.  相似文献   

15.
The involvement of the gut microbiota in metabolic disorders, and the ability of whole grains to affect both host metabolism and gut microbial ecology, suggest that some benefits of whole grains are mediated through their effects on the gut microbiome. Nutritional studies that assess the effect of whole grains on both the gut microbiome and human physiology are needed. We conducted a randomized cross-over trial with four-week treatments in which 28 healthy humans consumed a daily dose of 60 g of whole-grain barley (WGB), brown rice (BR), or an equal mixture of the two (BR+WGB), and characterized their impact on fecal microbial ecology and blood markers of inflammation, glucose and lipid metabolism. All treatments increased microbial diversity, the Firmicutes/Bacteroidetes ratio, and the abundance of the genus Blautia in fecal samples. The inclusion of WGB enriched the genera Roseburia, Bifidobacterium and Dialister, and the species Eubacterium rectale, Roseburia faecis and Roseburia intestinalis. Whole grains, and especially the BR+WGB treatment, reduced plasma interleukin-6 (IL-6) and peak postprandial glucose. Shifts in the abundance of Eubacterium rectale were associated with changes in the glucose and insulin postprandial response. Interestingly, subjects with greater improvements in IL-6 levels harbored significantly higher proportions of Dialister and lower abundance of Coriobacteriaceae. In conclusion, this study revealed that a short-term intake of whole grains induced compositional alterations of the gut microbiota that coincided with improvements in host physiological measures related to metabolic dysfunctions in humans.  相似文献   

16.
The human gut microbiota is a complex system that is essential to the health of the host. Increasing evidence suggests that the gut microbiota may play an important role in the pathogenesis of colorectal cancer (CRC). In this study, we used pyrosequencing of the 16S rRNA gene V3 region to characterize the fecal microbiota of 19 patients with CRC and 20 healthy control subjects. The results revealed striking differences in fecal microbial population patterns between these two groups. Partial least-squares discriminant analysis showed that 17 phylotypes closely related to Bacteroides were enriched in the gut microbiota of CRC patients, whereas nine operational taxonomic units, represented by the butyrate-producing genera Faecalibacterium and Roseburia, were significantly less abundant. A positive correlation was observed between the abundance of Bacteroides species and CRC disease status (R?=?0.462, P?=?0.046?<?0.5). In addition, 16 genera were significantly more abundant in CRC samples than in controls, including potentially pathogenic Fusobacterium and Campylobacter species at genus level. The dysbiosis of fecal microbiota, characterized by the enrichment of potential pathogens and the decrease in butyrate-producing members, may therefore represent a specific microbial signature of CRC. A greater understanding of the dynamics of the fecal microbiota may assist in the development of novel fecal microbiome-related diagnostic tools for CRC.  相似文献   

17.
The gut microbiome has emerged as a critical regulator of human physiology. Deleterious changes to the composition or number of gut bacteria, commonly referred to as gut dysbiosis, has been linked to the development and progression of numerous diet-related diseases, including cardiovascular disease (CVD). Most CVD risk factors, including aging, obesity, certain dietary patterns, and a sedentary lifestyle, have been shown to induce gut dysbiosis. Dysbiosis is associated with intestinal inflammation and reduced integrity of the gut barrier, which in turn increases circulating levels of bacterial structural components and microbial metabolites that may facilitate the development of CVD. The aim of the current review is to summarize the available data regarding the role of the gut microbiome in regulating CVD function and disease processes. Particular emphasis is placed on nutrition-related alterations in the microbiome, as well as the underlying cellular mechanisms by which the microbiome may alter CVD risk.  相似文献   

18.
Bamboo rats (Rhizomys pruinosus) are among the few mammals that lives on a bamboo-based diet which is mainly composed of lignocellulose. However, the mechanisms of adaptation of their gut microbiome and metabolic systems in the degradation of lignocellulose are largely unknown. Here, we conducted a multi-omics analysis on bamboo rats to investigate the interaction between their gut microbiomes and metabolic systems in the pre- and post-weaning periods, and observed significant relationships between dietary types, gut microbiome, serum metabolome and host gene expression. For comparison, published gut microbial data from the famous bamboo-eating giant panda (Ailuropoda melanoleuca) were also used for analysis. We found that the adaptation of the gut microbiome of the bamboo rat to a lignocellulose diet is related to a member switch in the order Bacteroidales from family Bacteroidaceae to family Muribaculaceae, while for the famous bamboo-eating giant panda, several aerobes and facultative anaerobes increase after weaning. The conversion of bacteria with an increased relative abundance in bamboo rats after weaning enriched diverse carbohydrate-active enzymes (CAZymes) associated with lignocellulose degradation and functionally enhanced the biosynthesis of amino acids and B vitamins. Meanwhile, the circulating concentration of short-chain fatty acids (SCFAs) derived metabolites and the metabolic capacity of linoleic acid in the host were significantly elevated. Our findings suggest that fatty acid metabolism, including linoleic acid and SCFAs, are the main energy sources for bamboo rats in response to the low-nutrient bamboo diet.Subject terms: Metagenomics, Bacterial evolution  相似文献   

19.
《遗传学报》2021,48(11):972-983
Understanding the micro-coevolution of the human gut microbiome with host genetics is challenging but essential in both evolutionary and medical studies. To gain insight into the interactions between host genetic variation and the gut microbiome, we analyzed both the human genome and gut microbiome collected from a cohort of 190 students in the same boarding college and representing 3 ethnic groups, Uyghur, Kazakh, and Han Chinese. We found that differences in gut microbiome were greater between genetically distinct ethnic groups than those genetically closely related ones in taxonomic composition, functional composition, enterotype stratification, and microbiome genetic differentiation. We also observed considerable correlations between host genetic variants and the abundance of a subset of gut microbial species. Notably, interactions between gut microbiome species and host genetic variants might have coordinated effects on specific human phenotypes. Bacteroides ovatus, previously reported to modulate intestinal immunity, is significantly correlated with the host genetic variant rs12899811 (meta-P = 5.55 × 10−5), which regulates the VPS33B expression in the colon, acting as a tumor suppressor of colorectal cancer. These results advance our understanding of the micro-coevolution of the human gut microbiome and their interactive effects with host genetic variation on phenotypic diversity.  相似文献   

20.
High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are limited and mostly focused on pathogenic bacteria. Therefore, here we aimed to define systemic changes in gut microbiome associated with autism and autism-related GI problems. We recruited 20 neurotypical and 20 autistic children accompanied by a survey of both autistic severity and GI symptoms. By pyrosequencing the V2/V3 regions in bacterial 16S rDNA from fecal DNA samples, we compared gut microbiomes of GI symptom-free neurotypical children with those of autistic children mostly presenting GI symptoms. Unexpectedly, the presence of autistic symptoms, rather than the severity of GI symptoms, was associated with less diverse gut microbiomes. Further, rigorous statistical tests with multiple testing corrections showed significantly lower abundances of the genera Prevotella, Coprococcus, and unclassified Veillonellaceae in autistic samples. These are intriguingly versatile carbohydrate-degrading and/or fermenting bacteria, suggesting a potential influence of unusual diet patterns observed in autistic children. However, multivariate analyses showed that autism-related changes in both overall diversity and individual genus abundances were correlated with the presence of autistic symptoms but not with their diet patterns. Taken together, autism and accompanying GI symptoms were characterized by distinct and less diverse gut microbial compositions with lower levels of Prevotella, Coprococcus, and unclassified Veillonellaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号