首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated sex specificities in the evolutionary processes shaping Y chromosome, autosomes, and mitochondrial DNA patterns of genetic structure in the Valais shrew (Sorex antinorii), a mountain dwelling species with a hierarchical distribution. Both hierarchical analyses of variance and isolation-by-distance analyses revealed patterns of population structure that were not consistent across maternal, paternal, and biparentally inherited markers. Differentiation on a Y microsatellite was lower than expected from the comparison with autosomal microsatellites and mtDNA, and it was mostly due to genetic variance among populations within valleys, whereas the opposite was observed on other markers. In addition, there was no pattern of isolation by distance for the Y, whereas there was strong isolation by distance on mtDNA and autosomes. We use a hierarchical island model of coancestry dynamics to discuss the relative roles of the microevolutionary forces that may induce such patterns. We conclude that sex-biased dispersal is the most important driver of the observed genetic structure, but with an intriguing twist: it seems that dispersal is strongly male biased at large spatial scale, whereas it is mildly biased in favor of females at local scale. These results add to recent reports of scale-specific sex-biased dispersal patterns, and emphasize the usefulness of the Y chromosome in conjunction with mtDNA and autosomes to infer sex specificities.  相似文献   

2.
The chronology of DNA replication was studied in cultured somatic cells of three stocks of Drosophila melanogaster marked by the presence of translocations between the Y chromosome and the X, 2nd and 3rd autosome, respectively. In all translocations the Y chromosome is split into two portions differently located. The different Y chromosome segments are always replicating later than euchromatin, but their timing of replication varies independently of the eu- or heterochromatic nature of the adjoining chromosome sections. This variation could be formally described as a position effect without spreading effect. It is concluded that there is evidence for the existence of factors controlling the timing of replication of the Y which are located on the chromosome itself.This is contribution No. 497 of the Euratom Biology Division. In Milano and Pavia this work was supported in part by grants of the Consiglio Nazionale delle Ricerche, Roma.  相似文献   

3.
DNA methylation status in somatic and placenta cells of cloned cats   总被引:1,自引:0,他引:1  
We recently produced 11 cloned kittens by somatic cell nuclear transfer (SCNT) using fibroblasts from a feline fetus (donor A, three kittens), an adult domestic cat (donor B, one kitten), and a deaf adult Turkish Angora cat (donor C, seven kittens). Two kittens were stillborn and three died a month after birth. The donor C-derived kittens did not share their donor's eye color or deafness. To test whether this and the low cloning success rate are due to epigenetic modifications, we compared the methylation of somatic and placental cells from the cloned cats and domestic normal cats by bisulfite mutagenesis sequencing analysis. The DNA methylation of somatic cells from the cloned kittens ranged from 78.0% to 88.9%, and did not differ significantly depending on whether they were stillborn, died early after birth, or were healthy. Donors B and C showed similar levels of methylation (77.0% and 79.1%, respectively), as did somatic cells from normal domestic and Turkish Angora cats (range, 75.7-88.0%). However, donor A showed less methylation (70.6%) than the somatic cells from the kittens derived from it (range, 82.2-88.9%). Moreover, placental cells from three donor C-derived kittens showed significantly higher DNA methylation (range, 76.7-80.5%) than placental cells from normal domestic cats (range, 64.2-74.9%). Thus, methylation of satellite regions in somatic cells may not be responsible for the stillbirth, early death, or different eye and hearing attributes of cloned cats. However, hypermethylation in the placenta of cloned cats may be responsible for low success rates in cloning cats.  相似文献   

4.
Mammalian development is associated with considerable changes in global DNA methylation levels at times of genomic reprogramming. Normal DNA methylation is essential for development but, despite considerable advances in our understanding of the DNA methyltransferases, the reason that development fails when DNA methylation is deficient remains unclear. Furthermore, although much is known about the enzymes that cause DNA methylation, comparatively little is known about the mechanisms or significance of active demethylation in early development. In this review, we discuss the roles of the various DNA methyltransferases and their likely functions in development.  相似文献   

5.
Genetic variation of the Y chromosome in five Chibchan tribes (Bribri, Cabecar, Guaymi, Huetar, and Teribe) of Costa Rica and Panama was analyzed using six microsatellite loci (DYS19, DYS389A, DYS389B, DYS390, DYS391, and DYS393), the Y-chromosome-specific alphoid system (alphah), the Y-chromosome Alu polymorphism (YAP), and a specific pre-Columbian transition (C-->T) (M3 marker) in the DYS 199 locus that defines the Q-M3 haplogroup. Thirty-nine haplotypes were found, resulting in a haplotype diversity of 0.937. The Huetar were the most diverse tribe, probably because of their high levels of interethnic admixture. A candidate founder Y-chromosome haplotype was identified (15.1% of Chibchan chromosomes), with the following constitution: YAP-, DYS199*T, alphah-II, DYS19*13, DYS389A*17, DYS389B*10, DYS390*24, DYS391*10, and DYS393*13. This haplotype is the same as the one described previously as one of the most frequent founder paternal lineages in native American populations. Analysis of molecular variance indicated that the between-population variation was smaller than the within-population variation, and the comparison with mtDNA restriction data showed no evidence of differential structuring between maternally and paternally inherited genes in the Chibchan populations. The mismatch-distribution approach indicated estimated coalescence times of the Y chromosomes of the Q-M3 haplogroup of 3,113 and 13,243 years before present; for the mtDNA-restriction haplotypes the estimated coalescence time was between 7,452 and 9,834 years before present. These results are compatible with the suggested time for the origin of the Chibchan group based on archeological, linguistic, and genetic evidence.  相似文献   

6.
The Y chromosome, a sex chromosome that only exists in males, has been ignored in traditional epigenetic association studies for multiple reasons. However, sex differences in aging‐related phenotypes and mortality could suggest a critical role of the sex chromosomes in the aging process. We obtained blood‐based DNA methylation data on the Y chromosome for 624 men from four cohorts and performed a chromosome‐wide epigenetic association analysis to detect Y‐linked CpGs differentially methylated over age and cross‐validated the significant CpGs in the four cohorts. We identified 40–219 significant CpG sites (false discovery rate <0.05) with >82% of them hypermethylated with increasing age, which is in strong contrast to the patterns reported on the autosomal chromosomes. Comparing the rate of change in the Y‐linked DNA methylation across cohorts that represent different age intervals revealed a trend of acceleration in DNA methylation with increasing age. The age‐dependent DNA methylation patterns on the Y chromosome were further examined for their association with all‐cause mortality with results suggesting that the predominant pattern of age‐related hypermethylation on the Y chromosome is associated with reduced risk of death.  相似文献   

7.
The Y chromosome of the mouse is decondensed in Sertoli cells   总被引:4,自引:0,他引:4  
The condensation of the Y chromosome in mouse cells was studied with two repetitive DNA probes, pY353/B and M34. Both DNA probes are specific to the Y chromosome and hybridize in situ along the whole chromosome. Due to the high resolution of the in situ hybridization technique with non-radioactive labeled DNA probes it was possible to observe the degree of condensation of the Y chromosome in the interphase cell nuclei of various somatic tissues and on testes preparations. The Sertoli cells were the only cell type in which the Y chromosome was always observed to be in a highly decondensed state. The decondensation of the Y chromosome in the Sertoli cells supports the view that the genetic activity of the Y chromosome is cell autonomous and opens the way to its molecular analysis.  相似文献   

8.
9.
宋红卫  安铁洙  朴善花  王春生 《遗传》2014,36(5):431-438
诱导多能干细胞(Induced pluripotent stem cell, iPS)技术提供了将终末分化的细胞逆转为多潜能干细胞的可能, 在干细胞基础理论研究和再生医学中具有重要意义。然而, 目前体细胞诱导重编程方法效率极低, 常发生不完全的重编程。研究表明, 在不完全重编程的细胞中存在体细胞的表观遗传记忆, 而DNA甲基化作为相对长期和稳定的表观遗传修饰, 是影响重编程效率和iPS细胞分化能力的重要因素之一。哺乳动物DNA甲基化是指胞嘧啶第五位碳原子上的甲基化修饰, 常发生于CpG位点。DNA甲基化能够调节体细胞特异基因和多能性基因的表达, 因此其在哺乳动物基因调控、胚胎发育和细胞重编程过程中发挥着重要作用。此外, 异常DNA甲基化可能导致iPS细胞基因印记的异常和X染色体的失活。文章重点围绕DNA甲基化的机制、分布特点、及其在体细胞诱导重编程中的作用进行了综述。  相似文献   

10.
鼠肝细胞癌变中DNA甲基化作用的研究   总被引:4,自引:0,他引:4  
Activity of DNA methylase and DNA methylation level were measured from normal mouse liver, mouse liver charged with H22a ascitic hepatoma and H22a ascitic hepatoma cell by measuring incorporation of H3-methyl. S-Adenosyl-3H-methyl-methionine (3H-SAM) was used as methyl donor. DNA methylation level of different cells were measured by HP-LC. DNA methylase activity and DNA methylation level of H22a ascitic hepatoma, mouse liver charged with H22a ascitic hepatoma are lower than normal mouse liver. Treatments of antitumor drugs lead to a rising of DNA methylase activity of tumor cell, however, the DNA methylation level of tumor cell has not rised after such treatments.  相似文献   

11.
The somatic replication of DNA methylation   总被引:66,自引:0,他引:66  
M Wigler  D Levy  M Perucho 《Cell》1981,24(1):33-40
We have tested the hypothesis that DNA methylation patterns are replicated in the somatic cells of vertebrates. Using M-Hpa II, the modification enzyme from Haemophilus parainfluenzae which methylates the internal cytosine residues in the sequence 5'CCGG 3' GGCC, we methylated bacteriophage phi X174 RF DNA and the cloned chicken thymidine kinase (tk) gene in vitro and then introduced these DNAs and unmethylated controls into tk- cultured mouse cells by DNA-mediated transformation. Twenty-five cell generations later, the state of methylation of transferred DNA was examined by restriction endonuclease analysis and blot hybridization. We conclude that methylation at Hpa II sites is replicated by these cultured cells but not with 100% fidelity. We have also noted that methylation of the cloned chicken tk gene decreases its apparent transformation efficiency relative to unmethylated molecules.  相似文献   

12.
13.
The maintenance of genomic stability and the ability to repair induced DNA damage in vertebrate cells require homologues of the yeast RAD52 epistasis group genes. The homologous recombination carried out by the products of these genes is essential and appears to be closely linked to DNA replication. Defects in recombination and associated activities are implicated in human cancer. This review summarises recent biochemical and genetic findings on the roles played by the vertebrate RAD52 group gene products in recombination. We describe the phenotypic analysis of genetically engineered mammalian and chicken mutants of homologous recombination genes.  相似文献   

14.
DNA methylation is involved in many biological processes and is particularly important for both development and germ cell differentiation. Several waves of demethylation and de novo methylation occur during both male and female germ line development. This has been found at both the gene and all genome levels, but there is no demonstrated correlation between them. During the postnatal germ line development of spermatogenesis, we found very complex and drastic DNA methylation changes that we could correlate with chromatin structure changes. Thus, detailed studies focused on localization and expression pattern of the chromatin proteins involved in both DNA methylation, histone tails modification, condensin and cohesin complex formation, should help to gain insights into the mechanisms at the origin of the deep changes occurring during this particular period.  相似文献   

15.
A study on hybrids from reciprocal crossing of the SHR-SP and the WKY has shown that Y-chromosome and mitochondrial DNA the affect development of the spontaneous hypertension. The Y-chromosome takes part in disorders of baroreceptive sensitivity in phenylnephrine assay associated with hypertension. Although our findings suggest that structural remodelling of peripheral vascular resistance and an increase in noradrenaline-dependent vasocostriction is genetically determined in hypertensive rats, we could not corroborate the role of the Y-chromosome and mitochondrial DNA in the process. A difference was shown between male and female SHR-SP in the level of arterial pressure and in development of the vascular structure changes.  相似文献   

16.
Y chromosome variation of mice and men   总被引:7,自引:5,他引:2  
DNA sequences from the nonrecombining portion of the Y chromosome were compared with autosomal and X-linked sequences from mice and humans to test the neutral prediction that ratios of polymorphism to divergence are the same for different genes. Intraspecific variation within Mus domesticus was compared with divergence between M. domesticus and Mus caroli for Sry, a region 5' to Sry, and four X-linked genes, Hprt, Plp, Amg, and Glra2. None of these comparisons revealed significantly reduced variation on the Y chromosome. Intraspecific variation within humans was compared with divergence between humans and chimpanzees for three Y-linked loci (Zfy, the YAP region, and the Sry region), seven X- linked loci (Il2rg, Plp, Hprt, Gk, Ids, Pdhal, and Dmd), and the beta- globin locus on chromosome 11. In these comparisons, the observed level of variation on the human Y chromosome was slightly lower than expected, but was significantly lower in only one case (Sry region vs. Dmd). These results suggest that the levels of variability on the Y chromosome in mice and humans are close to expected values given the effective population size and mutation rates for these loci. There is at most only a modest reduction in variability that may be attributed to natural selection (either genetic hitchhiking or background selection).   相似文献   

17.
Here, we summarize current knowledge about epigenetic reprogramming during mammalian preimplantation development, as well as the potential mechanisms driving these processes. We will particularly focus on changes taking place in the zygote, where the paternally derived DNA and chromatin undergo the most striking alterations, such as replacement of protamines by histones, histone modifications and active DNA demethylation. The putative mechanisms of active paternal DNA demethylation have been studied for over a decade, accumulating a lot of circumstantial evidence for enzymatic activities provided by the oocyte, protection of the maternal genome against such activities and possible involvement of DNA repair. We will discuss the various facets of dynamic epigenetic changes related to DNA methylation with an emphasis on the putative involvement of DNA repair in DNA demethylation.  相似文献   

18.
The plasmids containing the variant sequence of human satellite III "rescued" after replication in Chinese hamster cells were transfected into Chinese hamster, mouse and human cells by DEAE-dextran method. Several days after transfection extrachromosomal fractions were isolated, treated with DpnI, transformed into E. coli. In mouse cells, transformed with oncogene v-myc, after transient transfection of HS3-containing plasmids the appearance of rearranged and non-rearranged DpnI-resistant plasmids has been found. At the same time MboI-sensitive plasmids were not found in this material. The data suggest a limited replication (1 round) of HS3-containing plasmids in mouse cells transformed with oncogene v-myc.  相似文献   

19.
Summary: Mammalian cloning has been accomplished in several mammalian species by nuclear transfer. However, the production rate of cloned animals is quite low, and many cloned offspring die or show abnormal symptoms. A possible cause of the low success rate of cloning and abnormal symptoms in many cloned animals is the incomplete reestablishment of DNA methylation after nuclear transfer. We first analyzed tissue‐specific methylation patterns in the placenta, skin, and kidney of normal B6D2F1 mice. There were seven spots/CpG islands (0.5% of the total CpG islands detected) methylated differently in the three different tissues examined. In the placenta and skin of two cloned fetuses, a total of four CpG islands were aberrantly methylated or unmethylated. Interestingly, three of these four loci corresponded to the tissue‐specific loci in the normal control fetuses. The extent of aberrant methylation of genomic DNA varied between the cloned animals. In cloned animals, aberrant methylation occurred mainly at tissue‐specific methylated loci. Individual cloned animals have different methylation aberrations. In other words, cloned animals are by no means perfect copies of the original animals as far as the methylation status of genomic DNA is concerned. genesis 30:45–50, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

20.
The results of Y chromosome measurements in 31 horses are presented. The Y chromosome was identified using G-, R-, and C-banding techniques. From G-banded metaphase spreads, total X and Y chromosome and separate proximal (P) and distal (D) Y-band measurements were made. Within this group, the Y/X ratio (%) for each animal varied from 18.93 to 43.95, with an overall mean of 34.85 and a coefficient of variation (CV) of 16.12. The overall mean P/X ratio (%) was 23.57 with a CV of 20.57, compared with an overall mean D/X ratio (%) of 11.26 with a CV of 15.18. The group studied included 27 Thoroughbred and 4-non-Thoroughbred animals, of which 20 were clinically normal controls and 11 presented with various clinical abnormalities. By comparison with data from other species, the possible breed association and clinical significance of the observed heteromorphism for the Y chromosome in this species is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号