首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Discrimination of disease patients based on gene expression data is a crucial problem in clinical area. An important issue to solve this problem is to find a discriminative subset of genes from thousands of genes on a microarray or DNA chip. Aiming at finding informative genes for disease classification on microarray, we present a gene selection method based on the forward variable (gene) selection method (FSM) and show, using typical public microarray datasets, that our method can extract a small set of genes being crucial for discriminating different classes with a very high accuracy almost closed to perfect classification.  相似文献   

2.
《Genomics》2020,112(1):114-126
Gene expression data are expected to make a great contribution in the producing of efficient cancer diagnosis and prognosis. Gene expression data are coded by large measured genes, and only of a few number of them carry precious information for different classes of samples. Recently, several researchers proposed gene selection methods based on metaheuristic algorithms for analysing and interpreting gene expression data. However, due to large number of selected genes with limited number of patient's samples and complex interaction between genes, many gene selection methods experienced challenges in order to approach the most relevant and reliable genes. Hence, in this paper, a hybrid filter/wrapper, called rMRMR-MBA is proposed for gene selection problem. In this method, robust Minimum Redundancy Maximum Relevancy (rMRMR) as filter to select the most promising genes and an modified bat algorithm (MBA) as search engine in wrapper approach is proposed to identify a small set of informative genes. The performance of the proposed method has been evaluated using ten gene expression datasets. For performance evaluation, MBA is evaluated by studying the convergence behaviour of MBA with and without TRIZ optimisation operators. For comparative evaluation, the results of the proposed rMRMR-MBA were compared against ten state-of-arts methods using the same datasets. The comparative study demonstrates that the proposed method produced better results in terms of classification accuracy and number of selected genes in two out of ten datasets and competitive results on the remaining datasets. In a nutshell, the proposed method is able to produce very promising results with high classification accuracy which can be considered a promising contribution for gene selection domain.  相似文献   

3.
Microarray gene expression data usually consist of a large amount of genes. Among these genes, only a small fraction is informative for performing cancer diagnostic test. This paper focuses on effective identification of informative genes. We analyze gene selection models from the perspective of optimization theory. As a result, a new strategy is designed to modify conventional search engines. Also, as overfitting is likely to occur in microarray data because of their small sample set, a point injection technique is developed to address the problem of overfitting. The proposed strategies have been evaluated on three kinds of cancer diagnosis. Our results show that the proposed strategies can improve the performance of gene selection substantially. The experimental results also indicate that the proposed methods are very robust under all the investigated cases.  相似文献   

4.
This paper presents an attribute clustering method which is able to group genes based on their interdependence so as to mine meaningful patterns from the gene expression data. It can be used for gene grouping, selection, and classification. The partitioning of a relational table into attribute subgroups allows a small number of attributes within or across the groups to be selected for analysis. By clustering attributes, the search dimension of a data mining algorithm is reduced. The reduction of search dimension is especially important to data mining in gene expression data because such data typically consist of a huge number of genes (attributes) and a small number of gene expression profiles (tuples). Most data mining algorithms are typically developed and optimized to scale to the number of tuples instead of the number of attributes. The situation becomes even worse when the number of attributes overwhelms the number of tuples, in which case, the likelihood of reporting patterns that are actually irrelevant due to chances becomes rather high. It is for the aforementioned reasons that gene grouping and selection are important preprocessing steps for many data mining algorithms to be effective when applied to gene expression data. This paper defines the problem of attribute clustering and introduces a methodology to solving it. Our proposed method groups interdependent attributes into clusters by optimizing a criterion function derived from an information measure that reflects the interdependence between attributes. By applying our algorithm to gene expression data, meaningful clusters of genes are discovered. The grouping of genes based on attribute interdependence within group helps to capture different aspects of gene association patterns in each group. Significant genes selected from each group then contain useful information for gene expression classification and identification. To evaluate the performance of the proposed approach, we applied it to two well-known gene expression data sets and compared our results with those obtained by other methods. Our experiments show that the proposed method is able to find the meaningful clusters of genes. By selecting a subset of genes which have high multiple-interdependence with others within clusters, significant classification information can be obtained. Thus, a small pool of selected genes can be used to build classifiers with very high classification rate. From the pool, gene expressions of different categories can be identified.  相似文献   

5.
MOTIVATION: Association pattern discovery (APD) methods have been successfully applied to gene expression data. They find groups of co-regulated genes in which the genes are either up- or down-regulated throughout the identified conditions. These methods, however, fail to identify similarly expressed genes whose expressions change between up- and down-regulation from one condition to another. In order to discover these hidden patterns, we propose the concept of mining co-regulated gene profiles. Co-regulated gene profiles contain two gene sets such that genes within the same set behave identically (up or down) while genes from different sets display contrary behavior. To reduce and group the large number of similar resulting patterns, we propose a new similarity measure that can be applied together with hierarchical clustering methods. RESULTS: We tested our proposed method on two well-known yeast microarray data sets. Our implementation mined the data effectively and discovered patterns of co-regulated genes that are hidden to traditional APD methods. The high content of biologically relevant information in these patterns is demonstrated by the significant enrichment of co-regulated genes with similar functions. Our experimental results show that the Mining Attribute Profile (MAP) method is an efficient tool for the analysis of gene expression data and competitive with bi-clustering techniques.  相似文献   

6.
Most of the conventional feature selection algorithms have a drawback whereby a weakly ranked gene that could perform well in terms of classification accuracy with an appropriate subset of genes will be left out of the selection. Considering this shortcoming, we propose a feature selection algorithm in gene expression data analysis of sample classifications. The proposed algorithm first divides genes into subsets, the sizes of which are relatively small (roughly of size h), then selects informative smaller subsets of genes (of size r < h) from a subset and merges the chosen genes with another gene subset (of size r) to update the gene subset. We repeat this process until all subsets are merged into one informative subset. We illustrate the effectiveness of the proposed algorithm by analyzing three distinct gene expression data sets. Our method shows promising classification accuracy for all the test data sets. We also show the relevance of the selected genes in terms of their biological functions.  相似文献   

7.
8.
A DSRPCL-SVM approach to informative gene analysis   总被引:1,自引:0,他引:1  
Microarray data based tumor diagnosis is a very interesting topic in bioinformatics. One of the key problems is the discovery and analysis of informative genes of a tumor. Although there are many elaborate approaches to this problem, it is still difficult to select a reasonable set of informative genes for tumor diagnosis only with microarray data. In this paper, we classify the genes expressed through microarray data into a number of clusters via the distance sensitive rival penalized competitive learning (DSRPCL) algorithm and then detect the informative gene cluster or set with the help of support vector machine (SVM). Moreover, the critical or powerful informative genes can be found through further classifications and detections on the obtained informative gene clusters. It is well demonstrated by experiments on the colon, leukemia, and breast cancer datasets that our proposed DSRPCL-SVM approach leads to a reasonable selection of informative genes for tumor diagnosis.  相似文献   

9.
MOTIVATION: Selection of genes most relevant and informative for certain phenotypes is an important aspect in gene expression analysis. Most current methods select genes based on known phenotype information. However, certain set of genes may correspond to new phenotypes which are yet unknown, and it is important to develop novel effective selection methods for their discovery without using any prior phenotype information. RESULTS: We propose and study a new method to select relevant genes based on their similarity information only. The method relies on a mechanism for discarding irrelevant genes. A two-way ordering of gene expression data can force irrelevant genes towards the middle in the ordering and thus can be discarded. Mechanisms based on variance and principal component analysis are also studied. When applied to expression profiles of colon cancer and leukemia, the unsupervised method outperforms the baseline algorithm that simply uses all genes, and it also selects relevant genes close to those selected using supervised methods. SUPPLEMENT: More results and software are online: http://www.nersc.gov/~cding/2way.  相似文献   

10.
We consider the problems of multi-class cancer classification from gene expression data. After discussing the multinomial probit regression model with Bayesian gene selection, we propose two Bayesian gene selection schemes: one employs different strongest genes for different probit regressions; the other employs the same strongest genes for all regressions. Some fast implementation issues for Bayesian gene selection are discussed, including preselection of the strongest genes and recursive computation of the estimation errors using QR decomposition. The proposed gene selection techniques are applied to analyse real breast cancer data, small round blue-cell tumours, the national cancer institute's anti-cancer drug-screen data and acute leukaemia data. Compared with existing multi-class cancer classifications, our proposed methods can find which genes are the most important genes affecting which kind of cancer. Also, the strongest genes selected using our methods are consistent with the biological significance. The recognition accuracies are very high using our proposed methods.  相似文献   

11.
MOTIVATION: DNA arrays permit rapid, large-scale screening for patterns of gene expression and simultaneously yield the expression levels of thousands of genes for samples. The number of samples is usually limited, and such datasets are very sparse in high-dimensional gene space. Furthermore, most of the genes collected may not necessarily be of interest and uncertainty about which genes are relevant makes it difficult to construct an informative gene space. Unsupervised empirical sample pattern discovery and informative genes identification of such sparse high-dimensional datasets present interesting but challenging problems. RESULTS: A new model called empirical sample pattern detection (ESPD) is proposed to delineate pattern quality with informative genes. By integrating statistical metrics, data mining and machine learning techniques, this model dynamically measures and manipulates the relationship between samples and genes while conducting an iterative detection of informative space and the empirical pattern. The performance of the proposed method with various array datasets is illustrated.  相似文献   

12.
基于决策森林特征基因的两种识别方法   总被引:1,自引:0,他引:1  
应用DNA芯片可获得成千上万个基因的表达谱数据。寻找对疾病有鉴别力的特征基因 ,滤掉与疾病无关的基因是基因表达谱数据分析的关键问题。利用决策森林方法的集成优势 ,提出基于决策森林的两种特征基因识别方法。该方法先由决策森林按照一定的显著性水平滤掉大部分与疾病类别无关的基因 ,然后采用统计频数法和扰动法 ,根据所选特征对分类的贡献程度对初选的特征基因作更加精细地选择。最后 ,选用神经网络作为外部分类器对所选的特征基因子集进行评价 ,将提出的方法应用于 4 0例结肠癌组织与 2 2例正常组织中 2 0 0 0个基因的表达谱实验数据。结果表明 :上述两种方法选出的特征基因均具有较高的疾病鉴别能力 ,均可获得最优特征基因子集 ,基于决策森林的统计频数法优于扰动法。  相似文献   

13.
Selection at the protein-level can influence nucleotide substitution patterns for protein-coding genes, which in turn can affect their performance as phylogenetic characters. In this study, we compare two protein-coding nuclear genes that appear to have evolved under markedly different selective constraints and evaluate how selection has shaped their phylogenetic signal. We sequenced 1,100+ bp of exon 6 of the gene encoding dentin matrix protein 1 (DMP1) from most of the currently recognized genera of New World opossums (family: Didelphidae) and compared these data to an existing matrix of sequences from the interphotoreceptor retinoid-binding protein gene (IRBP) and morphological characters. In comparison to IRBP, DMP1 has far fewer sites under strong purifying selection and exhibits a number of sites under positive directional selection. Furthermore, selection on the DMP1 protein appears to conserve short, acidic, serine-rich domains rather than primary amino acid sequence; as a result, DMP1 has significantly different nucleotide substitution patterns from IRBP. Using Bayesian methods, we determined that DMP1 evolves almost 30% faster than IRBP, has 2.5 times more variable sites, has less among-site rate heterogeneity, is skewed toward A and away from CT (IRBP has relatively even base frequencies), and has a significantly lower rate of change between adenine and any other nucleotide. Despite these different nucleotide substitution patterns, estimates of didelphid relationships based on separate phylogenetic analyses of these genes are remarkably congruent whether patterns of nucleotide substitution are explicitly modeled or not. Nonetheless, DMP1 contains more phylogenetically informative characters per unit sequence and resolves more nodes with higher support than does IRBP. Thus, for these two genes, relaxed functional constraints and positive selection appear to improve the efficiency of phylogenetic estimation without compromising its accuracy.  相似文献   

14.
In annual plant species, flowering time is a major adaptive trait that synchronizes the initiation of reproduction with favorable environmental conditions. Here, we aimed at studying the evolution of flowering time in three experimental populations of bread wheat, grown in contrasting environments (Northern to Southern France) for 12 generations. By comparing the distribution of phenotypic and presumably neutral variation, we first showed that flowering time responded to selection during the 12 generations of the experiment. To get insight into the genetic architecture of that trait, we then tested whether the distribution of genetic polymorphisms at six candidate genes, presumably involved in the trait expression, departed from neutral expectation. To that end, we focused on the temporal variation during the course of the experiment, and on the spatial differentiation at the end of the experiment, using previously published methods adapted to our experimental design. Only those genes that were strongly associated with flowering time variation were detected as responding to selection. For genes that had low‐to‐moderate phenotypic effects, or when there was interaction across different genes, we did not find evidence of selection using methods based on the distribution of temporal or spatial variation. In such cases, it might be more informative to consider multilocus and multiallelic combinations across genes, which could be the targets of selection.  相似文献   

15.
Microarray data analysis has been shown to provide an effective tool for studying cancer and genetic diseases. Although classical machine learning techniques have successfully been applied to find informative genes and to predict class labels for new samples, common restrictions of microarray analysis such as small sample sizes, a large attribute space and high noise levels still limit its scientific and clinical applications. Increasing the interpretability of prediction models while retaining a high accuracy would help to exploit the information content in microarray data more effectively. For this purpose, we evaluate our rule-based evolutionary machine learning systems, BioHEL and GAssist, on three public microarray cancer datasets, obtaining simple rule-based models for sample classification. A comparison with other benchmark microarray sample classifiers based on three diverse feature selection algorithms suggests that these evolutionary learning techniques can compete with state-of-the-art methods like support vector machines. The obtained models reach accuracies above 90% in two-level external cross-validation, with the added value of facilitating interpretation by using only combinations of simple if-then-else rules. As a further benefit, a literature mining analysis reveals that prioritizations of informative genes extracted from BioHEL's classification rule sets can outperform gene rankings obtained from a conventional ensemble feature selection in terms of the pointwise mutual information between relevant disease terms and the standardized names of top-ranked genes.  相似文献   

16.
A random forest method has been selected to perform both gene selection and classification of the microarray data. In this embedded method, the selection of smallest possible sets of genes with lowest error rates is the key factor in achieving highest classification accuracy. Hence, improved gene selection method using random forest has been proposed to obtain the smallest subset of genes as well as biggest subset of genes prior to classification. The option for biggest subset selection is done to assist researchers who intend to use the informative genes for further research. Enhanced random forest gene selection has performed better in terms of selecting the smallest subset as well as biggest subset of informative genes with lowest out of bag error rates through gene selection. Furthermore, the classification performed on the selected subset of genes using random forest has lead to lower prediction error rates compared to existing method and other similar available methods.  相似文献   

17.
Paul TK  Iba H 《Bio Systems》2005,82(3):208-225
Recently, DNA microarray-based gene expression profiles have been used to correlate the clinical behavior of cancers with the differential gene expression levels in cancerous and normal tissues. To this end, after selection of some predictive genes based on signal-to-noise (S2N) ratio, unsupervised learning like clustering and supervised learning like k-nearest neighbor (k NN) classifier are widely used. Instead of S2N ratio, adaptive searches like Probabilistic Model Building Genetic Algorithm (PMBGA) can be applied for selection of a smaller size gene subset that would classify patient samples more accurately. In this paper, we propose a new PMBGA-based method for identification of informative genes from microarray data. By applying our proposed method to classification of three microarray data sets of binary and multi-type tumors, we demonstrate that the gene subsets selected with our technique yield better classification accuracy.  相似文献   

18.
A plenitude of feature selection (FS) methods is available in the literature, most of them rising as a need to analyze data of very high dimension, usually hundreds or thousands of variables. Such data sets are now available in various application areas like combinatorial chemistry, text mining, multivariate imaging, or bioinformatics. As a general accepted rule, these methods are grouped in filters, wrappers, and embedded methods. More recently, a new group of methods has been added in the general framework of FS: ensemble techniques. The focus in this survey is on filter feature selection methods for informative feature discovery in gene expression microarray (GEM) analysis, which is also known as differentially expressed genes (DEGs) discovery, gene prioritization, or biomarker discovery. We present them in a unified framework, using standardized notations in order to reveal their technical details and to highlight their common characteristics as well as their particularities.  相似文献   

19.
20.
Traditional histological classification of lung cancer subtypes is informative, but incomplete. Recent studies of gene expression suggest that molecular classification can be used for effective diagnostic and prediction of the treatment outcome. We attempt to build a molecular classification based on the public data available from a few independent sources. The data is reanalyzed with a new cluster analysis algorithm. This algorithm allows us to preserve the high dimensionality of data and produce the cluster structure without preliminary selection of significant genes or any other presumption about the relation between different cancer and normal tissue samples. The resulting clusters are generally consistent with the histological classification. However, our analysis reveals many additional details and subtypes of previously defined types of lung cancer. Large histological cancer types can be further divided into subclasses with different patterns of gene expression. These subtypes should be taken into account in diagnostics, drug testing, and treatment development for lung cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号