首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Uterine adenomyosis is a disease in which hyperplastic endometrial stroma and glands invade the myometrium. We have previously demonstrated that hyperprolactinemia leads to the development of adenomyosis in mice. In the present study, a subtracted cDNA library was made by suppression subtractive hybridization to find specific genes that are abundantly expressed in the adenomyotic but not normal tissue in mice. A cDNA fragment of integrinbeta1 (ibeta1) was found in the library, and the expression of the gene product was increased in the adenomyotic uteri at mRNA and protein levels. Intense ibeta1-immunoreactivity was localized on a group of cells dispersing throughout the endometrial stroma. The number of ibeta1-immunoreactive (ibeta1-ir) cells was significantly greater in the uteri of mice with adenomyosis than normal mice. The majority of the ibeta1-ir cells expressed CD14-ir signal, a marker for monocyte-lineage cells, whereas an increase in the number of CD14-ir cells was also evident in the adenomyotic uteri, especially in the ectopic endometrial tissue. Thus, the adenomyotic stromal tissue contained numerous monocyte-lineage cells with higher expression levels of ibeta1, one of their products. The relationship between the increased number of monocyte-lineage cells and the hyperplastic proliferation of endometrial tissues was discussed with a view to understanding the progressive mechanism of adenomyosis.  相似文献   

3.
Adenomyosis is an oestrogen‐dependent disease characterized by the invasion of endometrial epithelial cells into the myometrium of uterus, and angiogenesis is thought to be required for the implantation of endometrial glandular tissues during the adenomyotic pathogenesis. In this study, we demonstrate that compared with eutopic endometria, adenomyotic lesions exhibited increased vascularity as detected by sonography. Microscopically, the lesions also exhibited an oestrogen‐associated elevation of microvascular density and VEGF expression in endometrial epithelial cells. We previously reported that oestrogen‐induced Slug expression was critical for endometrial epithelial–mesenchymal transition and development of adenomyosis. Our present studies demonstrated that estradiol (E2) elicited a Slug‐VEGF axis in endometrial epithelial cells, and also induced pro‐angiogenic activity in vascular endothelial cells. The antagonizing agents against E2 or VEGF suppressed endothelial cells migration and tubal formation. Animal experiments furthermore confirmed that blockage of E2 or VEGF was efficient to attenuate the implantation of adenomyotic lesions. These results highlight the importance of oestrogen‐induced angiogenesis in adenomyosis development and provide a potential strategy for treating adenomyosis through intercepting the E2‐Slug‐VEGF pathway.  相似文献   

4.
5.
摘要 目的:研究KANK1在子宫内膜癌中的表达以及对子宫内膜癌细胞增殖及迁移的影响。方法:(1)TCGA数据库分析KANK1在子宫内膜癌中的表达和生存期分析。(2)采用实时荧光定量聚合酶链反应验证转染KANK1质粒的效果。采用Ishikawa和ECC1这两种子宫内膜癌细胞来探讨KANK1对子宫内膜癌的细胞周期和凋亡的影响。通过Western blot检测细胞周期相关蛋白的表达,以及流式细胞术检测细胞周期和凋亡水平。(3)通过Transwell小室实验和划痕实验检测细胞的侵袭和转移能力。结果:TCGA数据库分析发现KANK1在子宫内膜癌中低表达且与患者预后良好相关。过表达KANK1下调了Cyclin D1和Cyclin D2的蛋白水平,并将细胞周期阻滞在G1期。流式细胞术检测发现过表达KANK1组的细胞凋亡水平(Ishikawa:22.7%;ECC1:19.0%)比对照组(Ishikawa:18.1%;ECC1:15.3%)高,差异具有统计学意义。Transwell迁移和侵袭实验结果表明过表达KANK1组的子宫内膜癌细胞侵袭和转移能力减弱。结论:本研究证明了KANK1在子宫内膜癌中发挥抑癌作用。KANK1高表达与子宫内膜癌的预后良好成正相关。KANK1通过抑制癌细胞周期和促进肿瘤细胞凋亡发挥抑制子宫内膜癌增殖的作用。此外,KANK1抑制了子宫内膜癌的侵袭和转移。  相似文献   

6.
7.
8.
摘要 目的:研究人子宫内膜癌中TFCP2L1的表达情况以及分析TFCP2L1对子宫内膜癌细胞增殖及迁移能力的影响。方法:(1)通过TCGA 及GTEx数据库分析子宫内膜癌中TFCP2L1的表达水平及患者生存期。采用Western blot验证正常子宫内膜上皮细胞与多种子宫内膜癌细胞系中TFCP2L1的表达情况。(2)使用CRISPR-Cas9技术敲除Ishikawa细胞系的TFCP2L1,并用流式分选技术筛选单个细胞进行培养,形成单克隆细胞系,以此来研究TFCP2L1对子宫内膜癌的细胞周期和细胞增殖的影响。通过 Western blot 及细胞免疫荧光检测细胞周期相关蛋白的表达,检测细胞增殖情况,采用平板克隆实验及CCK8实验。(3)通过Transwell小室及划痕实验对侵袭和转移能力进行检测。结果:TCGA 及GTEx数据库分析发现TFCP2L1在子宫内膜癌中高表达且与肿瘤患者预后不良相关。敲除TFCP2L1后,Ki67、Cyclin D1 和 Cyclin D2的蛋白水平显著下调,CCK8及平板克隆实验结果表明,敲除TFCP2L1能够显著降低子宫内膜癌细胞的增殖能力。划痕实验及Transwell侵袭实验结果表明敲除TFCP2L1的子宫内膜癌细胞侵袭迁移能力均减弱。结论:本研究证明了TFCP21L1是子宫内膜癌的促癌因子。TFCP2L1的高表达可能与子宫内膜癌预后不良相关。敲除TFCP2L1可以抑制子宫内膜癌的侵袭和转移。  相似文献   

9.
10.
Early embryo miscarriage is linked to inadequate endometrial decidualization, a cellular transformation process that enables deep blastocyst invasion into the maternal compartment. Although much of the cellular events that underpin endometrial stromal cell (ESC) decidualization are well recognized, the individual gene(s) and molecular pathways that drive the initiation and progression of this process remain elusive. Using a genetic mouse model and a primary human ESC culture model, we demonstrate that steroid receptor coactivator-2 (SRC-2) is indispensable for rapid steroid hormone-dependent proliferation of ESCs, a critical cell-division step which precedes ESC terminal differentiation into decidual cells. We reveal that SRC-2 is required for increasing the glycolytic flux in human ESCs, which enables rapid proliferation to occur during the early stages of the decidualization program. Specifically, SRC-2 increases the glycolytic flux through induction of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3), a major rate-limiting glycolytic enzyme. Similarly, acute treatment of mice with a small molecule inhibitor of PFKFB3 significantly suppressed the ability of these animals to exhibit an endometrial decidual response. Together, these data strongly support a conserved mechanism of action by which SRC-2 accelerates the glycolytic flux through PFKFB3 induction to provide the necessary bioenergy and biomass to meet the demands of a high proliferation rate observed in ESCs prior to their differentiation into decidual cells. Because deregulation of endometrial SRC-2 expression has been associated with common gynecological disorders of reproductive-age women, this signaling pathway, involving SRC-2 and PFKFB3, promises to offer new clinical approaches in the diagnosis and/or treatment of a non-receptive uterus in patients presenting idiopathic infertility, recurrent early pregnancy loss, or increased time to pregnancy.  相似文献   

11.
Pluripotent embryonic stem cells (ESCs) must select between alternative fates of self-renewal and lineage commitment at each division during continuous proliferation. Heparan sulfate (HS) is a highly sulfated polysaccharide and is present abundantly on the ESC surface. In this study, we investigated the role of HS in ESC self-renewal by examining Ext1−/− ESCs that are deficient in HS. We found that Ext1−/− ESCs retained their self-renewal potential but failed to transit from self-renewal to differentiation upon removal of leukemia inhibitory factor. Furthermore, we found that the aberrant cell fate commitment is caused by defects in fibroblast growth factor signaling, which directly retained high expression of the pluripotency gene Nanog in Ext1−/− ESCs. Therefore, our studies identified and defined HS as a novel factor that controls ESC fate commitment and also delineates that HS facilitates fibroblast growth factor signaling, which, in turn, inhibits Nanog expression and commits ESCs to lineage differentiation.  相似文献   

12.
Endometriosis (EM) is a chronic inflammatory disease affecting women aged between 23 and 42 years with a prevalence of 6%–10%. S100A7, a member of the S100 protein family, has been implicated in promoting inflammation. However, the role of S100A7 in EM and its underlying mechanism remain to be elucidated. S100A7 was silenced or overexpressed in primary endometrial stromal cells (ESCs). Cell proliferation was determined using a Cell Counting Kit-8. Cell cycle/apoptosis was monitored using a flow cytometer. Cell invasion was studied by a Transwell assay. Quantitative RT-PCR and Western blot analyses were used to evaluate gene expression. S100A7 and NF-κB expression is increased in both endometriotic tissue and ESCs from women with EM. The expression of S100A7 is correlated with the expression of NF-κB. S100A7 knockdown inhibits ESCs proliferation, cell cycle progression, cell invasion, and inflammation, but promotes cell apoptosis in an NF-κB dependent manner. In contrast, S100A7 overexpression demonstrated an inverse effect. S100A7 is increased in both endometriotic tissue and ESCs from women with EM. S100A7 overexpression contributes to EM through increasing ESCs proliferation, cell cycle progression, cell invasion, and inflammation, and inhibiting cell apoptosis in the NF-κB dependent manner. These findings highlight the importance of S100A7/NF-κB signaling in EM and provide new insights into therapeutic strategies for EM.  相似文献   

13.
14.
15.
The inhibitory effects of a novel, orally active matrix metalloproteinase (MMP) inhibitor, ONO-4817, on the development of uterine adenomyosis induced experimentally by pituitary grafting were examined in mice. Mice were given transplants of isologous anterior pituitary glands (PGs) into the right uterine lumen at 7 weeks of age and were fed chow containing 0.1% to 1.0% ONO-4817 from 8 to 14 weeks of age. Mice treated with 0.3% or 1.0% ONO-4817 showed a significantly lower incidence of the development of adenomyosis than vehicle-treated mice. To evaluate the inhibitory effects of ONO-4817 on the progression of the invasion of the adenomyotic tissues, mice receiving PG grafts at 7 weeks of age were treated with 1.0% ONO-4817 from 13 to 17 weeks of age. The degree of pathological progression of adenomyosis was graded from 1 to 5 in increments of 1. The degree of the progression of the lesion was less in the uteri exposed to ONO-4817 (2.71 +/- 0.93) than in the uteri not exposed to the inhibitor (4.33 +/- 0.75). Finally, the invasiveness of endometrial stromal cells obtained from adenomyotic uteri into Matrigel consisting mainly of type IV collagen and laminin was examined using an invasion assay. The assay showed that the treatment with ONO-4817 markedly suppressed the invasion of the stromal cells of the adenomyotic uteri into the gel. These results indicate that ONO-4817 may be an effective inhibitor of the development of adenomyosis.  相似文献   

16.
The future clinical use of embryonic stem cell (ESC)-based hepatocyte replacement therapy depends on the development of an efficient procedure for differentiation of hepatocytes from ESCs. Here we report that a high density of human ESC-derived fibroblast-like cells (hESdFs) supported the efficient generation of hepatocyte-like cells with functional and mature hepatic phenotypes from primate ESCs and human induced pluripotent stem cells. Molecular and immunocytochemistry analyses revealed that hESdFs caused a rapid loss of pluripotency and induced a sequential endoderm-to-hepatocyte differentiation in the central area of ESC colonies. Knockdown experiments demonstrated that pluripotent stem cells were directed toward endodermal and hepatic lineages by FGF2 and activin A secreted from hESdFs. Furthermore, we found that the central region of ESC colonies was essential for the hepatic endoderm-specific differentiation, because its removal caused a complete disruption of endodermal differentiation. In conclusion, we describe a novel in vitro differentiation model and show that hESdF-secreted factors act in concert with regional features of ESC colonies to induce robust hepatic endoderm differentiation in primate pluripotent stem cells.  相似文献   

17.
Zhou S  Yi T  Liu R  Bian C  Qi X  He X  Wang K  Li J  Zhao X  Huang C  Wei Y 《Molecular & cellular proteomics : MCP》2012,11(7):M112.017988-M112.017988-24
Adenomyosis is a common estrogen-dependent disorder of females characterized by a downward extension of the endometrium into the uterine myometrium and neovascularization in ectopic lesions. It accounts for chronic pelvic pain, dysmenorrhea, menorrhagia, and infertility in 8.8-61.5% women worldwide. However, the molecular mechanisms for adenomyosis development remain poorly elucidated. Here, we utilized a two-dimensional polyacrylamide gel electrophoresis/MS-based proteomics analysis to compare and identify differentially expressed proteins in matched ectopic and eutopic endometrium of adenomyosis patients. A total of 93 significantly altered proteins were identified by tandem MS analysis. Further cluster analysis revealed a group of estrogen-responsive proteins as dysregulated in adenomyosis, among which annexin A2, a member of annexin family proteins, was found up-regulated most significantly in the ectopic endometrium of adenomyosis compared with its eutopic counterpart. Overexpression of ANXA2 was validated in ectopic lesions of human adenomyosis and was found to be tightly correlated with markers of epithelial to mesenchymal transition and dysmenorrhea severity of adenomyosis patients. Functional analysis demonstrated that estrogen could remarkably up-regulate ANXA2 and induce epithelial to mesenchymal transition in an in vitro adenomyosis model. Enforced expression of ANXA2 could mediate phenotypic mesenchymal-like cellular changes, with structural and functional alterations in a β-catenin/T-cell factor (Tcf) signaling-associated manner, which could be reversed by inhibition of ANXA2 expression. We also proved that enforced expression of ANXA2 enhanced the proangiogenic capacity of adenomyotic endometrial cells through HIF-1α/VEGF-A pathway. In vivo, we demonstrated that ANXA2 inhibition abrogated endometrial tissue growth, metastasis, and angiogenesis in an adenomyosis nude mice model and significantly alleviated hyperalgesia. Taken together, our data unraveled a dual role for ANXA2 in the pathogenesis of human adenomyosis through conferring endometrial cells both metastatic potential and proangiogenic capacity, which could serve as a potential therapeutic target for the treatment of adenomyosis patients.  相似文献   

18.
19.
The intent of the study was to explore the elevating expression of decay-accelerating factor(DAF) exerts influence on biological behaviors of endometrial stromal cells except in classical immunology on the basis of bioinformatic statistics and clinical miscarriages findings suggesting its potential role in the establishment of endometrial receptivity. We confirmed that DAF locates on the cellular surface of endometrial epithelium and stroma. By using plasmid transfection to down-regulate DAF expression in primary endometrial stromal cells(ESCs), we discovered that DAF expression in ESCs increases in response to estradiol and progesterone stimulation in dose- and time-dependent manners; moreover, tamoxifen and RU486 stimulations to block estrogen receptors(ERs) and progesterone receptors(PRs) respectively result in reduced DAF mRNA and protein, and it is more obvious to block PRs. Meanwhile, knocked-down DAF in ESCs weakens the proliferation, migration and invasion of endometrial cells. Cell cycle analysis showed knocked-down DAF accumulates cells in S phase and diminishes cells in G0/G1 phase, which substantiates DAF mediates endometrial cells proliferation. In conclusion, DAF is a potential molecule involving in endometrial cellular proliferation and motility to verify up-expressed DAF during the WOI may facilitate endometrial physiobiological behavior changes, which shed light on DAF function and potential role in the endometrial receptivity establishment.  相似文献   

20.
The aim of this study was to investigate the expression of ZEB1 in gastric carcinoma, its correlation with the clinicopathology of gastric carcinoma, and the role of ZEB1 in invasion and metastasis in gastric carcinoma. ZEB1 expression was analyzed by immunohistochemistry and Western blot in 45 gastric carcinoma tissue samples that contained the adjacent gastric mucosa. The correlation between ZEB1 expression, the occurrence and development of gastric cancer, and clinical pathology was investigated. ZEB1 expression in the human gastric carcinoma cell line AGS was downregulated by RNA interference, and changes in ZEB1 expression corresponded with changes in the invasive and metastatic ability of AGS cells. Immunohistochemistry revealed that ZEB1 protein expression in gastric carcinoma tissues was significantly higher than in normal gastric mucosa tissues (p < 0.001). A lower degree of differentiation of gastric cancer (p = 0.009), a higher TNM (tumor, node, and metastasis) stage (p = 0.010), and a larger scope of invasion were correlated with higher expression of ZEB1 (p = 0.041, 0.002). However, the expression of ZEB1 in gastric carcinoma tissue was independent of gender, age, and tumor size (p > 0.05). Western blot results also showed that ZEB1 protein expression was significantly higher in gastric carcinoma tissue than in the adjacent normal gastric mucosa tissue (p = 0.008). A lower degree of differentiation of the gastric carcinoma correlated with a higher TNM stage, and a larger scope of invasion correlated with increased ZEB1 expression (p = 0.023). Transfection of ZEB1 siRNA in AGS cells significantly decreased the expression level of ZEB1 protein (p = 0.035). Furthermore, the number of cells that could pass through the Transwell chamber was significantly lower in the transfected group than in the non-transfected control group (p = 0.039), indicating that the suppression of ZEB1 expression could significantly reduce the invasive and metastatic ability of AGS cells (p = 0.005). Concluding, in gastric carcinoma tissue, overexpression of ZEB1 may be related to the occurrence and development as well as invasion and metastasis of gastric carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号