首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The wall-yielding properties of cell walls were examined using frozen-thawed and pressed segments (FTPs) obtained from the elongation zones of cucumber hypocotyls with a newly developed programmable creep meter. The rate of wall extension characteristically changed depending on both tension and pH. By treatment of the FTPs with acid, the yield tension (y) was shifted downward and the extensibility (phi) was increased. However, the downward shift of y was greatly suppressed and the increase in phi was partly inhibited in boiled FTPs. The boiled FTPs reconstituted with expansin fully recovered the acid-induced downward y shift as well as the increase in phi. Even under the tension below y, wall extension took place pH dependently. Such extension was markedly slower (low-rate extension) than that under the tension above y (high-rate extension). At a higher concentration (8 M), urea markedly inhibited the creep ascribable to the inhibition of the acid-induced downward y shift and increase in phi. Moderate concentrations (2 M) of urea promoted wall creep pH dependently. The promotion was equivalent to a 0.5 decrease in pH. The promotion of creep by 2 M urea was observed in boiled FTPs reconstituted with expansin but not in boiled FTPs. These findings indicated that the acid-facilitated creep was controlled by y as well as in cucumber cell walls. However, y and phi might be inseparable and mutually related parameters because the curve of the stress extension rate (SER) showed a gradual change from the low-rate extension to the high-rate extension. Expansin played a role in pH-dependent regulation of both y and phi. The physiological meaning of the pH-dependent regulation of wall creep under different creep tensions is also discussed with reference to a performance chart obtained from the SER curves.  相似文献   

2.
To isolate and purify the factor regulating the yield threshold tension (y) through acidification of the cell wall, proteins were extracted from hypocotyls of Vigna unguiculata L. Their effects on the pH‐dependencies of the wall extensibility (φ) and y were examined with reconstitution experiments by incorporating them into the heat‐denatured glycerinated hollow cylinders (GHCs). The wall mechanical properties of the reconstituted GHCs were determined using stress–strain experiments. Only the proteins extracted with 1 kmol m–3 of NaCl from the wall of elongation region restored the pH‐dependencies of φ and y once extinguished with heat‐denaturation, but proteins extracted from the other cell constituents or from the mature region of hypocotyl affect neither properties. Fractionation of the wall‐bound proteins by a hydrophobic column chromatography showed that the two different fractions affected φ or y independently. The sodium dodecyl sulphate‐polyacrylamide gel electrophoresis showed that the active fraction which restored the pH‐dependency of y still consists of two proteins of 30 and 32 kDa after purification by the sequential fractionation with cation‐exchange and gel filtration. These two proteins were named as ‘yieldin 30’ and ‘32’. Western blotting analysis using the rabbit‐antiserum against the cucumber expansin indicated that the yieldins are independent of cucumber expansin.  相似文献   

3.
Glycerinated hollow cylinders of hypocotyl segments excised from the elongation region of cowpea seedlings were heated for 15s in 50% glycerol at 70, 80 or 90°C. Their in vitro yield threshold tension (y) and extensibility (φ) were determined by stress-strain experiments under the perfusion of solutions of pH 4·0 or 6·2. The decrement in y and the increment in φ with acidification were extinguished at 80 and 90°C, respectively. Moreover, such changes in φ and y with acidification were prevented by proteinase treatment for 6 and 10 h, respectively. These results suggest that these two cell wall mechanical properties are controlled, respectively, by two functional proteins activated by acid.  相似文献   

4.
Vascular smooth muscle contracts on increases of extracellular pH (pH(o)) and relaxes on pH(o) decreases possibly resulting from changes in transsarcolemmal Ca(2+) influx. Therefore, we studied store-operated Ca(2+) entry (SOCE; i.e. capacitative Ca(2+) entry (CCE)) during acidification (pH(o)=6.5) and alkalinization (pH(o)=8.0) in isolated porcine coronary smooth muscle cells (SMCs) by monitoring cytoplasmic Ca(2+) ([Ca(2+)](i)) and divalent cation entry (Mn(2+) quench) with fura-2/AM-fluorometry. Additionally, we evaluated the contribution of SOCE to pH(o)-dependent changes in isometric tension of porcine coronary smooth muscle strips. SOCE elicited in SMCs by the SERCA inhibitor BHQ was strongly modulated by pH(o) showing a decrease upon acidification and vice versa an increase upon alkalinization. BHQ-mediated tension of smooth muscle strips also revealed strong pH(o) dependence. In contrast, L-VOC-dependent tension ([K(+)](o)=20 and 40 mmol l(-1)) was remarkably less affected by pH(o) changes. Moreover, refilling of depleted Ca(2+) stores after repeated M(3)-cholinergic receptor stimulation could be almost completely inhibited by SKF 96365 and was markedly reduced by acidification and considerably enhanced by alkalinization pointing to a major role of SOCE in refilling. We conclude that vascular tone particularly responds to alterations in pH(o) whenever SOCE substantially contributes to the amount of activator Ca(2+) for contraction.  相似文献   

5.
During Space Shuttle STS-95 mission, we cultivated seedlings of rice (Oryza sativa L. cv. Koshihikari and cv. Tan-ginbozu) and Arabidopsis (Arabidopsis thaliana L. cv. Columbia and cv. etr1-1) for 68.5, 91.5, and 136 hr on board, and then analyzed changes in the nature of their cell walls, growth, and morphogenesis under microgravity conditions. In space, elongation growth of both rice coleoptiles and Arabidopsis hypocotyls was stimulated. Also, the increase in the cell wall extensibility, especially that in the irreversible extensibility, was observed for such materials. The analyses of the amounts, the structure, and the physicochemical properties of the cell wall constituents indicated that the decreases in levels and molecular masses of cell wall polysaccharides were induced under microgravity conditions, which appeared to contribute to the increase in the wall extensibility. The activity of certain wall enzymes responsible for the metabolic turnover of the wall polysaccharides was increased in space. By the space flight, we also confirmed the occurrence of automorphogenesis of both seedlings under microgravity conditions; rice coleoptiles showed an adaxial bending, whereas Arabidopsis hypocotyls elongated in random directions. Furthermore, it was shown that spontaneous curvatures of rice coleoptiles in space were brought about uneven modifications of cell wall properties between the convex and the concave sides.  相似文献   

6.
The increase of intracellular free calcium concentration ([Ca(2+)](i)) and protein kinase C (PKC) activity are two major early mitogenic signals to initiate proliferation of human T cells. However, a rapid change in intracellular pH (pH(i)), acidification or alkalinization during the activation, is also associated after these two signals. The aim of this study was to define whether the change in pH(i) is affected by calcium and protein kinase C (PKC), in phytohemagglutinin (PHA)-stimulated T cells. T cells were isolated from human peripheral blood. The [Ca(2+)](i) and the pH(i) were measured using, respectively, the fluorescent dyes, Fura-2, and BCECF. In addition, down-regulation of PKC activity by PMA (1 microM, 18 h) was confirmed in these cells using a protein kinase assay. The results indicated that, (1) alkalinization was induced by PHA or PMA in T cells; the results of alkalinization was PKC-dependent and Ca(2+)-independent, (2) in PKC down-regulated T cells, PHA induced acidification; this effect was enhanced by pre-treating the cells with the Na(+)/H(+) exchange inhibitor, 5-(N,N-dimethyl)-amiloride, (DMA, 10 microM, 20 min), (3) the acidification was dependent on the Ca(2+) influx and blocked by removal of extracellular calcium or the addition of the inorganic channel blocker, Ni(2+), and (4) Thapsigargin (TG), a Ca(2+)-ATPase inhibitor, confirmed that acidification by the Ca(2+) influx occurred in T cells in which PKC was not down-regulated. These findings indicate two mechanisms, alkalinization by PKC and acidification by Ca(2+) influx, exist in regulating pH(i) in T cells. This is the first report that PHA stimulates the acidification by Ca(2+) influx but not alkalinization in T cells after down-regulation of PKC. In conclusion, the activity of PKC in T cells determines the response in alkalinization or acidification by PHA.  相似文献   

7.
Elongation growth of etiolated hypocotyls of cress (Lepidiumsativum L.) was suppressed when they were exposed to basipetalhypergravity at 35 g and above. Acceleration at 135 g causeda decrease in the mechanical extensibility and an increase inthe minimum stress-relaxation time of the cell wall. Such changesin the mechanical properties of the cell wall were prominentin the lower regions of hypocotyls. The amounts of cell wallpolysaccharides per unit length of hypocotyls increased underthe hypergravity condition and, in particular, the increasein the amount of cellulose in the lower regions was conspicuous.Hypergravity did not influence the neutral sugar compositionof either the pectin or the hemicellulose fraction. The amountof lignin was also increased by hypergravity treatment, althoughthe level was low. The data suggest that hypergravity modifiesthe metabolism of cell wall components and thus makes the cellwall thick and rigid, thereby inhibiting elongation growth ofcress hypocotyls. These changes may contribute to the plants'ability to sustain their structures against hypergravity. Key words: Cell wall extensibility, cellulose, hypergravity, Lepidium sativum L., lignin  相似文献   

8.
Elongation growth of etiolated hypocotyls of cress (Lepidium sativum L.) was suppressed when they were exposed to basipetal hypergravity at 35 x g and above. Acceleration at 135 x g caused a decrease in the mechanical extensibility and an increase in the minimum stress-relaxation time of the cell wall. Such changes in the mechanical properties of the cell wall were prominent in the lower regions of hypocotyls. The amounts of cell wall polysaccharides per unit length of hypocotyls increased under the hypergravity condition and, in particular, the increase in the amount of cellulose in the lower regions was conspicuous. Hypergravity did not influence the neutral sugar composition of either the pectin or the hemicellulose fraction. The amount of lignin was also increased by hypergravity treatment, although the level was low. The data suggest that hypergravity modifies the metabolism of cell wall components and thus makes the cell wall thick and rigid, thereby inhibiting elongation growth of cress hypocotyls. These changes may contribute to the plants' ability to sustain their structures against hypergravity.  相似文献   

9.
The effect of intracellular acidification and subsequent pH recovery in sensory neurons has not been well characterized. We have studied the mechanisms underlying Ca(2+)-induced acidification and subsequent recovery of intracellular pH (pH(i)) in rat trigeminal ganglion neurons and report their effects on neuronal excitability. Glutamate (500 μM) and capsaicin (1 μM) increased intracellular Ca(2+) concentration ([Ca(2+)](i)) with a following decrease in pH(i). The recovery of [Ca(2+)](i) to the prestimulus level was inhibited by LaCl(3) (1 mM) and o-vanadate (10 mM), a plasma membrane Ca(2+)/ATPase (PMCA) inhibitor. Removal of extracellular Ca(2+) also completely inhibited the acidification induced by capsaicin. TRPV1 was expressed only in small and medium sized trigeminal ganglion neurons. mRNAs for Na(+)/H(+) exchanger type 1 (NHE1), pancreatic Na(+)-HCO(3)(-) cotransporter type 1 (pNBC1), NBC3, NBC4, and PMCA types 1-3 were detected by RT-PCR. pH(i) recovery was significantly inhibited by pretreatment with NHE1 or pNBC1 siRNA. We found that the frequency of action potentials (APs) was dependent on pH(i). Application of the NHE1 inhibitor 5'-(N-ethyl-N-isopropyl) amiloride (5 μM) or the pNBC1 inhibitor 4',4'-di-isothiocyanostilbene-2',2'-sulfonic acid (500 μM) delayed pH(i) recovery and decreased AP frequency. Simultaneous application of 5'-(N-ethyl-N-isopropyl) amiloride and 4',4'-di-isothiocyanostilbene-2',2'-sulfonic acid almost completely inhibited APs. In summary, our results demonstrate that the rise in [Ca(2+)](i) in sensory neurons by glutamate and capsaicin causes intracellular acidification by activation of PMCA type 3, that the pH(i) recovery from acidification is mediated by membrane transporters NHE1 and pNBC1 specifically, and that the activity of these transporters has direct consequences for neuronal excitability.  相似文献   

10.
It has been proposed that spacing between cellulose microfibrils within plant cell walls may be an important determinant of their mechanical properties. A consequence of this hypothesis is that the water content of cell walls may alter their extensibility and that low water potentials may directly reduce growth rates by reducing cell wall spacing. This paper describes a number of experiments in which the water potential of frozen and thawed growing hypocotyls of sunflower (Helianthus annuus L.) were altered using solutions of high molecular weight polyethylene glycol (PEG) or Dextran while their extension under constant stress was monitored using a creep extensiometer (frozen and thawed tissue was used to avoid confounding effects of turgor or active responses to the treatments). Clear reductions in extensibility were observed using both PEG and Dextran, with effects observed in hypocotyl segments treated with PEG 35 000 solutions with osmotic pressures of > or =0.21 MPa suggesting that the relatively mild stresses required to reduce water potentials of plants in vivo by 0.21 MPa may be sufficient to reduce growth rates via a direct effect on wall extensibility. It is noted, therefore, that the water binding capacity of plant cell walls may be of ecophysiological importance. Measurements of cell walls of sunflower hypocotyls using scanning electron microscopy confirmed that treatment of hypocotyls with PEG solutions reduced wall thickness, supporting the hypothesis that the spatial constraint of movement of cellulose microfibrils affects the mechanical properties of the cell wall.  相似文献   

11.
To investigate the mechanisms by which low intracellular pH influences calcium signaling, I have injected HCl, and in some experiments CaCl(2), into snail neurons while recording intracellular pH (pH(i)) and calcium concentration ([Ca(2+)](i)) with ion-sensitive microelectrodes. Unlike fluorescent indicators, these do not increase buffering. Slow injections of HCl (changing pH(i) by 0.1-0.2 pH units min(-1)) first decreased [Ca(2+)](i) while pH(i) was still close to normal, but then increased [Ca(2+)](i) when pH(i) fell below 6.8-7. As pH(i) recovered after such an injection, [Ca(2+)](i) started to fall but then increased transiently before returning to its preinjection level. Both the acid-induced decrease and the recovery-induced increase in [Ca(2+)](i) were abolished by cyclopiazonic acid, which empties calcium stores. Caffeine with or without ryanodine lowered [Ca(2+)](i) and converted the acid-induced fall in [Ca(2+)](i) to an increase. Injection of ortho-vanadate increased steady-state [Ca(2+)](i) and its response to acidification, which was again blocked by CPA. The normal initial response to 10 mM caffeine, a transient increase in [Ca(2+)](i), did not occur with pH(i) below 7.1. When HCl was injected during a series of short CaCl(2) injections, the [Ca(2+)](i) transients (recorded as changes in the potential (V(Ca)) of the Ca(2+)-sensitive microelectrode), were reduced by only 20% for a 1 pH unit acidification, as was the rate of recovery after each injection. Calcium transients induced by brief depolarizations, however, were reduced by 60% by a similar acidification. These results suggest that low pH(i) has little effect on the plasma membrane calcium pump (PMCA) but important effects on the calcium stores, including blocking their response to caffeine. Acidosis inhibits spontaneous calcium release via the RYR, and leads to increased store content which is unloaded when pH(i) returns to normal. Spontaneous release is enhanced by the rise in [Ca(2+)](i) caused by inhibiting the PMCA.  相似文献   

12.
The sensitivity of store-operated Ca(2+)-entry to changes in the extra- and intracellular pH (pH(o) and pH(i), respectively) was investigated in SH-SY5Y human neuroblastoma cells. The intracellular Ca(2+)-stores were depleted either with 1 mM carbachol (CCH) or with 2 microM thapsigargin (TG). Extracellular acidification suppressed both the CCH- and TG-mediated Ca(2+)-entry while external alkalinization augmented both the CCH- and the TG-induced Ca(2+)-influx. Mn(2+)-quenching experiments revealed that the rates of Ca(2+)-entry at the thapsigargin- or carbachol-induced plateau were both accelerated at pH(o) 8.2 and slowed down at pH(o) 6.8 with respect to the control at pH(o) 7.4. Alteration of pH(o) between 6.8 and 8.2 did not have any significant prompt effect on pH(i) and changes in pH(i) left the CCH-induced Ca(2+)-entry unaffected. These findings demonstrate that physiologically relevant changes in pH(o) affect the store-operated Ca(2+)-entry in SH-SY5Y cells and suggest that endogenous pH(o) shifts may regulate cell activity in situ via modulating the store-operated Ca(2+)-entry.  相似文献   

13.
Although Zn(2+) homeostasis in neurons is tightly regulated and its destabilization has been linked to a number of pathologies including Alzheimer's disease and ischemic neuronal death, the primary mechanisms affecting intracellular Zn(2+) concentration ([Zn(2+) ](i)) in neurons exposed to excitotoxic stimuli remain poorly understood. The present work addressed these mechanisms in cultured hippocampal neurons exposed to glutamate and glycine (Glu/Gly). [Zn(2+)](i) and intracellular Ca(2+) concentration were monitored simultaneously using FluoZin-3 and Fura-2FF, and intracellular pH (pH(i)) was studied in parallel experiments using 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein. Glu/Gly applications under Na(+)-free conditions (Na(+) substituted with N-methyl-D-glucamine(+)) caused Ca(2+) influx, pH(i) drop, and Zn(2+) release from intracellular stores. Experimental maneuvers resulting in a pH(i) increase during Glu/Gly applications, such as stimulation of Na(+) -dependent pathways of H(+) efflux, forcing H(+) efflux via gramicidin-formed channels, or increasing extracellular pH counteracted [Zn(2+)](i) elevations. In the absence of Na(+), the rate of [Zn(2+)](i) decrease could be correlated with the rate of pH(i) increase. In the presence of Na(+), the rate of [Zn(2+) ](i) decrease was about twice as fast as expected from the rate of pH(i) elevation. The data suggest that Glu/Gly-induced cytosolic acidification promotes [Zn(2+) ](i) elevations and that Na(+) counteracts the latter by promoting pH(i)-dependent and pH(i)-independent mechanisms of cytosolic Zn(2+) clearance.  相似文献   

14.
Stress relaxation properties of the cell wall of growing intact plants   总被引:1,自引:0,他引:1  
The cell wall of dark-grown Avena coleoptiles and the epidermisof light-grown mungbean hypocotyls was subjected to stress-relaxationanalysis and the following results were obtained. 1. Actively growing apical regions of the organs, either coleoptilesor hypocotyls, had certain threshold values of minimum stress-relaxationtime, TO, 0.04 sec for coleoptile cell wall and 0.03 sec forthe epidermal cell wall of hypocotyls. The cell wall of thebasal region of the organs, which were mature and not growing,had a higher value of To. 2. When the apical regions of the organs, either coleoptilesor hypocotyls, ceased to grow, their cell walls showed TO valuesabove these thresholds. 3. The relaxation rate, b, was small in the cell wall of activelygrowing regions of the organs, compared with that of non-growingregions. 4. The maximum relaxation time, Tm, was variable and no significantrelationship with growth capacity was found. 5. The extensibility, mm/gr, was large not only in activelygrowing regions of the organs but also in fully grown regions,suggesting that the value represents complex properties of thecell wall including the history of cell wall extension. From these results, we concluded that biochemical modificationsoccur in the cell wall matrix of actively growing organs ofeither monocots or dicots, and these are the bases of the capacityof the cell wall to extend and are represented chiefly by Toand possibly by b. (Received August 12, 1974; )  相似文献   

15.
Shomer I  Kaaber L 《Biomacromolecules》2006,7(11):2971-2982
Intercellular adhesion in some parenchyma becomes strengthened in response to stress. The present study provides an approach to investigate this phenomenon (usually attributed to pectin methyl esterase and binding of Ca(2+) and/or rhamnogalacturonan-II-borate) through reliable stress simulation by probing organic acid molecules in potato tuber parenchyma. Short-chain monocarboxylic acids induce consistent intercellular adhesion strengthening (3.8-5.3 newton) at pH >or= 3 < pK(a), where pectin methyl esterase activity and Ca(2+) or borate binding are limited, and vice versa at pH > pK(a) with a strength of 1.4-2.0 newton as compared to 0.3-0.4 newton for the nonincubated control. Strengthening of intercellular adhesion is characterized by prominent staining of pectin and protein and immunogold labeling of pectin in the cell wall and the middle lamellar complex, particularly after boiling. Pectin confers strengthening to the primary cell wall, as reflected by: (i) prominent immunogold labeling following boiling; and (ii) puncturing macerated cells by starch gelatinization pressure after enzymatic pectin removal.  相似文献   

16.
A human mast cell line (HMC-1) has been used to study the effect of cytosolic alkaline pH in exocytosis. Compound 48/80, concanavalin A, and thapsigargin do not induce histamine release in HMC-1 cells. Although thapsigargin does not activate histamine release, it does show a large increase in cytosolic Ca(2+), and no change in cytosolic pH. However, when HMC-1 cells were activated with ionomycin, a significant histamine release takes place, and this effect is higher in the presence of thapsigargin. Both drugs show an additive effect on cytosolic Ca(2+) levels. Ammonium chloride (NH(4)Cl) does activate cytosolic alkalinization and histamine release, with no increase in cytosolic Ca(2+). NH(4)Cl does block the release of internal Ca(2+) by thapsigargin, not by ionomycin, and decreases Ca(2+) influx stimulated by these drugs. Under conditions in which the alkalinization induced by NH(4)Cl is blocked by acidification with sodium propionate, histamine release is inhibited. The release of histamine is also observed when NH(4)Cl is added after propionate addition, regardless of the final pH value attained. Our results show that a shift in pH alkaline values, even with final pH below 7.2 is enough to activate histamine release. A shift to less acidic values is a sufficient signal to activate the cells.  相似文献   

17.
Soga K  Wakabayashi K  Kamisaka S  Hoson T 《Planta》2002,215(6):1040-1046
Seedlings of Arabidopsis thaliana (L.) Heynh. (ecotype Columbia and an ethylene-resistant mutant etr1-1) were cultivated for 68.5, 91.5 and 136 h on board during the Space Shuttle STS-95 mission, and changes in the elongation growth and the cell wall properties of hypocotyls were analyzed. Elongation growth of dark-grown hypocotyls of both Columbia and etr1-1 was stimulated under microgravity conditions in space. There were no clear differences in the degree of growth stimulation between Columbia and etr1-1, indicating that the ethylene level was not abnormally high in the cultural environment of this space experiment. Microgravity also increased the mechanical extensibility of cell walls in both cultivars, and such an increase was attributed to the increase in the apparent irreversible extensibility. The levels of cell wall polysaccharides per unit length of hypocotyls decreased in space. Microgravity also reduced the weight-average molecular mass of xyloglucans in the hemicellulose-II fraction. Also, the activity of xyloglucan-degrading enzymes extracted from hypocotyl cell walls increased under microgravity conditions. These results suggest that microgravity reduces the molecular mass of xyloglucans by increasing xyloglucan-degrading activity. Modifications of xyloglucan metabolism as well as the thickness of cell wall polysaccharides seem to be involved in an increase in the cell wall extensibility, leading to growth stimulation of Arabidopsis hypocotyls in space.  相似文献   

18.
The effects of pH(i) on GABAergic miniature inhibitory postsynaptic currents (mIPSCs) were studied in mechanically dissociated CA3 pyramidal neurons, by use of ammonium prepulse and whole-cell patch-clamp techniques, under the voltage-clamp condition. NH(4)Cl itself, which is expected to alkalinize pH(i), increased GABAergic mIPSC frequency in a concentration-dependent manner. In contrast, NH(4)Cl decreased mIPSC frequency, either in the presence of 200 microm Cd(2+) or in Ca(2+)-free external solution, suggesting that intraterminal alkalosis decreased GABAergic mIPSC frequency while [NH4(+)] itself may activate Ca(2+) channels by depolarizing the terminal. On the other hand, GABAergic mIPSC frequency was greatly increased immediately after NH(4)Cl removal, a condition expected to acidify pH(i), and recovered to the control level within 2 min after NH(4)Cl removal. This explosive increase in mIPSC frequency observed after NH(4)Cl removal was completely eliminated after depletion of Ca(2+) stores with 1 microm thapsigargin in the Ca(2+)-free external solution, suggesting that acidification increases in intraterminal Ca(2+) concentration via both extracellular Ca(2+) influx and Ca(2+) release from the stores. However, the acidification-induced increase in mIPSC frequency had not recovered by 10 min after NH(4)Cl removal either in the Na(+)-free external solution or in the presence of 10 microm 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), a specific Na(+)/H(+) exchanger (NHE) blocker. The present results suggest that NHEs are major intraterminal pH regulators on GABAergic presynaptic nerve terminals, and that the NHE-mediated regulation of pH(i) under normal physiological or pathological conditions might play an important role in the neuronal excitability by increasing inhibitory tones.  相似文献   

19.
Cytosolic free calcium spiking affected by intracellular pH change   总被引:1,自引:0,他引:1  
The characteristics underlying cytosolic free calcium oscillation were evaluated by superfused dual wave-length microspectrofluorometry of fura-2-loaded single acinar cells from rat pancreas. Application of a physiological concentration of cholecystokinin octapeptide (CCK) (20 pM) induced a small basal increase in cytosolic free calcium concentration ([Ca2+]i) averaging 34 nM above the prestimulation level (69 nM) with superimposed repetitive Ca2+ spike oscillation. The oscillation amplitude averaged 121 nM above the basal increase in [Ca2+]i and occurred at a frequency of one pulse every 49 s. Although extracellular Ca2+ was required for maintenance of high frequency and amplitude of the spikes with increase in basal [Ca2+]i, the primary source utilized for oscillation was intracellular. The threshold of the peak [Ca2+]i amplitude for causing synchronized and same-sized oscillations was less than 300 nM. The [Ca2+]i oscillation was sensitive to intracellular pH (pHi) change. This is shown by the fact that the large pHi shift toward acidification (delta pHi decrease, 0.95) led to a basal increase in [Ca2+]i to the spike peak level with inhibiting Ca2+ oscillation. The pHi shift toward alkalinization (delta pHi increase, 0.33) led to a basal decrease in [Ca2+]i to the prestimulation level, possibly due to reuptake of Ca2+ into the Ca2+ stores, with inhibiting Ca2+ oscillation. Whereas extracellular pH (pHo) change had only minimal effects on Ca2+ oscillation (and/or Ca2+ release from intracellular stores), the extra-Ca2+ entry process, which was induced by higher concentrations of CCK, was totally inhibited by decreasing pHo from 7.4 to 6.5. Thus the major regulatory sites by which H+ affects Ca2+ oscillation are accessible from the intracellular space.  相似文献   

20.
In order to determine whether the pH-dependent yield threshold of the cell wall still exists in an in vitro system, an extensometer was devised to enable the perfusion of any experimental solution through the hollow cylinder of a hypocotyl segment excised from a cowpea seedling. Stress-strain experiments on glycerinated hollow cylinders revealed the existence of a definite yield threshold (y) of the cell wall in this in vitro system. The y value decreased reversibly with acidification (pH 4) to the same extent as the decrease of the yield threshold obtained in vivo (Y) with auxin-induced growth acceleration of hypocotyl segments. Heat treatment of the glycerinated hollow cylinder completely inhibited the decrease in y with acidification. The increase in the extensibility of the cell wall with acidification was inhibited significantly but not completely by heat treatment. These results support strongly the ‘acid growth’ theory and provide evidence that the acid-induced decrement of the yield threshold is mediated by an enzymatic reaction of a wall-binding protein. The combination of in vitro and in vivo studies presented here provides a basis for the establishment of a molecular theory on the nature of the growth parameters Y and Ф which control the yielding of the cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号