共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang Y Mackenzie B Tsukaguchi H Weremowicz S Morton CC Hediger MA 《Biochemical and biophysical research communications》2000,267(2):488-494
In human, vitamin C (l-ascorbic acid) is an essential micronutrient required for an array of biological functions including enzymatic reactions and antioxidation. We describe here the molecular cloning of a novel human cDNA encoding a vitamin C transporter SVCT1. SVCT1 is largely confined to bulk-transporting epithelia (e.g., kidney and small intestine) with a putative alternative-splice product present in thymus. Applying radiotracer and voltage-clamp approaches in cRNA-injected Xenopus oocytes, we found that SVCT1 mediates saturable, concentrative, high-affinity l-ascorbic acid transport (K(0.5) = 50-100 microM) that is electrogenic and can be inhibited by phloretin. SVCT1 displays exquisite substrate selectivity, greatly favoring l-ascorbic acid over its isomers d-isoascorbic acid and dehydroascorbic acid and 2- or 6-substituted analogues, whereas glucose and nucleobases are excluded. We have mapped the SLC23A2 gene (coding for SVCT1) to human chromosome 5 in band 5q31.2-31.3, within a region commonly deleted in malignant myeloid (leukemia) diseases. In addition, we have demonstrated that the human SLC23A1 gene product is a related high-affinity l-ascorbic acid transporter (SVCT2) that is widely distributed in brain, retina, and a host of endocrine and neuroendocrine tissues. The molecular identification of the human l-ascorbic acid transporters now provides the tools with which to investigate their roles in vitamin C metabolism in health and disease. 相似文献
2.
Song J Kwon O Chen S Daruwala R Eck P Park JB Levine M 《The Journal of biological chemistry》2002,277(18):15252-15260
Vitamin C and flavonoids, polyphenols with uncertain function, are abundant in fruits and vegetables. We postulated that flavonoids have a novel regulatory action of delaying or inhibiting absorption of vitamin C and glucose, which are structurally similar. From six structural classes of flavonoids, at least 12 compounds were chosen for studies. We investigated the effects of selected flavonoids on the intestinal vitamin C transporter SVCT1(h) by transfecting and overexpressing SVCT1(h) in Chinese hamster ovary cells. Flavonoids reversibly inhibited vitamin C transport in transfected cells with IC(50) values of 10-50 microm, concentrations expected to have physiologic consequences. The most potent inhibitor class was flavonols, of which quercetin is most abundant in foods. Because Chinese hamster ovary cells have endogenous vitamin C transport, we expressed SVCT1(h) in Xenopus laevis oocytes to study the mechanism of transport inhibition. Quercetin was a reversible and non-competitive inhibitor of ascorbate transport; K(i) 17.8 microm. Quercetin was a potent non-competitive inhibitor of GLUT2 expressed in Xenopus oocytes; K(i) 22.8 microm. When diabetic rats were administered glucose with quercetin, hyperglycemia was significantly decreased compared with administration of glucose alone. Quercetin also significantly decreased ascorbate absorption in normal rats given ascorbate plus quercetin compared with rats given ascorbate alone. Quercetin was a specific transport inhibitor, because it did not inhibit intestinal sugar transporters GLUT5 and SGLT1 that were injected and expressed in Xenopus oocytes. Quercetin inhibited but was not transported by SVCT1(h). Considered together, these data show that flavonoids modulate vitamin C and glucose transport by their respective intestinal transporters and suggest a new function for flavonoids. 相似文献
3.
Sadanand Fulzele Paresh Chothe Rajnikumar Sangani Norman Chutkan Mark Hamrick Maryka Bhattacharyya Puttur D. Prasad Ibrahim Zakhary Matthew Bowser Carlos Isales Vadivel Ganapathy 《Stem cell research》2013,10(1):36-47
Ascorbic acid (Vitamin C) has a critical role in bone formation and osteoblast differentiation, but very little is known about the molecular mechanisms of ascorbic acid entry into bone marrow stromal cells (BMSCs). To address this gap in knowledge, we investigated the identity of the transport system that is responsible for the uptake of ascorbic acid into bone marrow stromal cells (BMSCs). First, we examined the expression of the two known isoforms of the sodium-coupled ascorbic acid transporter, namely SVCT1 and SVCT2, in BMSCs (Lin ? ve Sca1 + ve) and bone at the mRNA level. Only SVCT2 mRNA was detected in BMSCs and bone. Uptake of ascorbic acid in BMSCs was Na+-dependent and saturable. In order to define the role of SVCT2 in BMSC differentiation into osteoblasts, BMSCs were stimulated with osteogenic media for different time intervals, and the activity of SVCT2 was monitored by ascorbic acid uptake. SVCT2 expression was up-regulated during the osteogenic differentiation of BMSCs; the expression was maximal at the earliest phase of differentiation. Subsequently, osteogenesis was inhibited in BMSCs upon knock-down of SVCT2 by lentivirus shRNA. We also found that the expression of the SVCT2 could be negatively or positively modulated by the presence of oxidant (Sin-1) or antioxidant (Ascorbic acid) compounds, respectively, in BMSCs. Furthermore, we found that this transporter is also regulated with age in mouse bone. These data show that SVCT2 plays a vital role in the osteogenic differentiation of BMSCs and that its expression is altered under conditions associated with redox reaction. Our findings could be relevant to bone tissue engineering and bone related diseases such as osteoporosis in which oxidative stress and aging plays important role. 相似文献
4.
Summary. Vitamin C is accumulated in mammalian cells by two types of proteins: sodium-ascorbate co-transporters (SVCTs) and hexose
transporters (GLUTs); in particular, SVCTs actively import ascorbate, the reduced form of this vitamin.
SVCTs are surface glycoproteins encoded by two different genes, very similar in structure. They show distinct tissue distribution
and functional characteristics, which indicate different physiological roles. SVCT1 is involved in whole-body homeostasis
of vitamin C, while SVCT2 protects metabolically active cells against oxidative stress. Regulation at mRNA or protein level
may serve for preferential accumulation of ascorbic acid at sites where it is needed.
This review will summarize the present knowledge on structure, function and regulation of the SVCT transporters. Understanding
the physiological role of SVCT1 and SVCT2 may lead to develop new therapeutic strategies to control intracellular vitamin
C content or to promote tissue-specific delivery of vitamin C-drug conjugates.
Authors’ address: Dr. Isabella Savini, Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor
Vergata, Via Montpellier 1, 00133 Rome, Italy 相似文献
5.
Wu X Itoh N Taniguchi T Nakanishi T Tatsu Y Yumoto N Tanaka K 《Archives of biochemistry and biophysics》2003,420(1):114-120
Zinc is an essential trace element that increases osteoblast numbers and bone formation. However, the mechanisms involved in the Zn-induced differentiation of osteoblasts are poorly understood. We examined the roles of L-ascorbic acid (AA) and its transporter, sodium-dependent vitamin C transporter (SVCT) 2, in the Zn-induced expression of osteoblastic differentiation markers. Zinc time- and dose-dependently induced SVCT2 mRNA expression in the absence or presence of AA. Western blotting and kinetic assays showed that Zn increased functional SVCT2 protein levels and AA transport. In the presence of AA, 50 microM Zn enhanced mRNA expression of the osteoblastic differentiation markers alkaline phosphatase, alpha(1)(I) procollagen, osteopontin (OPN), and osteocalcin (OCN) by 3.9-, 3.8-, 3.3-, and 3.5-fold, respectively; in the absence of AA, the Zn-induced increase was 2.8-, 2.5-, 1.3-, and 1.1-fold, respectively. These findings suggest that AA and SVCT2 mediate Zn-induced OPN and OCN expression and partly regulate Zn-induced osteoblastic differentiation. 相似文献
6.
Up-regulation of the vitamin C transporter SVCT2 upon differentiation and depolarization of myotubes
In addition to its role as a strong antioxidant, vitamin C regulates the differentiation of several cell lineages. In vertebrate skeletal muscle, the vitamin C transporter SVCT2 is preferentially expressed in slow muscle fibers. To gain insights into the possible involvement of intracellular vitamin C on early myogenesis, we investigated the regulation of SVCT2 expression in cultures of chick fetal myoblasts. SVCT2 expression increases in cultures of both, slow and fast muscle-derived myoblasts, as they fuse to form mainly fast myotubes. Interestingly, we found that SVCT2 could be positively modulated by potassium-induced depolarization of myotubes. These findings suggest that SVCT2-mediated uptake of vitamin C could play diverse roles on skeletal muscle development and physiology. 相似文献
7.
8.
Prasad PD Wang H Huang W Kekuda R Rajan DP Leibach FH Ganapathy V 《Biochemical and biophysical research communications》1999,255(2):283-288
We report here on the cloning and functional characterization of human LAT1, a subunit of the amino acid transport system L. The hLAT1 cDNA, obtained from a human placental cDNA library, codes for a protein of 507 amino acids. When functionally expressed in mammalian cells together with the heavy chain of the rat 4F2 antigen (r4F2hc), hLAT1 induces the transport of neutral amino acids. When expressed independently, neither hLAT1 nor r4F2hc was capable of amino acid transport to any significant extent. Thus, the hLAT1-r4F2hc heterodimeric complex is responsible for the observed amino acid transport. The transport process induced by the heterodimer is Na+ independent and is not influenced by pH. It recognizes exclusively neutral amino acids with high affinity. LAT1-specific mRNA is expressed in most human tissues with the notable exception of the intestine. 相似文献
9.
Expression and transport activity of Sodium-dependent Vitamin C Transporter 2 (SVCT2) was shown in various tissues and organs. Vitamin C was shown to be cerebroprotective in several animal models of stroke. Data on expression, localization and transport activity of SVCT2 after cerebral ischemia, however, has been scarce so far. Thus, we studied the expression of SVCT2 after middle cerebral artery occlusion (MCAO) in mice by immunohistochemistry. We found an upregulation of SVCT2 after stroke. Co-stainings with Occludin, Von-Willebrand Factor and CD34 demonstrated localization of SVCT2 in brain capillary endothelial cells in the ischemic area after stroke. Time-course analyses of SVCT2 expression by immunohistochemistry and western blots showed upregulation in the subacute phase of 2-5 days. Radioactive uptake assays using (14)C-labelled ascorbic acid showed a significant increase of ascorbic acid uptake into the brain after stroke. Taken together, these results provide evidence for the expression and transport activity of SVCT2 in brain capillary endothelial cells after transient ischemia in mice. These results may lead to the development of novel neuroprotective strategies in stroke therapy. 相似文献
10.
Mackenzie B Illing AC Hediger MA 《American journal of physiology. Cell physiology》2008,294(2):C451-C459
Vitamin C (L-ascorbic acid) is an essential micronutrient that serves as an antioxidant and as a cofactor in many enzymatic reactions. Intestinal absorption and renal reabsorption of the vitamin is mediated by the epithelial apical L-ascorbic acid cotransporter SVCT1 (SLC23A1). We explored the molecular mechanisms of SVCT1-mediated L-ascorbic acid transport using radiotracer and voltage-clamp techniques in RNA-injected Xenopus oocytes. L-ascorbic acid transport was saturable (K(0.5) approximately 70 microM), temperature dependent (Q(10) approximately 5), and energized by the Na(+) electrochemical potential gradient. We obtained a Na(+)-L-ascorbic acid coupling ratio of 2:1 from simultaneous measurement of currents and fluxes. L-ascorbic acid and Na(+) saturation kinetics as a function of cosubstrate concentrations revealed a simultaneous transport mechanism in which binding is ordered Na(+), L-ascorbic acid, Na(+). In the absence of L-ascorbic acid, SVCT1 mediated pre-steady-state currents that decayed with time constants 3-15 ms. Transients were described by single Boltzmann distributions. At 100 mM Na(+), maximal charge translocation (Q(max)) was approximately 25 nC, around a midpoint (V(0.5)) at -9 mV, and with apparent valence approximately -1. Q(max) was conserved upon progressive removal of Na(+), whereas V(0.5) shifted to more hyperpolarized potentials. Model simulation predicted that the pre-steady-state current predominantly results from an ion-well effect on binding of the first Na(+) partway within the membrane electric field. We present a transport model for SVCT1 that will provide a framework for investigating the impact of specific mutations and polymorphisms in SLC23A1 and help us better understand the contribution of SVCT1 to vitamin C metabolism in health and disease. 相似文献
11.
Ascorbate (vitamin C) is a vital antioxidant molecule in the brain. However, it also has a number of other important functions, participating as a cofactor in several enzyme reactions, including catecholamine synthesis, collagen production, and regulation of HIF-1α. Ascorbate is transported into the brain and neurons via the sodium-dependent vitamin C transporter 2 (SVCT2), which causes accumulation of ascorbate within cells against a concentration gradient. Dehydroascorbic acid, the oxidized form of ascorbate, is transported via glucose transporters of the GLUT family. Once in cells, it is rapidly reduced to ascorbate. The highest concentrations of ascorbate in the body are found in the brain and in neuroendocrine tissues such as adrenal, although the brain is the most difficult organ to deplete of ascorbate. Combined with regional asymmetry in ascorbate distribution within different brain areas, these facts suggest an important role for ascorbate in the brain. Ascorbate is proposed as a neuromodulator of glutamatergic, dopaminergic, cholinergic, and GABAergic transmission and related behaviors. Neurodegenerative diseases typically involve high levels of oxidative stress and thus ascorbate has been posited to have potential therapeutic roles against ischemic stroke, Alzheimer's disease, Parkinson's disease, and Huntington's disease. 相似文献
12.
Daniel Sandoval Jorge Ojeda Marcela Low Francisco Nualart Sylvain Marcellini Nelson Osses Juan Pablo Henríquez 《Histochemistry and cell biology》2013,139(6):887-894
Vitamin C plays key roles in cell homeostasis, acting as a potent antioxidant as well as a positive modulator of cell differentiation. In skeletal muscle, the vitamin C/sodium co-transporter SVCT2 is preferentially expressed in oxidative slow fibers. Besides, SVCT2 is up-regulated upon the early fusion of primary myoblasts. However, our knowledge of the postnatal expression profile of SVCT2 remains scarce. Here we have analyzed the expression of SVCT2 during postnatal development of the chicken slow anterior and fast posterior latissimus dorsi muscles, ranging from day 7 to adulthood. SVCT2 expression is consistently higher in the slow than in the fast muscle at all stages. After hatching, SVCT2 expression is significantly down-regulated in the anterior latissimus dorsi, which nevertheless maintains a robust slow phenotype. Taking advantage of the C2C12 cell line to recapitulate myogenesis, we confirmed that SVCT2 is expressed in a biphasic fashion, reaching maximal levels upon early myoblasts fusion and decreasing during myotube growth. Together, these findings suggest that the dynamic expression levels of SVCT2 could be relevant for different features of skeletal muscle physiology, such as muscle cell formation, growth and activity. 相似文献
13.
L-Carnitine transport in human placental brush-border membranes is mediated by the sodium-dependent organic cation transporter OCTN2 总被引:1,自引:0,他引:1
Lahjouji K Elimrani I Lafond J Leduc L Qureshi IA Mitchell GA 《American journal of physiology. Cell physiology》2004,287(2):C263-C269
Maternofetal transport of L-carnitine, a molecule that shuttles long-chain fatty acids to the mitochondria for oxidation, is thought to be important in preparing the fetus for its lipid-rich postnatal milk diet. Using brush-border membrane (BBM) vesicles from human term placentas, we showed that L-carnitine uptake was sodium and temperature dependent, showed high affinity for carnitine (apparent Km = 11.09 ± 1.32 µM; Vmax = 41.75 ± 0.94 pmol·mg protein1·min1), and was unchanged over the pH range from 5.5 to 8.5. L-Carnitine uptake was inhibited in BBM vesicles by valproate, verapamil, tetraethylammonium, and pyrilamine and by structural analogs of L-carnitine, including D-carnitine, acetyl-D,L-carnitine, and propionyl-, butyryl-, octanoyl-, isovaleryl-, and palmitoyl-L-carnitine. Western blot analysis revealed that OCTN2, a high-affinity, Na+-dependent carnitine transporter, was present in placental BBM but not in isolated basal plasma membrane vesicles. The reported properties of OCTN2 resemble those observed for L-carnitine uptake in placental BBM vesicles, suggesting that OCTN2 may mediate most maternofetal carnitine transport in humans. membrane transport; valproate; maternofetal; xenobiotics; acylcarnitine 相似文献
14.
Antioxidant vitamin C (VC) supplementation is of potential clinical benefit to individuals with skeletal muscle oxidative stress. However, there is a paucity of data reporting on the bioavailability of high-dose oral VC in human skeletal muscle. We aimed to establish the time course of accumulation of VC in skeletal muscle and plasma during high-dose VC supplementation in healthy individuals. Concurrently we investigated the effects of VC supplementation on expression levels of the key skeletal muscle VC transporter sodium-dependent vitamin C transporter 2 (SVCT2) and intramuscular redox and mitochondrial measures. Eight healthy males completed a randomized placebo-controlled, crossover trial involving supplementation with ascorbic acid (2×500 mg/day) over 42 days. Participants underwent muscle and blood sampling on days 0, 1, 7, and 42 during each treatment. VC supplementation significantly increased skeletal muscle VC concentration after 7 days, which was maintained at 42 days (VC 3.0±0.2 (mean±SEM) to 3.9±0.4 mg/100 g wet weight (ww) versus placebo 3.1±0.3 to 2.9±0.2 mg/100 g ww, p=0.001). Plasma VC increased after 1 day, which was maintained at 42 days (VC 61.0±6.1 to 111.5±10.4 µmol/L versus placebo 60.7±5.3 to 59.2±4.8 µmol/L, p<0.001). VC supplementation significantly increased skeletal muscle SVCT2 protein expression (main treatment effect p=0.006) but did not alter skeletal muscle redox measures or citrate synthase activity. A main finding of our study was that 7 days of high-dose VC supplementation was required to significantly increase skeletal muscle vitamin C concentration in healthy males. Our findings implicate regular high-dose vitamin C supplementation as a means to safely increase skeletal muscle vitamin C concentration without impairing intramuscular ascorbic acid transport, antioxidant concentrations, or citrate synthase activity. 相似文献
15.
Boyer JC Campbell CE Sigurdson WJ Kuo SM 《Biochemical and biophysical research communications》2005,334(1):150-156
Messenger RNA of homologous sodium-vitamin C cotransporters, SVCT1 and SVCT2, were found in the intestine. Studies using cultured intestinal cells suggested an apical presence of SVCT1 but the function of SVCT2 was unknown. Here, we showed that enterocytes from heterozygous SVCT2-knockout mice had lower sodium-dependent vitamin C accumulation compared to those from the wildtype. Thus, SVCT2 appears to be functional in enterocytes. We then tested whether SVCT2 could have a redundant function as SVCT1 by constructing and expressing EGFP-tagged SVCTs in intestinal Caco-2 and kidney MDCK cells. In confluent epithelial cells, SVCT1 protein expressed predominantly on the apical membrane. SVCT2, in contrast, accumulated at the basolateral surface. Functionally, SVCT1 expression led to more transport activity from the apical membrane, while SVCT2 expression only increased the uptake under the condition when basolateral membrane was exposed. This differential epithelial membrane distribution and function suggests non-redundant functions of these two isoforms. 相似文献
16.
17.
Wu X Itoh N Taniguchi T Hirano J Nakanishi T Tanaka K 《Biochemical and biophysical research communications》2004,317(4):1159-1164
Sodium-dependent vitamin C transporter (SVCT) 2 facilitates reduced ascorbic acid (AA) transport in MC3T3-E1 osteoblasts. Our previous studies suggested that Zn-induced osteoblast differentiation and Ca2+-, PO4(3-)-stimulated osteopontin (OPN) expression might result from their up-regulation effect on SVCT2 expression and AA uptake. Here, we investigated the role of SVCT2 on osteoblast differentiation by using SVCT2-overexpressing cells. Two clones of SVCT2-introduced cells overexpressed SVCT2 mRNA by 2.8- and 3.1-fold those of control cells, which resulted in obvious increase of AA uptake by 2.1- and 2.4-fold in Vmax with no change in Km. Alkaline phosphatase activity, hydroxyproline content significantly increased in SVCT2-overexpressing cells, and the induction of OPN mRNA was through up-regulation of OPN promoter activity by SVCT2 overexpression. Moreover, SVCT2-overexpressing cells exhibited more ability to promote mineralization and increase calcium deposition under the stimulation of 5 mM beta-glycerophosphate. These findings indicate that SVCT2 stimulates osteoblast differentiation and mineralization. 相似文献
18.
Akiko Amano Toshiro Aigaki Akihito Ishigami 《Archives of biochemistry and biophysics》2010,496(1):38-742
In this study, we examined whether ascorbic acid (AA) and dehydroascorbic acid (DHA), the oxidized form of AA, levels in tissues regulate the AA transporters, sodium-dependent vitamin C transporters (SVCT) 1 and SVCT2 and DHA transporters, glucose transporter (GLUT) 1, GLUT3, GLUT4 mRNA by using senescence marker protein-30 (SMP30)/gluconolactonase (GNL) knockout (KO) mice. These mice are incapable of synthesizing AA in vivo. AA depletion enhanced SVCT1 and SVCT2 mRNA expression in the liver and SVCT1 and GLUT4 mRNA expression in the small intestine, but not in the cerebrum or kidney. Next, we examined the actual impact of AA uptake by using primary cultured hepatocytes from SMP30/GNL KO mice. In the AA-depleted hepatocytes from SMP30/GNL KO mice, AA uptake was significantly greater than in matched cultures from wild-type mice. These results strongly affirm that intracellular AA is an important regulator of SVCT1 and SVCT2 expression in the liver. 相似文献
19.
The sodium-vitamin C co-transporter SVCT2 is primarily responsible for the accumulation of the important antioxidant ascorbate into brain cells. In vitro studies have demonstrated strong expression of this transporter in cultured astrocytes, whereas in situ hybridization analysis has so far detected SVCT2 only in neurons. In the present study, we examined the response of SVCT2 mRNA expression in the brain to focal ischemia induced for 2 h by unilateral middle cerebral artery occlusion. The mRNA expression patterns of SVCT2 and the glutamate-activated immediate early gene Arc were investigated at 2 and 22 h after ischemia. SVCT2 and Arc mRNA expression was lost in the ischemic core at both time points. In areas outside the core, Arc was strongly up-regulated, primarily at 2 h, whereas SVCT2 showed an increase at 2 and 22 h. SVCT2 expression was increased in neurons as well as in astrocytes, providing the first evidence for SVCT2 expression in astrocytes in situ. These findings underscore the importance of ascorbate as a neuroprotective agent and may have implications for therapeutic strategies. In addition, the increase of SVCT2 in astrocytes after ischemia suggests that cultured astrocytes are exposed to chronic oxidative stress. 相似文献
20.
Vitamin C transport and SVCT1 transporter expression in chick renal proximal tubule cells in culture
Johnston L Laverty G 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2007,146(3):327-334
The characteristics of vitamin C (ascorbic acid, ASC) transport were studied in polarized cultured monolayers of the chick (Gallus gallus) renal proximal tubule in Ussing chambers. Under voltage clamp conditions, monolayers responded to apical addition of ASC in a dose-dependent manner, with positive short circuit currents (I(SC)), ranging from 3 microA/cm(2) at 5 microM ASC to a maximal response of 27 microA/cm(2) at 200 microM, and a half-maximal response at 40 microM. There was no effect of basolateral addition of ASC, indicating a polarized transport process. The oxidized form of ASC, dehydroascorbic acid had negligible effects. The I(SC) response to ASC was completely eliminated with Na(+) ion replacement, and was also eliminated by bilateral reduction of bath Cl(-), from 137 to 2.6 mM. There was significant inhibition of the I(SC) responses to 30 microM ASC by the flavanoid quercetin (50 microM) and by 100 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and 5-ethylisopropylamiloride (EIPA), blockers of anion exchangers and sodium-proton exchangers, respectively. There was no inhibition, however, by the chloride channel blocker 5-nitro-2(3-phenylpropylamino)benzoic acid (NPPB). Phorbol 12-myristate 13 acetate (PMA), the phorbol ester activator of protein kinase C, caused a 37% decrease in the I(SC) response to ASC. Chicken-specific primers to an EST homolog of the human vitamin C transporter SVCT1 (SLC23A1) were designed and used to probe transporter expression in these cells. RT-PCR analysis demonstrated the presence of chicken SVCT1 in both cultured cells and in freshly isolated proximal tubule fragments. These data indicate the presence of an electrogenic, sodium-dependent vitamin C transporter (SVCT1) in the chick renal proximal tubule. Vitamin C transport and conservation by the kidney is likely to be especially critical in birds, due to high plasma glucose levels and resulting high levels of reactive oxygen species. 相似文献