首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We studied the electromyographic activity of the diaphragm (EMGdi) and abdominal external oblique (EMGeo) muscles in response to progressive hypercapnia (HCVR) and hypoxia (HVR) in five normal males. The slopes of the regression lines relating log EMGdi activity to minute volume of ventilation (VE) were steeper during HVR runs than HCVR runs (mean +/- SE, 0.03201 +/- 0.00724 vs. 0.02729 +/- 0.00676, P less than 0.03). Phasic expiratory EMGeo activity was seen in 15 of 15 HCVR runs but in only 6 of 15 HVR runs. Furthermore, the maximum level of VE attained before the onset of EMGeo activity was significantly lower during HCVR runs than during HVR runs (23.1 +/- 2.5 vs. 34.8 +/- 4.01/min, P less than 0.003). We conclude that in awake humans 1) the diaphragm is activated to a greater extent by hypoxia than hypercapnia at a given VE and 2) hypercapnia causes a more consistent recruitment of abdominal expiratory activity at lower VE than does hypoxia.  相似文献   

3.
The purpose of this study was to investigate the role of peripheral chemoreceptor activity on the hypoxic and hypercapnic ventilatory drives in rabbits with induced hypothyroidism. Experiments were carried out in control and hypothyroid rabbits. Hypothyroidism was induced by an administration of an iodide-blocker, methimazole in food (75 mg/100 g food) for ten weeks. At the end of the tenth week, triiodothyronine (T3) and thyroxine (T4) levels significantly decreased (P<0.001) while thyroid stimulating hormone (TSH) increased (P<0.001). Tidal volume (VT), respiratory frequency (f/min), ventilation minute volume (VE) and systemic arterial blood pressure (BP) were recorded during the breathing of the normoxic, hypoxic (8% O2-92% N2) and hypercapnic (6% CO2-Air) gas mixtures, in the anaesthetised rabbits of both groups. At the end of each experimental phase, PaO2, PaCO2, and pHa were measured. The same experimental procedure was repeated after peripheral chemoreceptor denervation in both groups. VT significantly decreased in some of the rabbits with hypothyroidism during the breathing of the hypoxic gas mixture (nonresponsive subgroup) (P<0.05). After chemodenervation, a decrease in VT was observed in this nonresponsive subgroup during normoxia (P<0.05). The percent decrease in VT in nonresponsive subgroup of hypothyroid rabbits after chemodenervation was lower than that of the chemodenervated control animals (P<0.01). When these rabbits with hypothyroidism were allowed to breath the hypercapnic gas mixtures, increases in VT and VE were not significant. In conclusion, although there is a decrease in peripheral chemoreceptor activity in hypothyroidism, it does not seem to be the only cause of decrease in ventilatory drive during hypoxia and hypercapnia.  相似文献   

4.
5.
Effect of isoprenaline on cells in different phases of the mitotic cycle   总被引:4,自引:0,他引:4  
The effects of isoprenaline on parotid acinar cells in different phases of the mitotic cycle have been investigated. Cells in mitosis at the time of drug administration are not depleted of secretory granules whilst those in other phases are. The drug causes temporary blocks both in metaphase and in the G2 phase. The blocks are prolonged by repeated injections of the drug. Cells continue to undergo DNA synthesis during the period of secretion following the drug. The mitotic delay appears to be specific for the parotid and submaxillary glands.  相似文献   

6.
Histamine produced either a bronchodilation or a bronchoconstriction in rats. In a 0.01-1.0 mcg/ml concentration histamine augmented the contractions amplitude in electrical stimulation of the trachea, in a 10-100 mcg/ml concentration histamine enhances the muscle tone thus decreasing the induced contractions. The histamine effects seems to be connected with its prevailing influence on different structures of the airways depending on the concentration. Its high concentrations act directly on the smooth muscle whereas its lower concentration affects receptors signaling the functional modules of the metasympathetic nervous system within the intramural ganglia of the trachea.  相似文献   

7.
8.
9.
10.
11.
1. Two populations of albino rats : normal and treated by phentolamine, or normal and vagotomized, have inhaled normoxic or hyperoxic mixtures with 3, 15 or 30% CO2 during 5 min. 2. Bradycardia is proportional to CO2 concentration, from 3% CO2. It is not suppressed by vagotomy. 3. Systemic arterial pressures, both systolic and diastolic, are decreased by 14% CO2. This hypotension is long lasting. At 30% CO2, immediate hypotension is followed by progressive recovery. After phentolamine, the return to normal is abolished. 4. Bradycardia is caused by CO2 or acidosis acting directly on the pace-maker cells. Variations of the systemic blood pressure are explained by an interference between a direct vasodilatation and a vasoconstriction due to sympathetic centres stimulation by CO2.  相似文献   

12.
The effect of increasing arterial partial pressure of CO2 (PaCO2) on respiratory mechanics was investigated in six anesthetized, paralyzed cats ventilated by constant-flow inflation. Respiratory mechanics were studied after end-inspiratory occlusions. Zero frequency resistance (Rmax), infinite frequency resistance (Rmin), and static elastance (Est) were calculated for the respiratory system, lung, and chest wall. Alveolar ventilation was manipulated by the addition of dead space to achieve a range of PaCO2 values of 29.3-87.3 mmHg. Cats did not become hypoxic during the experiment. Under control conditions marked frequency dependence in Rmax, Rmin, and Est of the respiratory system, lungs, and chest wall was demonstrated. The chest wall contributed 50% of the total resistance of the respiratory system. With increasing PaCO2 the only resistance observed to increase was Rmax of the lung (P less than 0.01). There were also no changes in the static elastic properties of either the lungs or the chest wall. These results suggest that hypercapnia increases resistance by changes in the lung periphery and not in the conducting airways.  相似文献   

13.
Five healthy young men underwent two separate steady-state incremental exercise runs within the aerobic range on a treadmill with alternating periods of breathing with no load (NL) and with a discontinuous inspiratory elastic load (IEL) of approximately 10 cmH2O/l. End-tidal PCO2 was maintained constant throughout each run at the eucapnic or a constant hypercapnic level by adding 0-5% CO2 to the inspired O2. Hypercapnia caused a steepening, as well as upward shift, relative to the corresponding eucapnic ventilation-CO2 output (VE-VCO2) relationship in NL and IEL. Compared with NL, the VE-VCO2 slope was depressed by IEL, more so in hypercapnic [-28.7 +/- 7.2 (SE) %] than in eucapnic exercise (-16.0 +/- 2.8%). The steady-state hypercapnic ventilatory response at rest was also markedly depressed (-32.1 +/- 11.2%). Occlusion pressure response was augmented in response to IEL during eucapnic exercise (88.7 +/- 13.3%) but not during CO2 inhalation at rest or during exercise. Breathing pattern characteristics were similar regardless of the type of stimulus input and the level of inspiratory load. Results are consistent with the notion that the control of VE and breathing pattern may both be influenced by a balance between the prevailing chemical drive and a propensity of the controller to reduce respiratory effort.  相似文献   

14.
Eight healthy young men underwent two separate steady-state incremental exercise runs within the aerobic range on a treadmill with alternating periods of breathing with no load (NL) and with an inspiratory resistive load (IRL) of approximately 12 cmH2O.1-1.s. End-tidal PCO2 was maintained constant throughout each run at the eucapnic or a constant hypercapnic level by adding 0-5% CO2 to the inspired O2. Hypercapnia caused a steepening, as well as upward shift, relative to the corresponding eucapnic ventilation-CO2 output (VE - VCO2) relationship in NL and IRL. Compared with NL, the VE - VCO2 slope was depressed by IRL, more so in hypercapnic [-19.0 +/- 3.4 (SE) %] than in eucapnic exercise (-6.0 +/- 2.0%), despite a similar increase in the slope of the occlusion pressure at 100 ms - VCO2 (P100 - VCO2) relationship under both conditions. The steady-state hypercapnic ventilatory response at rest was markedly depressed by IRL (-22.6 +/- 7.5%), with little increase in P100 response. For a given inspiratory load, breathing pattern responses to separate or combined hypercapnia and exercise were similar. During IRL, VE was achieved by a greater tidal volume (VT) and inspiratory duty cycle (TI/TT) along with a lower mean inspiratory flow (VT/TI). The increase in TI/TT was solely because of a prolongation of inspiratory time (TI) with little change in expiratory duration for any given VT. The ventilatory and breathing pattern responses to IRL during CO2 inhalation and exercise are in favor of conservation of respiratory work.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
We administered intravenous adenosine to 11 neonatal rabbits. Adenosine depressed respiration in 10 of 11 rabbits. For the group as a whole the adenosine-induced respiratory depression was highly significant (p less than 0.001). After aminophylline administration to the same animals the respiratory effect of intravenous adenosine was abolished in 3 animals. In 7 animals the effect of adenosine was reversed and respiratory stimulation was observed. After aminophylline adenosine produced a significant (p less than 0.001) increase in respiration in the group studied. The alteration of responses to intravenous adenosine by aminophylline in neonatal rabbits is similar to the effect of aminophylline on respiratory responses to hypoxia in neonates. Such an effect of aminophylline and other methylxanthines on adenosine actions, possibly central in site may explain their beneficial effect in the treatment of apnoea in the human neonate.  相似文献   

17.
18.
19.
This study develops a lumped cardiovascular–respiratory system-level model that incorporates patient-specific data to predict cardiorespiratory response to hypercapnia (increased CO2 partial pressure) for a patient with congestive heart failure (CHF). In particular, the study focuses on predicting cerebral CO2 reactivity, which can be defined as the ability of vessels in the cerebral vasculature to expand or contract in response CO2 induced challenges. It is difficult to characterize cerebral CO2 reactivity directly from measurements, since no methods exist to dynamically measure vasomotion of vessels in the cerebral vasculature. In this study we show how mathematical modeling can be combined with available data to predict cerebral CO2 reactivity via dynamic predictions of cerebral vascular resistance, which can be directly related to vasomotion of vessels in the cerebral vasculature. To this end we have developed a coupled cardiovascular and respiratory model that predicts blood pressure, flow, and concentration of gasses (CO2 and O2) in the systemic, cerebral, and pulmonary arteries and veins. Cerebral vascular resistance is incorporated via a model parameter separating cerebral arteries and veins. The model was adapted to a specific patient using parameter estimation combined with sensitivity analysis and subset selection. These techniques allowed estimation of cerebral vascular resistance along with other cardiovascular and respiratory parameters. Parameter estimation was carried out during eucapnia (breathing room air), first for the cardiovascular model and then for the respiratory model. Then, hypercapnia was introduced by increasing inspired CO2 partial pressure. During eucapnia, seven cardiovascular parameters and four respiratory parameters was be identified and estimated, including cerebral and systemic resistance. During the transition from eucapnia to hypercapnia, the model predicted a drop in cerebral vascular resistance consistent with cerebral vasodilation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号