首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Control of proteolysis is important for plant growth, development, responses to stress, and defence against insects and pathogens. Members of the serpin protein family are likely to play a critical role in this control through irreversible inhibition of endogenous and exogenous target proteinases. Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting an endogenous cysteine proteinase. Here, knowledge of plant serpins in terms of sequence diversity, inhibitory specificity, gene expression and function is reviewed. This was advanced through a phylogenetic analysis of amino acid sequences of expressed plant serpins, delineation of plant serpin gene structures and prediction of inhibitory specificities based on identification of reactive centres. The review is intended to encourage elucidation of plant serpin functions.  相似文献   

2.
Serpins are metastable proteinase inhibitors. Serpin metastability drives both a large conformational change that is utilized during proteinase inhibition and confers an inherent structural flexibility that renders serpins susceptible to aggregation under certain conditions. These include point mutations (the basis of a number of important human genetic diseases), small changes in pH, and an increase in temperature. Many studies of serpins from mesophilic organisms have highlighted an inverse relationship: mutations that confer a marked increase in serpin stability compromise inhibitory activity. Here we present the first biophysical characterization of a metastable serpin from a hyperthermophilic organism. Aeropin, from the archaeon Pyrobaculum aerophilum, is both highly stable and an efficient proteinase inhibitor. We also demonstrate that because of high kinetic barriers, aeropin does not readily form the partially unfolded precursor to serpin aggregation. We conclude that stability and activity are not mutually exclusive properties in the context of the serpin fold, and propose that the increased stability of aeropin is caused by an unfolding pathway that minimizes the formation of an aggregation-prone intermediate ensemble, thereby enabling aeropin to bypass the misfolding fate observed with other serpins.  相似文献   

3.
The uterine serpins have been described in sheep, cattle, and pigs as a highly diverged group of the large superfamily of serpin proteins that typically function as serine proteinase inhibitors. Here, the range of species that possess and express a uterine serpin gene is extended to the goat. Sequencing of cDNA amplified from total RNA from a pregnant goat at day 25 of pregnancy resulted in a 1,292 bp full-length consensus cDNA sequence for caprine uterine serpin (CaUS). The predicted amino acid sequence of the caprine precursor showed 96%, 82%, 55%, and 56% identity to OvUS, BoUS, PoUS1, and PoUS2, respectively. The signal peptide extends from amino acids 1 to 25, resulting in a secreted protein of 404 amino acids and 46,227 Mr (excluding carbohydrate). Both the goat and sheep uterine serpins have a nine amino acid insert in the Helix I region that is not found in bovine or porcine uterine serpins. A total of 13 amino acids in CaUS are different than those for the nearest homologue, ovine uterine serpin. One of these is in the site of cleavage of the signal sequence, where a single nucleotide substitution (G --> C) changed the cysteine for the sheep, bovine, and porcine genes to a serine. In addition, the amino acid at the putative P1-P1' site (the scissile bond for antiproteinase activity) is a valine for CaUS, BoUS, PoUS1, and PoUS2 versus an alanine for OvUS. The hinge region of all five of the uterine serpins (P17-P9) is distinct from the consensus pattern for inhibitory sequences and it is unlikely, therefore, that the uterine serpins possess prototypical proteinase inhibitory activity. The goat uterine serpin was immunolocalized to the glandular epithelium of the endometrium from a pregnant nanny at day 25 of pregnancy. There was also immunoreactive product in scattered luminal epithelial cells. No immunoreaction product was detected in endometrium from a nanny at day 5 of the estrous cycle. Western blotting of uterine fluid collected from the pregnant uterine horn of a unilaterally-pregnant goat revealed the presence of a protein band at Mr approximately 56,000 that reacted with monoclonal antibody to OvUS. In conclusion, the range of species in which uterine serpins are present and expressed in the uterus includes the goat in addition to the previously described sheep, cow, and pig. In all of these species, the uterine serpin is derived primarily from glandular epithelium, is secreted into the uterine lumen, and contains sequence characteristics suggesting it is not an inhibitory serpin.  相似文献   

4.
Serpins: structure,function and molecular evolution   总被引:5,自引:0,他引:5  
The superfamily of serine proteinase inhibitors (serpins) are involved in a number of fundamental biological processes such as blood coagulation, complement activation, fibrinolysis, angiogenesis, inflammation and tumor suppression and are expressed in a cell-specific manner. The average protein size of a serpin family member is 350-400 amino acids, but gene structure varies in terms of number and size of exons and introns. Previous studies of all known serpins identified 16 clades and 10 orphan sequences. Vertebrate serpins can be conveniently classified into six sub-groups. We provide additional data that updates the phylogenetic analysis in the context of structural and functional properties of the proteins. From these, we can conclude that the functional classification of serpins relies on their protein structure and not on sequence similarity.  相似文献   

5.
The squamous cell carcinoma antigen (SCCA) 1 and its homologous molecule, SCCA2, belong to the ovalbumin-serpin family. Although SCCA2 inhibits serine proteinases such as cathepsin G and mast cell chymase, SCCA1 targets cysteine proteinases such as cathepsin S, K, L, and papain. SCCA1 is therefore called a cross-class serpin. The inhibitory mechanism of the standard serpins is well characterized; those use a suicide substrate-like inhibitory mechanism during which an acyl-enzyme intermediate by a covalent bond is formed, and this complex is stable against hydrolysis. However, the inhibitory mechanism of cross-class serpins remains unresolved. In this article, we analyzed the inhibitory mechanism of SCCA1 on a cysteine proteinase, papain. SCCA1 interacted with papain at its reactive site loop, which was then cleaved, as the standard serpins. However, gel-filtration analyses showed that SCCA1 did not form a covalent complex with papain, in contrast to other serpins. Interaction with SCCA1 severely impaired the proteinase activity of papain, probably by inducing conformational change. The decreased, but still existing, proteinase activity of papain was completely inhibited by SCCA1 according to the suicide substrate-like inhibitory mechanism; however, papain recovered its proteinase activity with the compromised level, when all of intact SCCA1 was cleaved. These results suggest that the inhibitory mechanism of SCCA1 is unique among the serpin superfamily in that SCCA1 performs its inhibitory activity in two ways, contributing the suicide substrate-like mechanism without formation of a covalent complex and causing irreversible impairment of the catalytic activity of a proteinase.  相似文献   

6.
Most serpins irreversibly inactivate specific serine proteinases of the chymotrypsin family. Inhibitory serpins are unusual proteins in that their native structure is metastable, and rapid conversion to a relaxed state is required to trap target enzymes in a covalent complex. The evolutionary origin of the serpin fold is unresolved, and while serpins in animals are known to be involved in the regulation of a remarkable diversity of metabolic processes, the physiological functions of homologues from other phyla are unknown. Addressing these questions, here we analyze serpin genes identified in unicellular eukaryotes: the green alga Chlamydomonas reinhardtii, the dinoflagellate Alexandrium tamarense, and the human pathogens Entamoeba spp., Eimera tenella, Toxoplasma gondii, and Giardia lamblia. We compare these sequences to others, particularly those in the complete genome sequences of Archaea, where serpins were found in only 4 of 13 genera, and Bacteria, in only 9 of 56 genera. The serpins from unicellular organisms appear to be phylogenetically distinct from all of the clades of higher eukaryotic serpins. Most of the sequences from unicellular organisms have the characteristics of inhibitory serpins, and where multiple serpin genes are found in one genome, variability is displayed in the region of the reactive-center loop important for specificity. All the unicellular eukaryotic serpins have large hydrophobic or positively charged residues at the putative P1 position. In contrast, none of the prokaryotic serpins has a residue of these types at the predicted P1 position, but many have smaller, neutral residues. Serpin evolution is discussed.[Reviewing Editor: Dr. Peer Bork]  相似文献   

7.
Delineating the phylogenetic relationships among members of a protein family can provide a high degree of insight into the evolution of domain structure and function relationships. To identify an early metazoan member of the high molecular weight serine proteinase inhibitor (serpin) superfamily, we initiated a cDNA library screen of the cnidarian, Cyanea capillata. We identified one serpin cDNA encoding for a full-length serpin, jellypin. Phylogenetic analysis using the deduced amino acid sequence showed that jellypin was most similar to the platyhelminthe Echinococcus multiocularis serpin and the clade P serpins, suggesting that this serpin evolved approximately 1000 million years ago (MYA). Modeling of jellypin showed that it contained all the functional elements of an inhibitory serpin. In vitro biochemical analysis confirmed that jellypin was an inhibitor of the S1 clan SA family of serine proteinases. Analysis of the interactions between the human serine proteinases, chymotrypsin, cathepsin G, and elastase, showed that jellypin inhibited these enzymes in the classical serpin manner, forming a SDS stable enzyme/inhibitor complex. These data suggest that the coevolution of serpin structure and inhibitory function date back to at least early metazoan evolution, approximately 1000 MYA.  相似文献   

8.
9.
Serpins utilize conformational change to inhibit target proteinases; the price paid for this conformational flexibility is that many undergo temperature-induced polymerization. Despite this thermolability, serpins are present in the genomes of thermophilic prokaryotes, and here we characterize the first such serpin, thermopin. Thermopin is a proteinase inhibitor and, in comparison with human alpha(1)-antitrypsin, possesses enhanced stability at 60 degrees C. The 1.5 A crystal structure reveals novel structural features in regions implicated in serpin folding and stability. Thermopin possesses a C-terminal "tail" that interacts with the top of the A beta sheet and plays an important role in the folding/unfolding of the molecule. These data provide evidence as to how this unusual serpin has adapted to fold and function in a heated environment.  相似文献   

10.
Serine protease inhibitors (serpins), the antagonists of serine proteases, were unknown in the bacterial kingdom until recently. Kang et al. in this issue of Molecular Microbiology report the cloning and functional analysis of the three serpin genes from the thermophilic anaerobic bacterium Clostridium thermocellum. Two of the serpins contain a dockerin module for location in the extracellular hydrolytic multienzyme complex, the cellulosome. The susceptibility of cellulosome to proteolytic degradation and the presence of a serine protease in the same complex provoke speculation that protease inhibitor/protease pairs could play hitherto unrecognized roles in protein stability and regulation in bacteria.  相似文献   

11.
The serpin superfamily of serine proteinase inhibitors has a central role in controlling proteinases in many biological pathways in a wide range of species. The inhibitory function of the serpins involves a marked conformational transition, but this inherent molecular flexibility also renders the serpins susceptible to point mutations that result in aberrant intermolecular linkage and polymer formation. The effects of such protein aggregation are cumulative, with a progressive loss of cellular function that results in diseases as diverse as cirrhosis and emphysema. The recent recognition that mutations in a serpin can also result in late-onset dementia provides insights into changes that underlie other conformational diseases, such as the amyloidoses, the prion encephalopathies and Huntington and Alzheimer diseases.  相似文献   

12.
Serpins form an enormous superfamily of 40–60-kDa proteins found in almost all types of organisms, including humans. Most are one-use suicide substrate serine and cysteine proteinase inhibitors that have evolved to finely regulate complex proteolytic pathways, such as blood coagulation, fibrinolysis, and inflammation. Despite distinct functions for each serpin, there is much redundancy in the primary specificity-determining residues. However, many serpins exploit additional exosites to generate the exquisite specificity that makes a given serpin effective only when certain other criteria, such as the presence of specific cofactors, are met. With a focus on human serpins, this minireview examines use of exosites by nine serpins in the initial complex-forming phase to modulate primary specificity in either binary serpin-proteinase complexes or ternary complexes that additionally employ a protein or other cofactor. A frequent theme is down-regulation of inhibitory activity unless the exosite(s) are engaged. In addition, the use of exosites by maspin and plasminogen activator inhibitor-1 to indirectly affect proteolytic processes is considered.Serpins are ubiquitously found in all multicellular organisms and even in some viruses and bacteria (1, 2). They are 40–60-kDa proteins present both extra- and intracellularly that function mostly as serine and cysteine proteinase inhibitors (1). Well known examples are antithrombin, the principal inhibitor of blood coagulation proteinases; PAI-1,3 an inhibitor of the plasminogen activators tPA and uPA; and α1PI, the principal inhibitor of neutrophil elastase. A characteristic of the processes regulated by these serpins is that they involve mostly proteinase cascades that need to be regulated with respect to both the site where they occur and their duration of action.  相似文献   

13.
Proteinase inhibitors of the serpin superfamily may exist in one of three distinct conformations: the native form, a fully active protein with the reactive site loop intact; the proteolytically modified form in which inhibitory capacity is abolished; and the proteinase-complexed form, a stable equimolar complex between the inhibitor and a target proteinase. Here, the specificity and kinetics of the plasma elimination of different serpin conformations are compared. Proteinase-complexed serpins were rapidly cleared from the circulation. However, the native and modified forms were not cleared rapidly, indicating that the receptor-mediated pathways which recognize the complexes fail to recognize the native and modified forms. This result suggests that significant structural differences exist between modified and proteinase-complexed serpins. The structural differences were probed by using transverse urea gradient gel electrophoresis, a technique that allows comparisons of the conformational stabilities of proteins. With the exception of the noninhibitory serpins ovalbumin and angiotensinogen, the modified and proteinase-complexed serpins were both stabilized thermodynamically compared to the native forms. In addition, the proteinase component of the serpin-proteinase complex was usually thermodynamically stabilized. These data are used to compare the conformations of serpin-proteinase complexes with those of native and modified serpins; they are discussed in terms of a model whereby serpins inhibit proteinases in a manner similar to that described for other types of protein inhibitors of serine proteinases.  相似文献   

14.
SERPINB11, the last of 13 human clade B serpins to be described, gave rise to seven different isoforms. One cDNA contained a premature termination codon, two contained splice variants, and four contained full-length open reading frames punctuated by eight single nucleotide polymorphisms (SNPs). The SNPs encoded amino acid variants located within the serpin scaffold but not the reactive site loop (RSL). Although the mouse orthologue, Serpinb11, could inhibit trypsin-like peptidases, SERPINB11 showed no inhibitory activity. To determine whether the human RSL targeted a different class of peptidases or the serpin scaffold was unable to support inhibitory activity, we synthesized chimeric human and mouse proteins, in which the RSLs had been swapped. The human RSL served as a trypsin inhibitor when supported by mouse scaffold sequences. Conversely, the mouse RSL on the human scaffold showed no inhibitory activity. These findings suggested that variant residues in the SERPINB11 scaffold impaired serpin function. SDS-PAGE analysis supported this notion as RSL-cleaved SERPINB11 was unable to undergo the stressed-to-relaxed transition typical of inhibitory type serpins. Mutagenesis studies supported this hypothesis, since the reversion of amino acid sequences in helices D and I to those conserved in other clade B serpins partially restored the ability of SERPINB11 to form covalent complexes with trypsin. Taken together, these findings suggested that SERPINB11 SNPs encoded amino acids in the scaffold that impaired RSL mobility, and HapMap data showed that the majority of genomes in different human populations harbored these noninhibitory SERPINB11 alleles. Like several other serpin superfamily members, SERPINB11 has lost inhibitory activity and may have evolved a noninhibitory function.  相似文献   

15.
A gene encoding a novel component of the cellulolytic complex (cellulosome) of the anaerobic fungus Piromyces sp. strain E2 was identified. The encoded 538 amino acid protein, named celpin, consists of a signal peptide, a positively charged domain of unknown function followed by two fungal dockerins, typical for components of the extracellular fungal cellulosome. The C-terminal end consists of a 380 amino acid serine proteinase inhibitor (or serpin) domain homologue, sharing 30 % identity and 50 % similarity to vertebrate and bacterial serpins. Detailed protein sequence analysis of the serpin domain revealed that it contained all features of a functional serpin. It possesses the conserved amino acids present in more than 70 % of known serpins, and it contained the consensus of inhibiting serpins. Because of the confined space of the fungal cellulosome inside plant tissue and the auto-proteolysis of plant material in the rumen, the fungal serpin is presumably involved in protection of the cellulosome against plant proteinases. The celpin protein of Piromyces sp. strain E2 is the first non-structural, non-hydrolytic fungal cellulosome component. Furthermore, the celpin protein of Piromyces sp. strain E2 is the first representative of a serine proteinase inhibitor of the fungal kingdom.  相似文献   

16.
Serpins are unique inhibitors of serine proteases that are located in various plant tissues and organs. An orthologue of the pumpkin (Cucurbita maxima) phloem serpin CmPS-1 was amplified from cucumber (Cucumis sativus) RNA by RT-PCR, cloned, and designated as CsPS-1 (GenBank accession no. AJ866989). Alternative amino acid sequences in the reactive centre loop suggest distinct inhibitory specificity between CmPS-1 and CsPS-1. A difference in the electrophoretic mobility of these serpins was used in heterografts to establish that serpins are phloem-mobile. Immuno light microscopy revealed that the phloem serpins are localized exclusively to sieve elements (SE), while the phloem filament protein CmPP1, used as a reference, is localized to both SEs and companion cells (CCs). Similar to CmPS-1, CsPS-1 accumulates over time in phloem exudates, indicating that serpins differ from other phloem-mobile proteins whose concentrations appear to be stable in phloem exudates. These differences could reflect alternative mechanisms regulating protein turnover and/or inaccessibility of protein degradation. The functionality of the pore/plasmodesma units connecting SEs and CCs was tested with graft-transmitted CmPP1 as a transport marker. The occurrence of CmPP1 in the CCs of the Cucumis graft partner shows that translocated 88 kDa phloem filament protein monomers can symplasmically exit the SE and accumulate in the CC. By contrast, serial sections probed with the serpin antibody demonstrate that the 43 kDa serpin does not enter CCs. Collectively, these data indicate that CCs play a decisive role in homeostasis of exudate proteins; proteins not accessing the CCs accumulate in SEs and display a time-dependent increase in concentration.  相似文献   

17.
Pak SC  Tsu C  Luke CJ  Askew YS  Silverman GA 《Biochemistry》2006,45(14):4474-4480
Members of the intracellular serpin family may help regulate apoptosis, tumor progression, and metastasis. However, their in vivo functions in the context of a whole organism have not been easily defined. To better understand the biology of these serpins, we initiated a comparative genomics study using Caenorhabditis elegans as a model organism. Previous in silico analysis suggested that the C. elegans genome harbors nine serpin-like sequences bearing significant similarities to the human clade B intracellular serpins. However, only five genes appear to encode full-length serpins with intact reactive site loops. To determine if this was the case, we have cloned and expressed a putative inhibitory-type C. elegans serpin, srp-3. Analysis of SRP-3 inhibitory activity indicated that SRP-3 was a potent inhibitor of the serine peptidases, chymotrypsin and cathepsin G. Spatial and temporal expression studies using GFP and LacZ promoter fusions indicated that SRP-3 was expressed primarily in the anterior body wall muscles, suggesting that it may play a role in muscle cell homeostasis. Combined with previous studies showing that SRP-2 is an inhibitor of the serine peptidase, granzyme B, and lysosomal cysteine peptidases, these data suggested that C. elegans expressed at least two inhibitory-type serpins with nonoverlapping expression and inhibitory profiles. Moreover, the profiles of these clade L serpins in C. elegans share significant similarities with the profiles of clade B intracellular serpin members in higher vertebrates. This degree of conservation suggests that C. elegans should prove to be a valuable resource in the study of metazoan intracellular serpin function.  相似文献   

18.
19.
Serpins are a superfamily of serine proteinase inhibitors which function to regulate a number of key biological processes including fibrinolysis, inflammation, and cell migration. Poxviruses are the only viruses known to encode functional serpins. While some poxvirus serpins regulate inflammation (myxoma virus SERP1 and cowpox virus [CPV] crmA/SPI-2) or apoptosis (myxoma virus SERP2 and CPV crmA/SPI-2), the function of other poxvirus serpins remains unknown. The rabbitpox virus (RPV) SPI-1 protein is 47% identical to crmA and shares all of the serpin structural motifs. However, no serpin-like activity has been demonstrated for SPI-1 to date. Earlier we showed that RPV with the SPI-1 gene deleted, unlike wild-type virus, fails to grow on A549 or PK15 cells (A. Ali, P. C. Turner, M. A. Brooks, and R. W. Moyer, Virology 202:306-314, 1994). Here we demonstrate that in the absence of a functional SPI-1 protein, infected nonpermissive cells which exhibit the morphological features of apoptosis fail to activate terminal caspases or cleave the death substrates PARP or lamin A. We show that SPI-1 forms a stable complex in vitro with cathepsin G, a member of the chymotrypsin family of serine proteinases, consistent with serpin activity. SPI-1 reactive-site loop (RSL) mutations of the critical P1 and P14 residues abolish this activity. Viruses containing the SPI-1 RSL P1 or P14 mutations also fail to grow on A549 or PK15 cells. These results suggest that the full virus host range depends on the serpin activity of SPI-1 and that in restrictive cells SPI-1 inhibits a proteinase with chymotrypsin-like activity and may function to inhibit a caspase-independent pathway of apoptosis.  相似文献   

20.
The serpin superfamily of proteins has expanded rapidly in recent years as represented by the ovalbumin-type serpin subfamily. PCR methods have been used to identify new ovalbumin-type serpins, including leupin or SCCA-2, a close relative of SCCA. Although in vitro inhibition of proteases by these serpins has been shown, and we have evidence that leupin can protect cells against apoptosis, the exact role of these serpins is not well understood. Finding relevant targets is a major challenge in serpin biology, and we have investigated the yeast-2-hybrid trap for identification of new interactions. Preliminary studies suggest that serpins are at the upper limit for bait size, but this technique may be useful for identifying interactions where full-length serpin protein is not required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号