共查询到20条相似文献,搜索用时 15 毫秒
1.
Gloria H. Merritt Wesley R. Naemi Pierre Mugnier Helen M. Webb Mick F. Tuite Tobias von der Haar 《Nucleic acids research》2010,38(16):5479-5492
Translation termination in eukaryotes typically requires the decoding of one of three stop codons UAA, UAG or UGA by the eukaryotic release factor eRF1. The molecular mechanisms that allow eRF1 to decode either A or G in the second nucleotide, but to exclude UGG as a stop codon, are currently not well understood. Several models of stop codon recognition have been developed on the basis of evidence from mutagenesis studies, as well as studies on the evolutionary sequence conservation of eRF1. We show here that point mutants of Saccharomyces cerevisiae eRF1 display significant variability in their stop codon read-through phenotypes depending on the background genotype of the strain used, and that evolutionary conservation of amino acids in eRF1 is only a poor indicator of the functional importance of individual residues in translation termination. We further show that many phenotypes associated with eRF1 mutants are quantitatively unlinked with translation termination defects, suggesting that the evolutionary history of eRF1 was shaped by a complex set of molecular functions in addition to translation termination. We reassess current models of stop-codon recognition by eRF1 in the light of these new data. 相似文献
2.
Mutant strains of Saccharomyces cerevisiae which require ergosterol for growth have been isolated. These mutants are all petite and require a fatty acid. Several mutants require methionine in addition. These mutants have been classified into 6 complementation groups. For one of the mutants the enzymatic block has been localized after lanosterol. These mutants do not show a stringent requirement for ergosterol, as sitosterol, stigmasterol or cholesterol also support growth. Mutants of this type will be of value not only in studies of sterol biosynthesis, but also in assessing the biological role of sterols in the cytoplasmic yeast membrane. Similar mutants but without a stringent requirement for a sterol have been previously isolated by Resnick and Mortimer (8). 相似文献
3.
4.
Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance 总被引:1,自引:1,他引:1
Carlos Romero José M. Bellés José L. Vayá Ramón Serrano Francisco A. Culiáñez-Macià 《Planta》1997,201(3):293-297
The yeast trehalose-6-phosphate synthase gene (TPS1) was engineered under the control of the cauliflower mosaic virus regulatory sequences (CaMV35S) for expression in plants.
Using Agrobacterium-mediated transfer, the gene was incorporated into the genomic DNA and constitutively expressed in Nicotiana tabacum␣L. plants. Trehalose was determined in the transformants, by anion-exchange chromatography coupled to pulsed amperometric
detection. The non-reducing disaccharide accumulated up to 0.17 mg per g fresh weight in leaf extracts of transgenic plants.
Trehalose-accumulating plants exhibited multiple phenotypic alterations, including stunted growth, lancet-shaped leaves, reduced
sucrose content and improved drought tolerance. These pleiotropic effects, and the fact that water loss from detached leaves
was not significantly affected by trehalose accumulation, suggest that synthesis of this sugar, rather than leading to an
osmoprotectant effect, had altered sugar metabolism and regulatory pathways affecting plant development and stress tolerance.
Received: 8 July 1996 / Accepted: 10 October 1996 相似文献
5.
Characterization of the pleiotropic phenotypes of rifampin-resistant rpoB mutants of Escherichia coli 总被引:11,自引:3,他引:8 下载免费PDF全文
We used our collection of 17 sequenced rifampin resistance alleles in rpoB to perform a systematic analysis of the phenotypes historically reported with this class of mutants, including growth phenotype, ability to support the growth of different bacteriophages, ability to maintain the F' episome, interaction with mutant alleles at other loci, sensitivity to uracil, inhibition by 5-fluorouridine, and dominance. We found that mutational changes leading to the same phenotype were often located together and that certain phenotypes were associated with one another. 相似文献
6.
7.
B A Arthington L G Bennett P L Skatrud C J Guynn R J Barbuch C E Ulbright M Bard 《Gene》1991,102(1):39-44
The ERG3 gene from Saccharomyces cerevisiae has been cloned by complementation of an erg3-2 mutation. ERG3 is the putative gene encoding the C-5 sterol desaturase required for ergosterol biosynthesis. The functional gene has been localized on a 2.5-kb HindIII-BamHI fragment containing an open reading frame comprising 365 amino acids. Gene disruption resulting from a deletion/substitution demonstrates that ERG3 is not essential for cell viability or the sparking function. 相似文献
8.
Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions 总被引:1,自引:0,他引:1
Background
Understanding the response of complex biochemical networks to genetic perturbations and environmental variability is a fundamental challenge in biology. Integration of high-throughput experimental assays and genome-scale computational methods is likely to produce insight otherwise unreachable, but specific examples of such integration have only begun to be explored. 相似文献9.
10.
11.
Fickers P Le Dall MT Gaillardin C Thonart P Nicaud JM 《Journal of microbiological methods》2003,55(3):727-737
Yarrowia lipolytica is one of the most extensively studied nonconventional yeasts. Unfortunately, few methods for gene disruption have been reported for this yeast, and all of them are time-consuming and laborious. The functional analysis of unknown genes requires powerful disruption methods. Here, we describe such a new method for rapid gene disruption in Y. lipolytica. This knockout system combines SEP method and the Cre-lox recombination system, facilitating efficient marker rescue. Versatility was increased by using both auxotrophic markers like ylURA3 and ylLEU2, as well as the antibiotic resistance marker hph. The hph marker, which confers resistance to hygromycin-B, allows gene disruption in a strain lacking any conventional auxothrophic marker. The disruption cassette was shown to integrate at the correct locus at an average frequency of 45%. Upon expression of Cre recombinase, the marker was excised at a frequency of 98%, by recombination between the two lox sites. This new method for gene disruption is an ideal tool for the functional analysis of gene families, or for creating large-scale mutant collections in general. 相似文献
12.
The bacterial ArsA ATPase is the catalytic component of an oxyanion pump that is responsible for resistance to arsenicals and antimonials. Homologues of the bacterial ArsA ATPase are widespread in nature. We had earlier identified the mouse homologue (Asna1) that exhibits 27% identity to the bacterial ArsA ATPase. To identify the physiological role of the protein, heterozygous Asna1 knockout mice (Asna1+/-) were generated by homologous recombination. The Asna1+/- mice displayed similar phenotype as the wild-type mice. However, early embryonic lethality was observed in homozygous Asna1 knockout embryos, between E3.5 (E=embryonic day) and E8.5 stage. These findings indicate that Asna1 plays a crucial role during early embryonic development. 相似文献
13.
Okamoto R Ito M Suzuki N Kongo M Moriki N Saito H Tsumura H Imanaka-Yoshida K Kimura K Mizoguchi A Hartshorne DJ Nakano T 《Transgenic research》2005,14(3):337-340
Myosin phosphatase (MP) is a major phosphatase responsible for the dephosphorylation of the regulatory light chain of myosin II. MYPT1, a target subunit of smooth and nonmuscle MP, is responsible for activation and regulation of MP. To identity the physiological roles of MP, we have generated MYPT1-deficient mice by gene targeting. The heterozygous mice showed no changes in expression levels of MYPT1 and no distinct phenotype compared to wild-type mice was observed. None of the F2 mice were homozygous for the MYPT1 deletion, indicating that the targeted disruption of the MYPT1 gene resulted in embryonic lethality. The point of embryonic lethality is before 7.5 dpc. These findings indicate that MYPT1 is essential for mouse embryogenesis. 相似文献
14.
Recent advances in high-throughput gene targeting and conditional mutagenesis are creating new and powerful resources to study the in vivo function of mammalian genes using the mouse as an experimental model. Mutant ES cells and mice are being generated at a rapid rate to study the molecular and phenotypic consequences of genetic mutations, and to correlate these study results with human disease conditions. Likewise, classical genetics approaches to identify mutations in the mouse genome that cause specific phenotypes have become more effective. Here, we describe methods to quickly obtain information on what mutant ES cells and mice are available, including recombinase driver lines for the generation of conditional mutants. Further, we describe means to access genetic and phenotypic data that identify mouse models for specific human diseases. 相似文献
15.
Suzuki Y Miura H Tanemura A Kobayashi K Kondoh G Sano S Ozawa K Inui S Nakata A Takagi T Tohyama M Yoshikawa K Itami S 《FEBS letters》2002,518(1-3):67-71
We have designed a chimeric promoter that can be stimulated by various pro-inflammatory mediators and so drive the expression of therapeutic genes under inflammatory conditions. The promoter has two parts, the [-247/+20] fragment of the human type IIA secreted phospholipase A2 gene promoter, which is stimulated by the pro-inflammatory cytokine interleukin-1beta (IL-1beta), and a double peroxisome proliferator-activated receptor response element that is activated by some eicosanoids and by non-steroidal anti-inflammatory drugs (NSAIDs). Transfection experiments using rabbit articular chondrocytes in primary culture showed that this chimeric promoter produced a low basal activity and was induced by NSAIDs, WY-14643, IL-1beta, and 15-deoxy Delta12,14 prostaglandin J2. The latter two compounds stimulated the promoter synergistically. 相似文献
16.
《Fly》2013,7(4):180-188
Mutations in the Drosophila gene drop-dead (drd) result in early adult lethality and neurodegeneration, but the molecular identity of the drd gene and its mechanism of action are not known. This paper describes the characterization of a new X-linked recessive adult-lethal mutation, originally called lot's wife (lwf1) but subsequently identified as an allele of drd (drdlwf); drdlwf mutants die within two weeks of eclosion. Through mapping and complementation, the drd gene has been identified as CG33968, which encodes a putative integral membrane protein of unknown function. The drdlwf allele is associated with a nonsense mutation that eliminates nearly 80% of the CG33968 gene product; mutations in the same gene were also found in two previously described drd alleles. Characterization of drdlwf flies revealed additional phenotypes of drd, most notably, defects in food processing by the digestive system and in oogenesis. Mutant flies store significantly more food in their crops and defecate less than wild-type flies, suggesting that normal transfer of ingested food from the crop into the midgut is dependent upon the DRD gene product. The defect in oogenesis results in the sterility of homozygous mutant females and is associated with a reduction in the number of vitellogenic egg chambers. The disruption in vitellogenesis is far more severe than that seen in starved flies and so is unlikely to be a secondary consequence of the digestive phenotype. This study demonstrates that mutation of the drd gene CG33968 results in a complex phenotype affecting multiple physiological systems within the fly. 相似文献
17.
Blumenthal EM 《Fly》2008,2(4):180-188
Mutations in the Drosophila gene drop-dead (drd) result in early adult lethality and neurodegeneration, but the molecular identity of the drd gene and its mechanism of action are not known. This paper describes the characterization of a new X-linked recessive adult-lethal mutation, originally called lot's wife (lwf(1)) but subsequently identified as an allele of drd (drd(lwf)); drd(lwf) mutants die within two weeks of eclosion. Through mapping and complementation, the drd gene has been identified as CG33968, which encodes a putative integral membrane protein of unknown function. The drd(lwf) allele is associated with a nonsense mutation that eliminates nearly 80% of the CG33968 gene product; mutations in the same gene were also found in two previously described drd alleles. Characterization of drd (lwf) flies revealed additional phenotypes of drd, most notably, defects in food processing by the digestive system and in oogenesis. Mutant flies store significantly more food in their crops and defecate less than wild-type flies, suggesting that normal transfer of ingested food from the crop into the midgut is dependent upon the DRD gene product. The defect in oogenesis results in the sterility of homozygous mutant females and is associated with a reduction in the number of vitellogenic egg chambers. The disruption in vitellogenesis is far more severe than that seen in starved flies and so is unlikely to be a secondary consequence of the digestive phenotype. This study demonstrates that mutation of the drd gene CG33968 results in a complex phenotype affecting multiple physiological systems within the fly. 相似文献
18.
The TRP1 marker has been commonly used for gene disruption experiments and subsequent phenotypic analysis. However, introduction of the TRP1 gene into a trp1 strain markedly affects growth under many conditions used for phenotypic profiling. Therefore, its use in the past should be revisited and utilization of this marker should be avoided in future analyses. 相似文献
19.
《Gene》1996,169(1):111-113
Cassettes based on a hisG-URA3-hisG insert have been modified by the addition of a KmR-encoding gene and flanking polylinker sites, greatly simplifying construction of gene disruption vectors in Escherichia coli. After gene disruption in yeast, URA3 can then be excised by recombination between the hisG repeats flanking the gene, permitting reuse of the URA3 marker 相似文献
20.
Cloning of the yeast methionyl-tRNA synthetase gene 总被引:9,自引:0,他引:9
A pool of random wild type yeast DNA fragments obtained by partial Sau IIIA restriction enzyme digestion and inserted in the Bam HI site of the hybrid yeast Escherichia coli plasmid ((pFL1) has been used to transform to prototrophy a methionyl-tRNA synthetase-impaired mutant requiring methionine. In the numerous prototroph strains recovered at least two independent clones have been obtained which show nonchromosomic inheritance character and an approximately 30-fold increase in methionyl-tRNA synthetase activity as compared to the wild type. Measurement of the Km for methionine in the transformed yeast cells indicates that the activity has been restored by decreasing the Km for methionine to the same level as found for the wild type methionyl-tRNA synthetase. Southern blotting experiments show that the yeast DNA's fragments inserted in the two independent plasmids share a common sequence which must correspond at least partly to the structural gene for methionyl-tRNA synthetase. They also suggest that the methionyl-tRNA synthetase gene is differently orientated in the two plasmids 相似文献