首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
NMR analysis of 13C-labelling patterns showed that the Embden–Meyerhof (EM) pathway is the main route for glycolysis in the extreme thermophile Caldicellulosiruptor saccharolyticus. Glucose fermentation via the EM pathway to acetate results in a theoretical yield of 4 mol of hydrogen and 2 mol of acetate per mole of glucose. Previously, approximately 70% of the theoretical maximum hydrogen yield has been reached in batch fermentations. In this study, hydrogen and acetate yields have been determined at different dilution rates during continuous cultivation. The yields were dependent on the growth rate. The highest hydrogen yields of 82 to 90% of theoretical maximum (3.3 to 3.6 mol H2 per mol glucose) were obtained at low growth rates when a relatively larger part of the consumed glucose is used for maintenance. The hydrogen productivity showed the opposite effect. Both the specific and the volumetric hydrogen production rates were highest at the higher growth rates, reaching values of respectively 30 mmol g−1 h−1 and 20 mmol l−1 h−1. An industrial process for biohydrogen production will require a bioreactor design, which enables an optimal mix of high productivity and high yield.  相似文献   

2.
Azotobacter beijerinckii was grown in ammonia-free glucose-mineral salts media in batch culture and in chemostat cultures limited by the supply of glucose, oxygen or molecular nitrogen. In batch culture poly-beta-hydroxybutyrate was formed towards the end of exponential growth and accumulated to about 74% of the cell dry weight. In chemostat cultures little poly-beta-hydroxybutyrate accumulated in organisms that were nitrogen-limited, but when oxygen limited a much increased yield of cells per mol of glucose was observed, and the organisms contained up to 50% of their dry weight of poly-beta-hydroxybutyrate. In carbon-limited cultures (D, the dilution rate,=0.035-0.240h(-1)), the growth yield ranged from 13.1 to 19.8g/mol of glucose and the poly-beta-hydroxybutyrate content did not exceed 3.0% of the dry weight. In oxygen-limited cultures (D=0.049-0.252h(-1)) the growth yield ranged from 48.4 to 70.1g/mol of glucose and the poly-beta-hydroxybutyrate content was between 19.6 and 44.6% of dry weight. In nitrogen-limited cultures (D=0.053-0.255h(-1)) the growth yield ranged from 7.45 to 19.9g/mol of glucose and the poly-beta-hydroxybutyrate content was less than 1.5% of dry weight. The sudden imposition of oxygen limitation on a nitrogen-limited chemostat culture produced a rapid increase in poly-beta-hydroxybutyrate content and cell yield. Determinations on chemostat cultures revealed that during oxygen-limited steady states (D=0.1h(-1)) the oxygen uptake decreased to 100mul h(-1) per mg dry wt. compared with 675 for a glucose-limited culture (D=0.1h(-1)). Nitrogen-limited cultures had CO(2) production values in situ ranging from 660 to 1055mul h(-1) per mg dry wt. at growth rates of 0.053-0.234h(-1) and carbon-limited cultures exhibited a variation of CO(2) production between 185 and 1328mul h(-1) per mg dry wt. at growth rates between 0.035 and 0.240h(-1). These findings are discussed in relation to poly-beta-hydroxybutyrate formation, growth efficiency and growth yield during growth on glucose. We suggest that poly-beta-hydroxybutyrate is produced in response to oxygen limitation and represents not only a store of carbon and energy but also an electron sink into which excess of reducing power can be channelled.  相似文献   

3.
The effect of inactivation of the glucose phosphotransferase transport system (PTS) on 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) productivity and yield from glucose in Escherichia coli is reported. Strains used in this study were the PTS(+) PB103 and its PTS(-) glucose(+) derivative NF9. Their aroB(-) derivatives PB103B and NF9B were constructed to allow accurate measurement of total carbon flow into the aromatic pathway. The measured specific rates of DAHP synthesis were 0.55 and 0.94 mmol/g-dcw. h and the DAHP molar yields from glucose were 0.43 and 0.71 mol/mol for the PTS(+) aroB(-)and the PTS(-) glucose(+) aroB(-)strains, respectively. For the latter strain, this value represents 83% of the maximum theoretical yield for DAHP synthesis from glucose.  相似文献   

4.
For the purpose of improving ethanol productivity, the effect of air supplement on the performance of continuous ethanol fermentation system was studied. The effect of oxygen supplement on yeast concentration, cell yield, cell viability, extracellular ethanol concentration, ethanol yield, maintenance coefficient, specific rates of glucose assimilation, ethanol production, and ethanol productivity have been evaluated, using a high alcohol tolerant Saccharomyces cerevisiae STV89 strain and employing a continuous fermentor equipped with an accurate air metering system in the flow rate range 0-11 mL air/L/h. It was found that, when a small amount of oxygen up to about 80mu mol oxygen/L/h was supplied, the ethanol productivity was significantly enhanced as compared to the productivity of the culture without any air supplement. It was also found that the oxygen supplement improved cell viability considerably as well as the ethanol tolerance level of yeast. As the air supply rate was increased, from 0 to 11 mL air/L/h while maintaining a constant dilution rate at about 0.06 h(-1), the cell concentration increased from 2.3 to 8.2 g/L and the ethanol productivity increased from 1.7 to 4.1 g ethanol/L/h, although the specific ethanol production rate decreased slightly from 0.75 to 0.5 g ethanol/g cell/h. The ethanol yield was slightly improved also with an increase in air supply rate, from about 0.37 to 0.45 ethanol/g glucose. The maintenance coefficient increased by only a small amount with the air supplement. This kind of air supplement technique may very well prove to be of practical importance to a development of a highly productive ethanol fermentation process system especially as a combined system with a high density cell culture technique.  相似文献   

5.
The microbial production of free fatty acids (FFAs) and reduced derivatives is an attractive process for the renewable production of diesel fuels. Toward this goal, a plasmid-free strain of Escherichia coli was engineered to produce FFAs by integrating three copies of a thioesterase gene from Umbellularia californica (BTE) under the control of an inducible promoter onto the chromosome. In batch culture, the resulting strain produced identical titers to a previously reported strain that expressed the thioesterase from a plasmid. The growth rate, glucose consumption rate, and FFA production rate of this strain were studied in continuous cultivation under carbon limitation. The highest yield of FFA on glucose was observed at a dilution rate of 0.05 h(-1) with the highest specific productivity observed at a dilution rate of 0.2 h(-1). The observed yields under the lowest dilution rate were 15% higher than that observed in batch cultures. An increase in both productivity and yield (≈ 40%) was observed when the composition of the nutrients was altered to shift the culture toward non-carbon limitation. A deterministic model of the production strain has been proposed and indicates that maintenance requirements for this strain are significantly higher than wild-type E. coli.  相似文献   

6.
Growth, substrate consumption, metabolite formation, biomass composition and respiratory parameters of Kluyveromyces marxianus ATCC 26548 were determined during aerobic batch and chemostat cultivations, using mineral medium with glucose as the sole carbon source, at 30 degrees C and pH 5.0. Carbon balances closed within 95-101% in all experiments. A maximum specific growth rate of 0.56 h(-1), a biomass yield on glucose of 0.51 g g(-1), and a maximum specific consumption of oxygen of 11.1 mmol g(-1) h(-1) were obtained during batch cultures. The concentration of excreted metabolites was very low at the culture conditions applied, representing 6% of the consumed carbon at most. Acetate and pyruvate were excreted to a larger extent than ethanol under the batch conditions, and the protein content accounted for 54.6% of the biomass dry weight. Steady states were obtained during chemostats at dilution rates of 0.1, 0.25 and 0.5 h(-1). At the two former dilution rates, cells grew at carbon limitation and the biomass yield on glucose was similar to that obtained under the batch conditions. Metabolite formation was rather low, accounting for a total of 0.005 C-mol C-mol(-1) substrate. At 0.5 h(-1), although the biomass yield on glucose was similar to the value obtained under the above-mentioned conditions, the cultivation was not under carbon limitation. Under this condition, 2-oxoglutarate, acetate, pyruvate and ethanol were the prevalent metabolites excreted. Total metabolite formation only accounted to 0.056 C-mol C-mol(-1) of substrate. A very high protein and a low carbohydrate content (71.9% and 9.6% of biomass dry weight, respectively) were measured in cells under this condition. It is concluded that K. marxianus aligns with the so-called aerobic-respiring or Crabtree-negative yeasts. Furthermore, it has one of the highest growth rates among yeasts, and a high capacity of converting sugar into biomass, even when carbon is not the limiting nutrient. These results provide useful data regarding the future application of K. marxianus in processes aimed at the production of biomass-linked compounds, with high yields and productivities.  相似文献   

7.
Summary The performance ofZymomonas mobilis strains ATCC 31821 and ATCC 31823 was assessed in batch and continuous culture. In batch culture using a medium containing 250 g/l glucose, identical maximum specific growth rates of 0.16/h were found, though final biomass concentration and growth yield were significantly lower for ATCC 31 823 than for ATCC 31 821. Final ethanol concentrations in this medium were about 110 g/l vor both organisms. In continuous culture at increasing dilution rates using a medium containing 100 g/l glucose, no significant differences were seen between the two strains with respect to the fermentation parameters studied. For ATCC 31 821, maximum rates of glucose uptake (Qs) and ethanol produktion (Qp) of 8.7 g glu/g/h and 4.4 g eth/g/h, respectively, were found. Both strains showed a similar performance at a fixed dilution rate of 0.1/h, where maximum ethanol concentrations of about 68 g/l were reached at a feed glucose concentration of about 139 g/l. At this dilution rate the maximum values of Qs and Qp were about 5.8 g glu/g/h and 2.8 g eth/g/h, respectively. Test tube experiments showed that growth, measured as optical density, decreased with increasing concentrations of exogenous ethanol with complete inhibition of growth at ethanol concentrations >8% (v/v). As evidenced by the results presented here, we have been unable to practice the invention as described in U.S. Patent 4,403,034 (Rogers and Tribe 1983).Nomenclature D Dilution rate, 1/h - max maximum specific growth rate, 1/h - SR Initial substrate concentration, g glucose/1 - S Residual substrate concentration, g glucose/1 - S0 Effluent substrate concentration, g glucose/1 - X Blomass concentration; g cells/l - OD620 Optical density at 620 nm, dimensionless - [P] Product concentration, g ethanol/1 - Yx/s Growth yield, g cells/g glucose used - Yp/s Product yield, g ethanol/g glucose used - %, Yield Percentage yield, Yp/sx100/Y p s/max =Yp/sx100/0.51 - Qs Specific rate of glucose uptake, g glucose/g cells/h - Qp Specific rate of ethanol formation, g ethanol/g cells/h - me Maintenance energy coefficient, g glucose/g cells/h - VP Volumetric productivity, g ethanol/l/h - t Fermentation time, h  相似文献   

8.
With glucose-limited continuous cultures of Petunia hybrida six steady states were obtained at specific growth rates varying from 0.0035 to 0.012 h(-1) (corresponding with culture residence times varying from 285 to 85 h). The macromolecular and the elemental biomass composition which were determined in four steady states showed no major differences over the range of growth rates examined. During all six steady states specific subtrate and oxygen consumption as well as biomass and extracellular product formation rates were monitored. Moreover the specific activities of the mitochondrial cytochrome and alternative pathway were determined and used to estimate specific adenosine triphosphate (ATP) production rates. Data thus obtained were used in the determination of maintenance and true growth yield parameters. For the maintenance on glucose and ATP values of 0.0070 C-mol/C-mol/h and 0.034 mol/C-mol/h were obtained, respectively. True yields of biomass on glucose and ATP were 0.50 C-mol/C-mol and 0.28 C-mol/mol, respectively. (c) 1995 John Wiley & Sons, Inc.  相似文献   

9.
Microbacterium thermosphactum was grown at 25 degrees C in glucose-limited continuous culture under aerobic (greater than 120 microM oxygen) and anaerobic (less than 0.2 microM oxygen) conditions. The end products of the anaerobic metabolism of glucose were identified as L-lactate and ethanol. Together these compounds accounted for between 85 and 90% of the glucose utilized over the full range of growth rates studied. In addition, 4% of the glucose utilized was incorporated into cellular material. Under anaerobic conditions the molar growth yield was 40 g (dry weight) of cells per mol of glucose utilized, and the maintenance energy coefficient was 0.4 mmol of glucose utilized per g (dry weight) of cells per h. For cells grown under aerobic conditions in the corresponding values were 73 g/mol and 0.2 mmol/g per h, respectively. The molar growth yield with respect to adenosine 5'-triphosphate varied with the growth rate of the culture, and the true molar growth yield with respect to adenosine 5'-triphosphate was found to be 20 g/mol of adenosine 5'-triphosphate.  相似文献   

10.
Microbacterium thermosphactum was grown at 25 degrees C in glucose-limited continuous culture under aerobic (greater than 120 microM oxygen) and anaerobic (less than 0.2 microM oxygen) conditions. The end products of the anaerobic metabolism of glucose were identified as L-lactate and ethanol. Together these compounds accounted for between 85 and 90% of the glucose utilized over the full range of growth rates studied. In addition, 4% of the glucose utilized was incorporated into cellular material. Under anaerobic conditions the molar growth yield was 40 g (dry weight) of cells per mol of glucose utilized, and the maintenance energy coefficient was 0.4 mmol of glucose utilized per g (dry weight) of cells per h. For cells grown under aerobic conditions in the corresponding values were 73 g/mol and 0.2 mmol/g per h, respectively. The molar growth yield with respect to adenosine 5'-triphosphate varied with the growth rate of the culture, and the true molar growth yield with respect to adenosine 5'-triphosphate was found to be 20 g/mol of adenosine 5'-triphosphate.  相似文献   

11.
Bacteroides fragilis NCTC 9343 has been grown in continuous cultures with glucose as growth-limiting factor. At pH 7.0 and at a dilution rate of 0.07 per h, glucose limited growth in concentrations up to 0.6%. Maximal cell yield and productivity were obtained with 0.87% glucose in the inflowing medium. A pH of 7.0 was optimal for growth. With 0.6% glucose in the fresh medium and at pH 7.0, cell yield and productivity were highest at a dilution rate of 0.07 per h and 0.11 per h, respectively. At dilution rates higher than 0.07 per h, glucose was no longer growth limiting, and at dilution rates above 0.11 per h, another compound seemed to have replaced glucose also as energy source. When grown in batch cultures at pH 7.0, the best yields of B. fragilis was achieved with 0.6% glucose in the fresh medium. The highest specific growth rate (mum) determined from viable counts was 0.45, corresponding to a mean generation time of 92 min.  相似文献   

12.
Dilute-acid lignocellulosic hydrolyzate was successfully fermented to ethanol by encapsulated Saccharomyces cerevisiae at dilution rates up to 0.5h(-1). The hydrolyzate was so toxic that freely suspended yeast cells could ferment it continuously just up to dilution rate 0.1h(-1), where the cells lost 75% of their viability measured by colony forming unit (CFU). However, encapsulation increased their capacity for in situ detoxification of the hydrolyzate and protected the cells against the inhibitors present in the hydrolyzate. While the cells were encapsulated, they could successfully ferment the hydrolyzate at tested dilution rates 0.1-0.5h(-1), and keep more than 75% cell viability in the worst conditions. They produced ethanol with yield 0.44+/-0.01 g/g and specific productivity 0.14-0.17 g/(gh) at all dilution rates. Glycerol was the main by-product of the cultivations, which yielded 0.039-0.052 g/g. HMF present in the hydrolyzate was converted 48-71% by the encapsulated yeast, while furfural was totally converted at dilution rates 0.1 and 0.2h(-1) and partly at the higher rates. Continuous cultivation of encapsulated yeast was also investigated on glucose in synthetic medium up to dilution rate 1.0 h(-1). At this highest rate, ethanol and glycerol were also the major products with yields 0.43 and 0.076 g/g, respectively. The experiments lasted for 18-21 days, and no damage in the capsules was detected.  相似文献   

13.
The culture levels of glucose and CO(2) have been reported to independently have important influences on mammalian cell processes. In this work the combined effects of glucose limitation and CO(2) partial pressure (pCO(2)) on monoclonal antibody (IgG) producing Chinese Hamster Ovary cells were investigated in a perfusion reactor operated with controlled cell specific medium feed rate, pH and osmolality. Under high glucose conditions (14.3 +/- 0.8 mM), the apparent growth rate decreased (from 0.021 to 0.009 h(-1)) as the pCO(2) increased to approximately 220 mmHg, while the cell specific IgG productivity was almost unchanged. The lactate yield from glucose was not affected by pCO(2) up to approximately 220 mmHg and glucose was mainly converted to lactate. A feed medium modification from high (33 mM) to low (6 mM) glucose resulted in <0.1 mM glucose in the culture. As a result of apparently shifting metabolism towards the conversion of pyruvate to CO(2), both the ratio of lactate to glucose and the alanine production rate were lowered (1.51-1.14 and 17.7-0.56 nmol/10(6) cells h, respectively). Interestingly, when the pCO(2) was increased to approximately 140 mmHg, limiting glucose resulted in 1.7-fold higher growth rates, compared to high glucose conditions. However, at approximately 220 mmHg pCO(2) this beneficial effect of glucose limitation on these CHO cells was lost as the growth rate dropped dramatically to 0.008 h(-1) and the IgG productivity was lowered by 15% (P < 0.01) relative to the high glucose condition. The IgG galactosylation increased under glucose- limited compared to high-glucose conditions.  相似文献   

14.
During the production of biodiesel, a significant amount of glycerol is generated which currently has little commercial value. A study on the growth and lipid production of Chlorella protothecoides using glycerol as the carbon source was performed to demonstrate the utility of recycling crude glycerol created during biodiesel production. Glycerol was examined as both the sole carbon source and in combination with glucose. Algae cultures grown on only glycerol in shake flasks showed a specific growth rate and final lipid yield of 0.1/h and 0.31 g lipid/g substrate, respectively. The values were similar to those observed on pure glucose, 0.096/h and 0.24 g lipid/g substrate. When the media contained a mixture of glycerol and glucose, simultaneous uptake of the two substrates was observed. Due to the difference in rates of lipid storage, lipid production was 0.077 g lipid/(l h) during growth on glycerol, while growth on glucose had a productivity of 0.096 g lipid/(l h). During growth on the 9:1 mixture of both glucose and glycerol, lipid productivity was 0.098 g lipid/(l h). In order to simulate the use of waste glycerol from biodiesel production the experiments were repeated and similar growth rates, yields, and lipid productivities were achieved. Therefore, we have demonstrated the promise for simultaneous high growth rates and lipid yields of C. protothecoides heterotrophically grown on mixtures of glycerol.  相似文献   

15.
AIMS: To study the effect of sugars and sugar mixtures on the growth kinetics of Oenococcus oeni NCIMB 11648 in batch culture with the aim of producing a high cell productivity system for starter cultures. METHODS AND RESULTS: The growth of O. oeni was investigated on single sugars (glucose, fructose or sucrose) and their mixtures (glucose-fructose, glucose-sucrose or fructose-sucrose). Better growth was obtained on sugar mixtures compared with growth on a single sugar. The production system of O. oeni biomass was investigated in batch culture with or without pH control with respect to kinetics, specific growth rate and biomass yield. The effect of pH and substrate concentration on fermentation balances and ATP yield were determined. The optimal growth of O. oeni was achieved on the glucose-fructose mixture (9 g l(-1), 1 : 1) at pH 4.5 and 25 degrees C with pH control, with highest cell volumetric productivity (7.9 mg cell l(-1) h(-1)), biomass yield (0.041 g cell g(-1) sugar) and specific growth rate (0.066 h(-1)). CONCLUSIONS: The limitations to the growth of O. oeni were pH and inhibition by end product resulting in poor utilization of the medium with low cell yields. The cell productivity of the system can be improved by the appropriate use of mixed sugar growth medium. SIGNIFICANCE AND IMPACT OF THE STUDY: This study uniquely showed that appropriate sugar mixtures with the correct environmental conditions can significantly improve the productivity of O. oeni cultures.  相似文献   

16.
The Continuous fermentation of Jerusalem artichoke juice to ethanol by free cells of Kluyveromyces marxianus UCD (FST) 55-82 has been studied in a continuous-stirred-tank bioreactor at 35 degrees C and pH 4.6. A maximum yield of 90% of the theoretical was obtained at a dilution rate of 0.05 h(-1). About 95% of the sugars were utilized at dilution rates lower than 0.15 h(-1). Volumetric ethanol productivity and volumetric biomass productivity reached maximum values of 7 g ETOH/L/h and 0.6 g dry wt/L/h, respectively, at a dilution rate of 0.2 h(-1). The maintenance energy coefficient for K. marxianus culture was found to be 0.46 g sugar/g biomass/h/ Oscillatory behavior was following a change in dilution rate from a previous steady state and from batch to continuous culture. Values of specific ethanol production rate and specific sugar uptake were found to increase almost linearly with the increase of the dilution rate. The maximum specific ethanol production rate and maximum specific sugar uptake rate were found to be 2.6 g ethanol/g/ cell/h and 7.9 sugars/g cell/h, respectively. Washout occurred at a dilution rate of 0.41 h(-1).  相似文献   

17.
To achieve a higher succinic acid productivity and evaluate the industrial applicability, this study used Mannheimia succiniciproducens LPK7 (knock-out: lahA, pflB, pta-ackA), which was recently designed to enhance the productivity of succinic acid and reduce by-product secretion. Anaerobic continuous fermentation of Mannheimia succiniciproducens LPK7 was carried out at different glucose feed concentrations and dilution rates. After extensive fermentation experiments, a succinic acid yield and productivity of 0.38 mol/mol and 1.77 g/l/h, respectively, were achieved with a glucose feed concentration of 18.0 g/l and 0.2 h-1 dilution rate. A similar amount of succinic acid production was also produced in batch culture experiments. Therefore, these optimal conditions can be industrially applied for the continuous production of succinic acid. To examine the quantitative balance of the metabolism, a flux distribution analysis was also performed using the metabolic network model of glycolysis and the pentose phosphate pathway.  相似文献   

18.
The specific rates of limiting substrate utilization were investigated in adenine- or glucose-limited chemostat cultures of Bacillus subtilis KYA741, an adenine-requiring strain, at 37 degrees C. With the glucose-limited cultures, the specific rate of glucose consumption versus dilution rate gave a linear relationship from which the true growth yield and maintenance coefficient were determined to be 0.09 mg of bacteria per mg of glucose and 0.2 mg of glucose per mg of bacteria per h, respectively. With the adenine-limited cultures, adenine as the limiting substrate was not completely consumed at lower dilution rates (e.g., D less than 0.1), unlike in the glucose-limited cultures. When a linear relationship of specific rate of adenine consumption versus dilution rate was extrapolated to zero dilution rate, a negative value for the specific rate of adenine consumption, -0.01 mg of adenine per mg of bacteria per h, was obtained, giving a true growth yield for adenine of 5.2 mg of bacteria per mg of adenine. On the other hand, the maintenance coefficient of oxygen uptake gave a positive value of 8.1 x 10(-3) mmol/mg of bacteria per h. Based on previous results showing that adenine is resupplied by lysing cells, we developed kinetic models of adenine utilization and cell growth that gave a good estimation of the peculiar behavior of cell growth and adenine utilization in adenine-limited chemostat cultures.  相似文献   

19.
When Bacteroides thetaiotaomicron, an obligate anaerobe from the human colonic flora, was grown in continuous culture with the mucopolysaccharide chondroitin sulfate as the limiting source of carbohydrate, growth yields ranged from 48 g of cell dry weight per mol of equivalent monosaccharide at a growth rate of 3.5 h per generation to 32 g per mol at a growth rate of 24 h per generation. The theoretical maximum growth yield (61 g of cell dry weight per mol of equivalent monosaccharide) was comparable to that of 54 g per mol, which was obtained previously when glucuronic acid, a component of chondroitin sulfate, was the limiting carbohydrate (S. F. Kotarski and A. A. Salyers, J. Bacteriol. 146:853-860, 1981). However, the maintenance coefficient was three times higher when chondroitin sulfate was the substrate than when glucuronic acid was the substrate. The specific activity of chondroitin lyase (EC 4.2.2.4), an enzyme which cleaves chondroitin sulfate into disaccharides, declined by nearly 50% as growth rates decreased from 3.5 to 24 h per generation. By contrast, the specific activities of several glycolytic enzymes and disaccharidases remained constant over this range of growth rates. Although chondroitin sulfate was growth limiting, some carbohydrate was detectable in the extracellular fluid at all growth rates. At rapid growth rates (1 to 2 h per generation), this residual carbohydrate included fragments of chondroitin sulfate having a wide range of molecular weights. At slower growth rates (2 to 24 h per generation), the residual carbohydrate consisted mainly of a small fragment which migrated on paper chromatograms more slowly than the disaccharides produced by chondroitin lyase but faster than a tetrasaccharide. This small fragment may represent the reducing end of the chondroitin sulfate molecule.  相似文献   

20.
A process for maximizing the volumetric productivity of recombinant ovine growth hormone (r-oGH) expressed in Escherichia coli during high cell density fermentation process has been devised. Kinetics of r-oGH expression as inclusion bodies and its effect on specific growth rates of E. coli cells were monitored during batch fermentation process. It was observed that during r-oGH expression in E. coli, the specific growth rate of the culture became an intrinsic property of the cells which reduced in a programmed manner upon induction. Nutrient feeding during protein expression phase of the fed-batch process was designed according to the reduction in specific growth rate of the culture. By feeding yeast extract along with glucose during fed-batch operation, high cell growth with very little accumulation of acetic acid was observed. Use of yeast extract helped in maintaining high specific cellular protein yield which resulted in high volumetric productivity of r-oGH. In 16 h of fed-batch fermentation, 3.2 g l-1 of r-oGH were produced at a cell OD of 124. This is the highest concentration of r-oGH reported to date using E. coli expression system. The volumetric productivity of r-oGH was 0.2 g l-1 h-1, which is also the highest value reported for any therapeutic protein using IPTG inducible expression system in a single stage fed-batch process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号