首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
压电免疫传感器的表面固定方法   总被引:4,自引:0,他引:4  
抗原/抗体在石英晶体电极表面固定而不丧失其活性是压电免疫传感器成功的关键,直接影响到它的灵敏度和可重复性等性质。本文分别从固定抗体和抗原的角度介绍了压电免疫传感器表面固定方法。并对戊二醛交联法、自组装单层膜法(SAMs)、蛋白A固定法做了较深入和详细的介绍,展望了其以后的发展前景。  相似文献   

2.
压电免疫传感器的研究进展   总被引:2,自引:0,他引:2  
生物传感器是近年来发展起来的一种新技术,能实时检测到传感器表面的抗原抗体反应,它可促使免疫诊断方法向定量化、操作自动化方向发展,成为生物医学领域的研究热点之一.本文简要介绍了生物传感器的基本概念与压电晶体免疫传感器的基本原理、设计与构造,并对常见的压电石英晶体免疫传感器生物敏感膜的制备方法进行了综述.  相似文献   

3.
压电生物传感器   总被引:5,自引:0,他引:5  
压电生物传感器是一种将高灵敏的压电传感器与特异的生物反应结合在一起的新型生物分析方法,这一方法不需要任何标记,且食品构造简单、操作方便,引起人们的浓厚兴趣,逐渐成为生物传感器领域中的一项研究热点。本文就压电免疫传感器及压电基因传感器在微生物、蛋白质及基因检测等方面的研究应用作一综述。压电生物传感器在分子生物学、疾病诊断和治疗、新药开发、司法鉴定等领域具有很大开发潜力。  相似文献   

4.
压电生物传感器是一种将高灵敏的压电传感器与特异的生物反应结合在一起的新型生物分析方法,这一方法不需要任何标记,且仪器构造简单、操作方便,引起人们的浓厚兴趣,逐渐成为生物传感器领域中的一项研究热点。本文就压电免疫传感器及压电基因传感器在微生物、蛋白质及基因检测等方面的研究应用作一综述。压电生物传感器将在分子生物学、疾病诊断和治疗、新药开发、司法鉴定等领域具有很大开发潜力。  相似文献   

5.
摘要:【目的】结合纳米技术建立检测大肠杆菌(Escherichia coli)O157︰H7高灵敏检测技术。【方法】采用化学共沉淀法制备出核心粒径约为10 nm的免疫纳米磁颗粒,柠檬酸钠还原法制备粒径约为20 nm的免疫胶体金。压电免疫传感器通过金黄色葡萄球菌蛋白A(Protein A from Staphylococcus aureus SPA)法将抗体固定于石英晶振上,两种免疫纳米颗粒借助不同的抗体连接于传感器上对检测频率信号进行放大。【结果】SPA在石英晶振上的最佳固定浓度和时间为1.2 mg/mL和40 min,抗体的最佳固定浓度和时间为1.0 mg/mL和60 min。压电免疫传感器通过两种免疫纳米颗粒的放大作用,使其对大肠杆菌O157︰H7的检测限从104 cfu/mL提高到101 cfu/mL。【结论】免疫纳米颗粒强化对压电免疫传感器的检测频率信号具有很好的放大效应,可以明显提高其检测灵敏度。  相似文献   

6.
转基因农作物检测技术及其应用与发展   总被引:4,自引:0,他引:4  
常用的转基因检测方法可分为两个方向,一是以检测外源基因为目标,如多聚酶链式反应分析法(PCR),二是以检测外源蛋白为目标,如酶联免疫分析法(ELISA)。此外,近年来,随着世界各国对转基因生物安全问题的日益关注,还涌现出了一批新的检测方法,如微阵列分析法(microarray),色谱分析法(chroma-tography),表面等离子共振(surfaceplasmonresonance,SPR)生物传感器分析法以及近红外线光谱分析法(nearinfraredspectroscopy,NIR)等。将对各种转基因检测方法的原理、特点及研究现状做一个扼要介绍。  相似文献   

7.
目的:为研制检测H5亚型禽流感的压电免疫传感器。方法:用巯基丙酸在镀银电极石英晶体自组装巯基丙酸单分子膜再通过N-乙基-N′(-3-二甲氨基)丙基碳化二亚胺盐酸(EDC)和N-羟基琥珀酰亚胺(NHS)偶联抗H5亚型禽流感病毒的特异性单抗构建传感器芯片,建立了可以检测H5亚型禽流感病毒的免疫传感器。结果:结果表明,该法具有较好的特异性,不与H9亚型流感病毒和NDV反应;检测灵敏度达到10-50个EID50。结论:本文结果为检测禽流感病毒免疫传感器的进一步深入研究奠定了基础,这为其它相关病毒的监测提供了一种新途径。  相似文献   

8.
用电化学聚合和戊二醛交联的方法,将羊抗人 IgG 抗体固定在石墨电极表面,研制成固态活性膜直接 IgG 免疫传感器,对人血清 IgG 进行了测定.并对免疫传感器的测定、再生、保存条件、精密度、测定范围和选择性及与 IgG 免疫扩散测定法的相关性进行了研究.结果表明,石墨活性膜 IgG 免疫传感器具有操作简单、快速、测定准确度和精密度高的特点,为今后免疫传感器的研制提供了一种新的方法.  相似文献   

9.
压电(Piezoelectronic,PZ)生物传感器和光生物传感器(Optical Biosensors)是两类新型的生物传感器,本文简要阐述它们的原理、特点和研究进展。关键词:压电生物传感器,生物光极,SPR。  相似文献   

10.
细胞黏附压电传感响应机制分析   总被引:2,自引:0,他引:2  
基于压电传感器的一维多层及传输线等效电路模型,利用声阻抗概念,将传感器响应与声阻抗直接联系,建立起压电传感器响应机制的声阻抗模型。由此模型对单、双层等基本负载分别导出相应的传感器响应方程。理论分析表明,声阻抗是生物传感的核心,可通过其阐明各种传感器响应机制的物理意义,特别是细胞黏附的压电传感响应机制分析。实验结果良好地验证了细胞黏附行为的压电传感响应声阻抗理论,据此建立了频率变化!f(Hz)与细胞浓度C(ml-1)之间良好的线性关系,相关系数R=0.98,其线性方程为"f=-246C-20.1(P<0.001)。研究对细胞黏附的压电传感及其应用具有指导意义。  相似文献   

11.
The development of a microgravimetric immunobiosensor using a piezoelectric quartz crystal as a detector requires a stable and reproducible immobilization method for ligand binding. The method of silanization using 3-aminopropyltriethoxysilane (APTES) has been widely used for activating the carrier surface. In the present study, APTES deposition on a piezoelectric crystal surface was studied under various solvent conditions. A fluorescence method, using fluorescence isothiocyanate as a dye, was demonstrated for the quantification of amino groups on the silanized piezoelectric crystal surface. The optimum binding conditions of APTES deposition on a piezoelectric crystal surface were incorporated for the covalent immobilization of protein on the crystal surface in developing a stable and sensitive microgravimetric immunobiosensor. Determination of immunoglobulin G (IgG) concentration was performed using APTES modified piezoelectric crystals coated with protein G. The resonant frequency shift, resulting from the formation of protein G-IgG complex on the crystal surface, correlated with the concentration of IgG in the range 10 ng/ml to 0·1 mg/ml. The APTES modified, protein G coated crystals were found to be quite stable and did not show a significant loss of sensitivity even after 12 weeks of storage at 4°C in a desiccator.  相似文献   

12.
The development of a cost-effective method for manufacturing immunoassays is a key step towards their commercial use. In this study, a piezoelectric inkjet printer and a nylon membrane were used to fabricate a disposable immunoassay. Using a piezoelectric inkjet printer, a cross-hatch pattern of goat anti-mouse antibody (GαM) and rabbit anti-horseradish peroxidase (RαHRP) antibody were deposited on the nylon membrane. These patterns were subsequently treated with a solution containing rabbit anti-goat antibody labeled with horseradish peroxidase (RαG-HRP). The effectiveness of the immobilization process was examined using tetramethylbenzidine (TMB), which oxidizes in the presence of HRP to form a visible precipitate. Optical evaluation of the TMB precipitate was used to assess the precision of the features in the inkjet-printed pattern as well as antibody functionality following inkjet printing. Uniform patterns that contained functional antibodies were fabricated using the piezoelectric inkjet printer. These results suggest that piezoelectric inkjet printing may be used to fabricate low-cost disposable immunoassays for biotechnology and healthcare applications.  相似文献   

13.
This paper describes the development of a highly sensitive competitive immunoassay with the piezoelectric sensor. The immobilized derivative of cocaine was benzoylecgonine-1,8-diamino-3,4-dioxaoctane (BZE-DADOO). For the immobilization of BZE-DADOO, the conjugate BZE-DADOO with 11-mercaptomonoundecanoic acid (MUA) was synthesized via 2-(5-norbornen-2,3-dicarboximide)-1,1,3,3-tetramethyluronium-tetrafluoroborate (TNTU), followed by the creation of the conjugate monolayer on the piezosensor electrodes. For the optimization of the competitive assay we used electrodes with rough or smooth gold areas and for the interaction with immobilized antigen different anti-cocaine sheep polyclonal (pAb, either whole IgG or Fab fragment) and mouse monoclonal (mAb, whole IgG) antibodies. The assay of cocaine developed achieved a detection limit (LOD) of 100 pmol/l (34 ng/l) using the sheep antibody (IgG) and piezoelectric sensors with a smooth gold surface. The total time of one analysis was 15 min and the measuring area of the sensor could be used more than 40 times without losing its sensitivity.  相似文献   

14.
A piezoelectric affinity sensor has been developed to detect distinctive antigens of the human cytomegalovirus. Either the specific antibodies or the antigen were immobilized on the gold electrode. To develop a rapid immunoassay, various assay formats were tested in relation with the different antigen composition. First, a direct assay was carried out immobilizing the specific antibody on the crystal surface by passive adsorption. Next, Protein A, thiol/poly L-lysine mixed self-assembled monolayers were tested as methods of gold modification. A competitive format was exploited by immobilization of the antigen onto the crystal activated by SAM and poly L-lysine. This procedure yielded a preliminary calibration curve. A linear range between 2.5 and 5 μg/ml of gB epitope in solution and a detection limit of 1 μg/ml were measured.  相似文献   

15.
In this study we examined the possibilities of implementing direct and competitive immunoassay formats for small and large molecule detection on a microarray, using IBIS imaging surface plasmon resonance (iSPR) system. First, IBIS iSPR optics performance was evaluated. Using a glycerol calibration curve on underivatized surface we observed high baseline variability, but uniform and robust sensitivity between hundred regions of interest. Further on, a direct immunoassay for bovine IgG detection and a competitive immunoassay for gentamicin and neomycin were developed. The direct immunoassay for bovine IgG detection in a microarray format showed poor sensitivity in comparison to the assay performed in Biacore 3000, due to low immobilization efficiency on spots. The competitive immunoassay for parallel gentamicin and neomycin detection in a microarray format displayed sensitivity in the ngmL(-1) range, comparable with the sensitivity achieved in Biacore 3000 and in the range of maximum residue limits in milk, established in the European Union. We expect that, utilization of the IBIS iSPR system for food analysis, by screening high and low molecular weight compounds, will allow rapid and simultaneous detection of various ingredients and contaminants, providing the end-user with a detailed food profile. However, assay transfer from conventional SPR biosensors to the imaging microarray platform also presents new challenges, such as sufficient immobilization on spots, that must be addressed in future studies.  相似文献   

16.
The immobilization of anti-Salmonella antibodies by two methods were studied and evaluated for their potential use in a piezoelectric biosensor. The optimum temperature-time combinations for the highest immobilization yields were determined for both methods. Protein A binding was found to be 67.4+/-3.8% on the gold surface which then allowed an immobilization of 42.1+/-2.09% antibody. The degree of antibody immobilization via surface aldehyde groups of glutaraldehyde (GA) on a precoated quartz crystal with polyethylenimine (PEI) was 31.6+/-0.3%. A piezoelectric probe was designed and used in dry assays to observe the frequency change due to addition of mass by the immobilization layers. The frequency changes recorded showed a better reproducibility and less added mass for the Protein A method. The frequency decrease due to microg of added antibodies was compared to frequency decrease calculated by the Sauerbrey equation. The experimental data was found to be only approximately 8% of theoretical data. The functionality of the immobilized antibodies with the Protein A method was tested with S. typhimurium in a wet chamber and the frequency decrease was compared to results of a similar system activated with PEI-GA immobilization. The frequency decreases with S. typhimurium concentration of approximately 1.5 x 10(9) CFU/ml were 50+/-2 Hz and 44+/-3 Hz for the Protein A method and PEI-GA method, respectively. It was concluded that although both methods resulted in comparable activities in terms of % immobilized protein and frequency decreases due to Salmonella binding, the Protein A method was favorable due to stability and better reproducibility of the immobilization layers.  相似文献   

17.
In this work three piezoelectric sensors modified with anti-HIV-1 Vif (virion infectivity factor) single fragment antibodies (4BL scFV), single domains (VH) and camelized single domains (VHD) were constructed and used to detect HIV1 Vif in liquid samples. Dithio-bis-succinimidyl-undecanoate (DSU) and 11-hydroxy-1-undecanethiol (HUT) mixed self assembled monolayers (SAM) were generated at the sensors surface onto which the antibodies were immobilized. All sensors detected specifically the target HIV1-Vif antigen in solution and no unspecific binding was monitored. Impedance analysis was performed to quantify electroacoustic and viscoelastic interferences during antibody immobilization and antigen recognition. The elimination of such interferences enabled the quantitative use of the piezoelectric immunosensors to estimate the antibody surface density as well as antigen binding and equilibrium constants. In spite of the possible limitation regarding mass transport and other related molecular phenomena, which were not considered in the binding model used, this work demonstrates the usefulness of piezoelectric biosensors in biorecognition analysis and evidences the advantages on using simultaneous impedance analysis to bring analytical significance to measured data, and thus to improve piezoelectric sensors sensitivity and applicability.  相似文献   

18.
In this study, a quartz crystal microbalance (QCM) system operated repetitively in flow injection analysis (FIA) mode, is reported. Four immobilization approaches of seven different methods include: (i) physical adsorption; (ii) two thioamine thiolation methods, using cysteamine and cystamine for gold chemisorption and further coupling; (iii) two oxidized dextran spacer methods, coupling of cysteamine and cystamine thiolated QCM surface with periodate-oxidized dextran for further Schiff acid-base reaction; and (iv) two thiol-gold chemisorption-based self-assembled monolayer (SAM), applying short-chain, C(3), and long-chain, C(11), mercapto fatty acids to insolubilize human serum albumin (HSA) on QCM surface. Effects of these protein immobilization methods on FIA immunoassay of anti-HSA were compared. At the 0.01 mg/ml anti-HSA level, the lowest analyte concentration tested, the SAM using 11-mercaptoundecanoic acid as QCM surface activating agent generated a larger frequency shift than the other immobilization methods. This implied that the use of thiolated long-chain fatty acid constructed as self-assembled monolayer may thereby potentially be a useful protein immobilization method in QCM-FIA application.  相似文献   

19.
A new approach for the sensitive detection of Staphylococcal enterotoxin B (SEB) is presented based upon an electrochemical enzymatic immunoassay that utilizes thiolated antibodies immobilized on a gold surface. This method relies on the use of amine- or sulfhydryl-reactive heterobifunctional cross-linkers for the introduction of 2-pyridyl-disulfide groups to the antibody. The disulfide-containing linkages are subsequently cleaved with a suitable reducing agent, such as dithiothreitol (DTT), and the thiolated antibody–gold bond is covalently formed on a gold working electrode. Various cross-linking agents for immobilization of the capture antibody onto the gold electrode were investigated and compared. Factors influencing the thiolation and immobilization were investigated and optimized. The feasibility of such antibody immobilization and the subsequent sandwich enzyme immunoassay is demonstrated for the sensitive detection of SEB. The detection limit estimated from a representative dose–response curve is 1 ng/mL, corresponding to 5 pg in a 5-μL sample. Coupling the specificity of immunoassays with the sensitivity and low detection limits of electrochemical detection shows real promise for future sensing technology in enabling the development of single-use disposable devices.  相似文献   

20.
The serologic detection of anti-Toxoplasma gondii immunoglobulins plays a key role in the clinical diagnosis of Toxoplasmosis. In this paper, a simple, rapid and highly sensitive agglutination-based piezoelectric immunoassay has been firstly developed for directly detecting anti-T. gondii immunoglobulins in infected rabbit serum (IRS) and infected rabbit blood (IRB). The proposed technique is based on that the specific agglutination of antigen-coated gold nanoparticles, averaging 10nm in diameter, in the presence of the corresponding antibody causes a frequency change that is monitored by a piezoelectric device. In contrast to the commonly used piezoelectric assays, it possesses an attractive advantage in that the immobilization of antibody or antigen on the crystal is unnecessary. Use of a newly prepared sensing probe which was modified by a plasma-polymerized film (PPF) of n-butyl amine and further by a heparin layer resulted in a response-enhanced immunoagglutination and a high compatibility of the probe with biological samples. An appropriate reagent consisting of 1% normal rabbit serum (NRS) and 0.1% bovine serum albumin (BSA) for diluting the analytes were verified in counteracting the background interference of assay. Moreover, an optimization of assay medium composition with the addition of poly(ethylene glycol) (PEG) serving as immunoagglutination rate and sensitivity enhancer was investigated in detail. It is found that the developed immunoagglutination assay system is sensitive to dilution ratio of anti-T. gondii antibody as low as 1:5500. Analytical results of several specimens obtained using the developed technique are in satisfactory agreement with those given by the ELISA method, implying a promising alternative approach for detecting anti-T. gondii antibodies in the clinical diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号