首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
R. K. Misra  R. Sands 《Plant and Soil》1992,140(2):269-278
Diurnal variation in sap flux (S) through stems of six trees, two each of Ulmus procera SALISB., Melaleuca styphelioides SM. and Prunus cerasifera EHRH. ‘Nigra’ (referred to hereafter by their generic names), were estimated from measurements of heat pulse velocities. Leaf water potential (ψ), stomatal conductance (g s ) and transpiration from leaves (T) of all replicate trees were measured at 1300–1500h, once during the summer. On two separate occasions measurements were made of S, ψ, (g s ) and T for one each of Ulmus and Melaleuca trees to study diurnal variations in these parameters. A 12×12 m2 area around each tree was kept covered to simulate the condition of trees growing on pavements adjacent to residential properties. Sap flux for these tree species was in the order Melaleuca>Ulmus>Prunus. It is suggested that the smaller canopy and sapwood area in Prunus compared to the other two species is responsible for lower water potential and lower transpiration rate than the other species. Detailed analysis of the diurnal variation in sap flux and water relation of leaves of Melaleuca and Ulmus indicated sap flux of Melaleuca to be greater than that of Ulmus at the same transpiration rate per unit leaf area although the sapwood area of the two species was marginally different. This may have been due either to the difference in canopy conductance or in leaf area between the two species. With the assumption that sap flux closely resembles the rate of soil water extraction for both species, results indicate that Melaleuca is likely to extract soil water at a higher rate than Ulmus and hence is capable of causing greater shrinkage and soil movement than Ulmus.  相似文献   

2.

Key message

The relative shade tolerance of T. cordata , F. sylvatica , and C. betulus in mature stands is based on different species-specific carbon and nitrogen allocation patterns.

Abstract

The leaf morphology and photosynthetic capacity of trees are remarkably plastic in response to intra-canopy light gradients. While most studies examined seedlings, it is not well understood how plasticity differs in mature trees among species with contrasting shade tolerance. We studied light-saturated net photosynthesis (A max), maximum carboxylation rate (V cmax), electron transport capacity (J max) and leaf dark respiration (R d) along natural light gradients in the canopies of 26 adult trees of five broad-leaved tree species in a mixed temperate old-growth forest (Fraxinus excelsior, Acer pseudoplatanus, Carpinus betulus, Tilia cordata and Fagus sylvatica), representing a sequence from moderately light-demanding to highly shade-tolerant species. We searched for species differences in the dependence of photosynthetic capacity on relative irradiance (RI), specific leaf area (SLA) and nitrogen per leaf area (N a ). The three shade-tolerant species (C. betulus, T. cordata, F. sylvatica) differed from the two more light-demanding species by the formation of shade leaves with particularly high SLA but relatively low N a and consequently lower area-based A max, and a generally higher leaf morphological and functional plasticity across the canopy. Sun leaf morphology and physiology were more similar among the two groups. The three shade-tolerant species differed in their shade acclimation strategies which are primarily determined by the species’ plasticity in SLA. Under low light, T. cordata and F. sylvatica increased SLA, mass-based foliar N and leaf size, while C. betulus increased solely SLA exhibiting only low intra-crown plasticity in leaf morphology and N allocation patterns. This study with mature trees adds to our understanding of tree species differences in shade acclimation strategies under the natural conditions of a mixed old-growth forest.  相似文献   

3.
We investigated radial patterns of sap flux density and wood properties in the sapwood of young loblolly pine (Finns taeda L.), mature white oak (Quercus alba L.) and sweetgum (Liquidambar styraciflua L.), which represent three major classes of wood anatomy: non-porous (coniferous), ring-porous and diffuse-porous. Radial measurements of xylem sap flux density were made in sections of xylem extending to 20 mm and 20–40 mm from the cambium. These measurements were compared with measurements of the relative water content (Rs) and sapwood specific gravity (ρr) of corresponding radial sections. In both hardwood species, sap flow differences were rarely significant between the two depth intervals. In pine, a 59% reduction in daily sap flux density from outer to inner sapwood was found. This could not be accounted for by a 3% drop in Rs; rather, an accompanying 9% reduction in ρr indicated a transition between the depth intervals from mature to juvenile sapwood, and is the probable cause of the lower flux rate in the inner xylem of pine.  相似文献   

4.
Sap flow techniques, such as thermal dissipation, involve an empirically derived relationship between sap flux and the temperature differential between a heated thermocouple and a nearby reference thermocouple inserted into the sapwood. This relationship has been widely tested but mostly with newly installed sensors. Increasingly, sensors are used for extended periods. After several months, tree growth, wounding, or other changes in water flow path may impair sensor performance. To quantify changes in sensor performance over time, we installed 23 sensors (one per tree) in 16-year-old Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] and red alder (Alnus rubra Bong.) in the western Cascades of Oregon and measured daily average sap flux (J s) from April through July 2001 and 2002. We assumed the measurements from 2001 to be unimpaired and the response of J s to vapor pressure deficit (δ) to be consistent under the same edaphic conditions. Differences from this assumption were attributed to “temporal sampling errors.” During the study, soil moisture (θ), did not differ on similar calendar dates, yet the slope of J s versus δ decreased significantly in the second year. In 2002, J s in Douglas-fir was 45% less than in 2001; in red alder, 30% less. Variations in δ could not explain the differences. A correction for temporal sampling errors improved estimates of J s from sensors used for more than one season. Differences in temporal sampling errors between the two species reveal underlying causal mechanisms. Evidence is presented that cambial growth causes errors in Douglas-fir.  相似文献   

5.
Gas diffusion through wood: implications for oxygen supply   总被引:6,自引:0,他引:6  
Living tissue in tree stems has to be supplied with oxygen, which can be transported upwards with the transpiration stream; but in times of zero sapflow, the only source is the oxygen stored or diffusing radially through bark and xylem. We measured radial and axial diffusion of oxygen against nitrogen gas in wood of coniferous (Picea abies (L.) Karst. and Taxus baccata L.), ring-porous (Quercus robur L. and Fraxinus excelsior L.) and diffuse-porous (Fagus sylvatica L. and Carpinus betulus L.) trees at different water and gas contents in the laboratory. The diffusion coefficient (D) in radial direction was mostly between 10−11 and 10−7 m2 s−1 and was strongly related to the gas content. At 40% gas volume, D increased 5–13-fold in Picea, Taxus and Quercus, 36-fold in Fraxinus, and about 1000-fold in Carpinus and Fagus relative to D at 15% gas volume. In the axial direction, diffusion was 1 or 2 orders of magnitude faster. Between-species differences in diffusion velocities can largely be explained by wood structure. In general, D was lowest in conifers, highest in diffuse-porous and intermediate in ring-porous hardwoods, where the large vessels were mostly blocked by tyloses. Model calculations showed that at very high water content, radial diffusion can be too low to ensure the supply of respiring sapwood with sufficient oxygen and an important function of gas in living stems appears to be the supply of oxygen through storage and diffusion.  相似文献   

6.
In Central European forestry the establishment of broad-leaved mixed forests is attaining increasing importance, but little information exists about gas exchange characteristics of some of the tree species involved, which are less abundant today. In an old-growth forest in Central Germany (Hainich, Thuringia), (i) I compared morphological and chemical leaf traits that are indicative of leaf gas exchange characteristics among eight co-existing species, and (ii) analysed photosynthetic parameters of saplings and adult trees (lower and upper canopy level) in four of these species (Acer pseudoplatanus L., Carpinus betulus L., Fraxinus excelsior L. and Tilia platyphyllos Scop.).Leaves from the upper canopy in the eight species studied varied significantly in their specific leaf area (12.9–19.4 m2 kg−1), stomatal density (125–313 stomata mm−2), leaf nitrogen concentration (95–157 mmol N m−2) and δ13C content (–27.81 to –25.85‰). F. excelsior and C. betulus were largely contrasting species, which suggests that the species, which were studied in more detail, include the widest difference in leaf gas exchange among the co-existing species. The saplings of the four selected species exhibited shade acclimated leaves with net photosynthesis rates at saturating irradiance (Amax) between 5.0 and 6.4 μmol m−2 s−1. In adult trees Amax of fully sunlit leaves was more variable and ranged from 10.5 (C. betulus) to 16.3 μmol m−2 s−1 (F. excelsior). However, less negative δ13C values in F. excelsior sun leaves point to a strong limitation in gas exchange. In the lower canopy of adult trees Amax of F. excelsior (12.0 μmol m−2 s−1) was also greater than that of A. pseudoplatanus, C. betulus and T. platyphyllos (5.0–5.6 μmol m−2 s−1). This can be explained by the small leaf area and the absence of shade leaves in mature F. excelsior trees. Thus, a considerable variation in leaf traits and gas exchange was found among the co-existing tree species. The results suggest that species-specific characteristics increase the spatial heterogeneity of canopy gas exchange and should be taken into account in the interpretation and prediction of gas flux from mixed stands.In der Forstwirtschaft Mitteleuropas gewinnt die Begründung von Laubmischwäldern zunehmend an Bedeutung, aber über Eigenschaften im Gasaustausch einiger beteiligter Baumarten, die heute nicht so häufig sind, ist wenig bekannt. In einem Altbestand in Mitteldeutschland (Hainich, Thüringen) habe ich (i) morphologische und chemische Eigenschaften von Sonnenblättern, die Hinweise auf Charakteristika im Blattgaswechsel geben, an acht koexistierenden Baumarten untersucht, und (ii) Photosyntheseparameter von juvenilen und adulten Bäumen (unteres und oberes Kronenniveau) von vier dieser Arten (Acer pseudoplatanus L., Carpinus betulus L., Fraxinus excelsior L. and Tilia platyphyllos Scop.) erhoben.Blätter aus dem oberen Kronenraum der acht untersuchten Arten variierten signifikant in der spezifischen Blattfläche (12.9–19.4 m2 kg−1), der Stomatadichte (125–313 Stomata mm−2), dem Blattstickstoffgehalt (95–157 mmol N m−2) und den δ13C-Werten (–27.81 bis –25.85‰). In diesem Kollektiv zeigten F. excelsior und C. betulus groβe Unterschiede, was darauf hindeutet, dass die Arten, die genauer untersucht wurden, die Spannweite an Gaswechseleigenschaften unter den koexistierenden Baumarten umfassen. Die Jungpflanzen der vier ausgewählten Arten besaßen Schattenblätter, deren Netto-Photosyntheserate bei hoher Lichtintensität (Amax) zwischen 5.0 and 6.4 μmol m−2 s−1 variierte. An Sonnenblättern von Altbäumen war Amax variabler und lag zwischen 10.5 (C. betulus) und 16.3 μmol m−2 s−1 (F. excelsior). Allerdings weisen hohe δ13C-Werte in Sonnenblättern von F. excelsior auf eine starke Limitierung des Gasaustauschs hin. Auch in der unteren Krone der Altbäume war Amax von F. excelsior (12.0 μmol m−2 s−1) höher als Amax von A. pseudoplatanus, C. betulus und T. platyphyllos (5.0–5.6 μmol m−2 s−1). Dies kann durch die geringe Blattfläche und die Abwesenheit von Schattenblättern in der Krone adulter Bäume von F. excelsior erklärt werden. Zwischen den koexistierenden Baumarten wurde somit in Bezug auf Blatteigenschaften und Photosyntheseparameter eine erhebliche Variation festgestellt. Die Ergebnisse legen nahe, dass artspezifische Eigenschaften die räumliche Heterogenität des Gaswechsels im Kronenraum erhöhen und bei der Interpretation und Vorhersage von Gasflüssen über Mischbeständen berücksichtigt werden sollten.  相似文献   

7.
On the arable land of the Rosovka Stream alluvium in the Czech Republic, a windbreak containing native woody species, was planted within a restoration project. This study evaluates the effect of that planting of three different tree sizes, on the rate of growth. The sizes of transplants employed in this study included small (1.0–1.5 meters tall), medium-sized (2.0–2.5 meters tall) and large (with a trunk circumference of 0.1–0.12 meters). The following native tree species, from the Eurosiberian region, were used: Quercus robur L., Carpinus betulus L., Fraxinus excelsior L., Acer campestre L., Acer pseudoplatanus L., Tilia cordata Mill., and Prunus avium L. Growth rates were monitored over a five-year period. Small transplants had the highest growth; they grew approximately 0.4 meters more than transplants from the other size categories. Our results show that the selection of the size of transplant has a significant impact on development and growth. However, differences in the post-transplant responses of individual species were found.  相似文献   

8.
Stem CO2 efflux (E s) has been estimated from a temperature-related equation, but sap flux often affects measurements of E s, which leads to misunderstanding real stem respiration. In order to observe the relationship between E s and stem temperature and to analyze the effect of sap velocity on E s, stem temperature, E s and sap flux were measured from a subtropical Schima superba plantation in South China on three trees for consecutive 3 days in July and October 2009. Stem temperature, E s and sap velocity were significantly higher in July than in October. Stem temperature could explain 17–41 and 54–75% variations of E s in July and October, respectively. A negative relationship between E s and stem temperature was found during 1800–2300 hours in July. The daytime E s was 9.2, 4.3 and 2.4% higher than the predicted for three trees in July, and this occurred only on Tree 1 in October. Sap velocity was positively correlated with E s for three trees in July, and the increase of E s with the increase of sap velocity was only observed on Tree 1 in October. These results demonstrated that the occurrence of sap flux could account for the increase of daytime E s, and the effect of sap velocity on E s varied with the seasons from the S. superba stem.  相似文献   

9.
Stem respiration plays a role in species coexistence and forest dynamics. Here we examined the intra‐ and inter‐specific variability of stem CO2 efflux (E) in dominant and suppressed trees of six deciduous species in a mixed forest stand: Fagus sylvatica L., Quercus petraea [Matt.] Liebl, Quercus pyrenaica Willd., Prunus avium L., Sorbus aucuparia L. and Crataegus monogyna Jacq. We conducted measurements in late autumn. Within species, dominants had higher E per unit stem surface area (Es) mainly because sapwood depth was higher than in suppressed trees. Across species, however, differences in Es corresponded with differences in the proportion of living parenchyma in sapwood and concentration of non‐structural carbohydrates (NSC). Across species, Es was strongly and NSC marginally positively related with an index of drought tolerance, suggesting that slow growth of drought‐tolerant trees is related to higher NSC concentration and Es. We conclude that, during the leafless period, E is indicative of maintenance respiration and is related with some ecological characteristics of the species, such as drought resistance; that sapwood depth is the main factor explaining variability in Es within species; and that the proportion of NSC in the sapwood is the main factor behind variability in Es among species.  相似文献   

10.
Lang C  Seven J  Polle A 《Mycorrhiza》2011,21(4):297-308
Mycorrhizal species richness and host ranges were investigated in mixed deciduous stands composed of Fagus sylvatica, Tilia spp., Carpinus betulus, Acer spp., and Fraxinus excelsior. Acer and Fraxinus were colonized by arbuscular mycorrhizas and contributed 5% to total stand mycorrhizal fungal species richness. Tilia hosted similar and Carpinus half the number of ectomycorrhizal (EM) fungal taxa compared with Fagus (75 putative taxa). The relative abundance of the host tree the EM fungal richness decreased in the order Fagus > Tilia >> Carpinus. After correction for similar sampling intensities, EM fungal species richness of Carpinus was still about 30–40% lower than that of Fagus and Tilia. About 10% of the mycorrhizal species were shared among the EM forming trees; 29% were associated with two host tree species and 61% with only one of the hosts. The latter group consisted mainly of rare EM fungal species colonizing about 20% of the root tips and included known specialists but also putative non-host associations such as conifer or shrub mycorrhizas. Our data indicate that EM fungal species richness was associated with tree identity and suggest that Fagus secures EM fungal diversity in an ecosystem since it shared more common EM fungi with Tilia and Carpinus than the latter two among each other.  相似文献   

11.
Using constant heat sap flow sensors, xylem water fluxes in ten tree species and two liana species were monitored for 5–10 days during the beginning of the wet season in May, 1993. For a subset of the trees, a branch was also monitored at the top of the crown for 5 days. Xylem flux (J S) was related diurnally in all plants to vapor pressure deficit (D) measured within the upper-third of the canopy, and to incoming shortwave radiation R S above the canopy. Cross-correlation analysis was used to estimate time lags between diurnal patterns of J S and D or R S, and between J S in stems and branches. The maximum correlation coefficient from cross-correlation of J S with R S (range=0.57–0.92) was often higher than the maximum of J S with D (range=0.43–0.89), indicating that diurnal J S was more dependent on R S than D. Time lags (lag corresponding to maximum correlation) of J S at stem-base with D was shorter (0–45 min) than with radiation (5–115 min), highly variable within a species, and uncorrelated to the height or exposure of tree crowns or liana in the canopy. On a stand level, not accounting for the diel lag between stem sap flux and canopy flux resulted in errors in estimated canopy transpiration of up to 30%. Received: 19 October 1998 / Accepted: 8 June 1999  相似文献   

12.
城市绿化树木具有多重生态效应, 其耗水量不容忽视。在不了解树干液流空间变异的前提下, 将点的测定值推广到整树或者林段尺度会产生很大的误差。为准确地确定整树耗水, 采用热消散探针法研究了夏秋季北京成年常绿树种油松(Pinus tabulaeformis)、雪松(Cedrus deodara)和刺槐(Robinia pseudoacacia)树干液流的空间变异特征及产生原因。各树种树干液流存在方位变异, 受树干靠南的方向受光较多、木材解剖特征和枝下高高度的影响, 油松和雪松液流密度与方位之间的关系较为固定, 而刺槐液流密度与方位之间的关系表现出随机性。不同方位每小时液流密度之间高度相关(p < 0.000 1)。因此, 可以基于这种关系准确地计算其他方位的液流(R2 > 0.91, p < 0.000 1)。油松和雪松树干液流的径向变异显著, 较深处和较浅处树干液流的日变化格局相似, 但是较深处的液流明显滞后于较浅处的树干液流, 且较浅处树干液流对环境因子的响应远高于深处的液流。不同深度树干液流之间密切相关, 因此可以利用较浅处的液流外推其他深度的液流(R2 > 0.89, p < 0.000 1)。然而, 同一棵树不同方位径向剖面特征不同, 雪松南向较深处的液流明显高于其他方位, 且滞后不显著, 这与树冠南向受光较多有关。结合误差分析, 采取北向15 mm和75 mm深处的液流密度均值来估算整树耗水较为准确。  相似文献   

13.
Species diversity in mixed forest stands is one of the factors that complicate up-scaling of transpiration from individual trees to stand level, since tree species are architecturally and functionally different. In this study, thermal dissipation probes were used to measure sap flow in five different tree species in a mixed-deciduous mountain forest in South Korea. Easily measurable tree characteristics that could serve to define individual tree water use among the different species were employed to scale up transpiration from single trees to stand level. Tree water use (TWU) was derived from sap flux density (SFD) and sapwood area (SA). Canopy transpiration E was scaled from TWU while canopy conductance (g c) was computed from E and VPD. SFD, TWU and g c were correlated with tree diameter at breast height (DBH) for all the five measured species (SFD: R 2 = 0.21, P = 0.036; TWU: R 2 = 0.83, P < 0.001; g c: R 2 = 0.63, P < 0.001). Maximum stand transpiration (E) during June, before the onset of the Asian monsoon rains, was estimated at 0.97 ± 0.12 mm per day. There was a good (R 2 = 0.94, P < 0.0001) agreement between measured and estimated E using the relationship between TWU and DBH. Our study shows that using functional models that employ converging traits among species could help in estimating water use in mixed forest stands. Compared to SA, DBH is a better scalar for water use of mixed forest stands since it is non-destructive and easily obtainable.  相似文献   

14.
We studied regulation of whole-tree water use in individuals of five diverse canopy tree species growing in a Panamanian seasonal forest. A construction crane equipped with a gondola was used to access the upper crowns and points along the branches and trunks of the study trees for making concurrent measurements of sap flow at the whole-tree and branch levels, and vapor phase conductances and water status at the leaf level. These measurements were integrated to assess physiological regulation of water use from the whole-tree to the single-leaf scale. Whole-tree water use ranged from 379 kg day−1 in a 35 m-tall Anacardium excelsum tree to 46 kg day−1 in an 18 m-tall Cecropia longipes tree. The dependence of whole-tree and branch sap velocity and sap flow on sapwood area was essentially identical in the five trees studied. However, large differences in transpiration per unit leaf area (E) among individuals and among branches on the same individual were observed. These differences were substantially reduced when E was normalized by the corresponding branch leaf area:sapwood area ratio (LA/SA). Variation in stomatal conductance (g s) and crown conductance (g c), a total vapor phase conductance that includes stomatal and boundary layer components, was closely associated with variation in the leaf area-specific total hydraulic conductance of the soil/leaf pathway (G t). Vapor phase conductance in all five trees responded similarly to variation in G t. Large diurnal variations in G t were associated with diurnal variation in exchange of water between the transpiration stream and internal stem storage compartments. Differences in stomatal regulation of transpiration on a leaf area basis appeared to be governed largely by tree size and hydraulic architectural features rather than physiological differences in the responsiveness of stomata. We suggest that reliance on measurements gathered at a single scale or inadequate range of scale may result in misleading conclusions concerning physiological differences in regulation of transpiration. Received: 1 October 1997 / Accepted: 6 March 1998  相似文献   

15.
Summary Tree transpiration was determined by xylem sap flow and eddy correlation measurements in a temperate broad-leaved forest of Nothofagus in New Zealand (tree height: up to 36 m, one-sided leaf area index: 7). Measurements were carried out on a plot which had similar stem circumference and basal area per ground area as the stand. Plot sap flux density agreed with tree canopy transpiration rate determined by the difference between above-canopy eddy correlation and forest floor lysimeter evaporation measurements. Daily sap flux varied by an order of magnitude among trees (2 to 87 kg day–1 tree–1). Over 50% of plot sap flux density originated from 3 of 14 trees which emerged 2 to 5 m above the canopy. Maximum tree transpiration rate was significantly correlated with tree height, stem sapwood area, and stem circumference. Use of water stored in the trees was minimal. It is estimated that during growth and crown development, Nothofagus allocates about 0.06 m of circumference of main tree trunk or 0.01 m2 of sapwood per kg of water transpired over one hour.Maximum total conductance for water vapour transfer (including canopy and aerodynamic conductance) of emergent trees, calculated from sap flux density and humidity measurements, was 9.5 mm s–1 that is equivalent to 112 mmol m–2 s–1 at the scale of the leaf. Artificially illuminated shoots measured in the stand with gas exchange chambers had maximum stomatal conductances of 280 mmol m–2 s–1 at the top and 150 mmol m–2 s–1 at the bottom of the canopy. The difference between canopy and leaf-level measurements is discussed with respect to effects of transpiration on humidity within the canopy. Maximum total conductance was significantly correlated with leaf nitrogen content. Mean carbon isotope ratio was –27.76±0.27 (average ±s.e.) indicating a moist environment. The effects of interactions between the canopy and the atmosphere on forest water use dynamics are shown by a fourfold variation in coupling of the tree canopy air saturation deficit to that of the overhead atmosphere on a typical fine day due to changes in stomatal conductance.This paper is dedicated to Prof. Dr. O.L. Lange on the occasion of his 65th birthday  相似文献   

16.
There are conflicting reports on the accuracy of the thermal dissipation probe (TDP, the Granier method) measurement using the original formula, which is widely used to estimate the transpiration of individual trees and forest stands. In this article, six woody species of three wood types were used to study a possible association between TDP measurement accuracy and wood anatomical characteristics, including the vessel diameter and density, as well as sapwood depth. We found that TDP technique with Granier’s original equation underestimated the sap flux density in six species to various degrees, dependent on conduit size and sap flux. Our calibration using two conifers with small diameters and a high density of tracheids was relatively consistent with Granier’s calibration; however, because there were larger diameters and lower densities of vessels in the two diffuse-porous species, the original calibration significantly underestimated sap flow. Two ring-porous species had the largest diameters and lowest densities of vessels. In particular, Robinia pseudoacacia possessed the shallowest sap wood depth, less than a probe length. Our calibration for the ring-porous species, especially R. pseudoacacia, deviated far from the original calibration, which mostly underestimated the sap flow. The degree of underestimation was well associated with sap wood depth and the radial diameter and density distribution of conduits. Our results demonstrated that a new calibration must be operated for each species together with the sapwood depth determination and more probes may be applied for one stem in the field to obtain the more accurate sap flux. In addition, we investigated the effects of different environmental temperature and perfusing fluid composition on the TDP-based sap flux measurement. We found that an environmental temperature reduction from 25 to 0 °C did not alter the values of the maximum temperature difference (ΔTm) between a heated probe and a reference probe when there was no sap flow, verifying that ΔTm measured at night can be used as a reference in daytime.  相似文献   

17.
Seasonal drought may have a high impact on the karst ecosystem. The transpiration from Cyclobalanopsis glauca (syn. Quercus glauca) stand on a rocky hilly slope in South China was measured during the dry period of 2006 by using the Granier’s sap-flow method. During the experimental period, maximum sap flux density (J s) ranged from 20 to 40 g H2O m−2 s−1 according to diameter of breast height (DBH) of individual trees. On sunny days, daily transpiration varied between 3.4 and 1.8 mm day−1. Transpiration of C. glauca was closely correlated to the radiation, air temperature, and vapor pressure deficit (VPD). Soil moisture was a very important factor influencing transpiration. The very low soil water content might result in low stand transpiration even when VPD is high, but high soil water content might also result in low transpiration if it was low VPD. However, VPD rather than soil moisture, affected largely the stand transpiration under high soil water content. The amount of transpiration was much more than that of the total soil moisture loss during the continuous sunny days, indicating that the dry shallow soils were probably not the only source for root-uptake water. C. glauca grows deep roots through the rock fissures of epikarst, indicating that epikarst might be another main source for sustaining transpiration in response to dry demand in autumn. Therefore, a large amount of deep roots of karst species would be a very important hydraulic connecting from the epikarst to above ground by transpiration, which would promote the biogeochemical process in a karst system.  相似文献   

18.
Land devoted to plantation forestry (50 million ha) has been increasing worldwide and the genus Eucalyptus is a popular plantation species (14 million ha) for its rapid growth and ability to grow well on a wide range of sites. Fertilization is a common silvicultural tool to improve tree growth with potential effects on stand water use, but the relationship between wood growth and water use in response to fertilization remains poorly quantified. Our objectives in this study were to determine the extent, timing and longevity of fertilization effects on water use and wood growth in a non‐water limited Eucalyptus saligna experimental forest near Hilo, HI. We evaluated the short‐ and long‐term effects of fertilization on water use by measuring sap flux per unit sapwood area, canopy conductance, transpiration per unit leaf area and water‐use efficiency in control and fertilized stands. Short‐term effects were assessed by comparing sap flux before and after fertilizer application. Long‐term effects were assessed by comparing control plots and plots that had received nutrient additions for 5 years. For the short‐term response, total water use in fertilized plots increased from 265 to 487 mm yr?1 during the 5 months following fertilization. The increase was driven by an increase in stand leaf area accompanied by an increase in sap flux per unit sapwood area. Sap flux per unit leaf area and canopy conductance did not differ during the 5 months following fertilizer additions. For the last 2 months of our short‐term measurements, fertilized trees used less water per unit carbon gain (361 compared with 751 kg H2O kg C?1 in control stands). Trees with 5 years of fertilization also used significantly more water than controls (401 vs. 302 mm yr?1) because of greater leaf area in the fertilized stands. Sap flux per unit sapwood area, sap flux per unit leaf area, and canopy conductance did not differ between control and fertilized trees in the long‐term plots. In contrast to the short‐term response, the long‐term response of water use per unit wood growth was not significant. Overall, fertilization of E. saligna at our site increased stand water use by increasing leaf area. Fertilized trees grew more wood and used more water, but fertilization did not change wood growth per unit water use.  相似文献   

19.
We examined the effects of climate and allocation patterns on stem respiration in ponderosa pine (Pinus ponderosa) growing on identical substrate in the cool, moist Sierra Nevada mountains and the warm, dry, Great Basin Desert. These environments are representative of current climatic conditions and those predicted to accompany a doubling of atmospheric CO2, respectively, throughout the range of many western north American conifers. A previous study found that trees growing in the desert allocate proportionally more biomass to sapwood and less to leaf area than montane trees. We tested the hypothesis that respiration rates of sapwood are lower in desert trees than in montane trees due to reduced stem maintenance respiration (physiological acclimation) or reduced construction cost of stem tissue (structural acclimation). Maintenance respiration per unit sapwood volume at 15°C did not differ between populations (desert: 6.39 ± 1.14 SE μmol m−3 s−1, montane: 6.54 ± 1.13 SE μmol m−3 s−1, P = 0.71) and declined with increasing stem diameter (P = 0.001). The temperature coefficient of respiration (Q 10) varied seasonally within both environments (P = 0.05). Construction cost of stem sapwood was the same in both environments (desert: 1.46 ± 0.009 SE g glucose g−1 sapwood, montane: 1.48 ± 0.009 SE glucose g−1 sapwood, P = 0.14). Annual construction respiration calculated from construction cost, percent carbon and relative growth rate was greater in montane populations due to higher growth rates. These data provide no evidence of respiratory acclimation by desert trees. Estimated yearly stem maintenance respiration was greater in large desert trees than in large montane trees because of higher temperatures in the desert and because of increased allocation of biomass to sapwood. By analogy, these data suggest that under predicted increases in temperature and aridity, potential increases in aboveground carbon gain due to enhanced photosynthetic rates may be partially offset by increases in maintenance respiration in large trees growing in CO2-enriched atmospheres. Received: 4 November 1996 / Accepted: 23 January 1997  相似文献   

20.
Air temperatures in the arid western United States are predicted to increase over the next century. These increases will likely impact the distribution of plant species, particularly dioecious species that show a spatial segregation of the sexes across broad resource gradients. On the basis of spatial segregation patterns, we hypothesized that temperature increases will have a greater negative impact on female plants compared with co‐occurring male plants of dioecious species. This hypothesis was tested by examining the whole‐plant carbon and water relations of 10‐year‐old female (= 18) and male (= 13) Acer negundo Sarg. trees grown in a common garden in Salt Lake City, UT. The trees were established from cuttings collected where the growing season temperature averaged about 6.5 °C cooler than at the common garden. During May and June, stem sap flux (Js) was similar between genders, but averaged 25% higher in males during the warmer months of July and August. Daytime canopy stomatal conductance (gs) per unit leaf area was 12% higher in females in May : June, but was 11% higher in males in July : August. We combined measurements of sap flux–scaled transpiration with measurements of tree allometry and δ13C of leaf soluble sugars to estimate whole‐tree carbon assimilation (Atree) and water use efficiency (WUE) (Atree : Etree). Atree was similar between genders until late August when Atree was 32% higher in male trees. Atree : Etree was on average 7% higher in females than in males during the growing season. Patterns of Js, gs, Atree and Atree : Etree in the present study were in contrast to those previously reported for A. negundo genders under native growing season temperatures. Results suggest that the spatial segregation of the sexes could shift under global warming such that female plants lose their dominance in high‐resource habitats, and males increase their dominance in relatively lower‐resource habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号