首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of uptake of benzoic and 2,4-dichlorobenzoic acid (2,4-DCBA) by Alcaligenes denitrificans BRI 3010 and BRI 6011 and Pseudomonas sp. strain B13, three organisms capable of degrading various isomers of chlorinated benzoic acids, was investigated. In all three organisms, uptake of benzoic acid was inducible. For benzoic acid uptake into BRI 3010, monophasic saturation kinetics with apparent K(infm) and V(infmax) values of 1.4 (mu)M and 3.2 nmol/min/mg of cell dry weight, respectively, were obtained. For BRI 6011, biphasic saturation kinetics were observed, suggesting the presence of two uptake systems for benzoic acid with distinct K(infm) (0.72 and 5.3 (mu)M) and V(infmax) (3.3 and 4.6 nmol/min/mg of cell dry weight) values. BRI 3010 and BRI 6011 accumulated benzoic acid against a concentration gradient by a factor of 8 and 10, respectively. A wide range of structural analogs, at 50-fold excess concentrations, inhibited benzoic acid uptake by BRI 3010 and BRI 6011, whereas with B13, only 3-chlorobenzoic acid was an effective inhibitor. For BRI 3010 and BRI 6011, the inhibition by the structural analogs was not of a competitive nature. Uptake of benzoic acid by BRI 3010 and BRI 6011 was inhibited by KCN, by the protonophore 3,5,3(prm1), 4(prm1)-tetrachlorosalicylanilide (TCS), and, for BRI 6011, by anaerobiosis unless nitrate was present, thus indicating that energy was required for the uptake process. Uptake of 2,4-DCBA by BRI 6011 was constitutive and saturation uptake kinetics were not observed. Uptake of 2,4-DCBA by BRI 6011 was inhibited by KCN, TCS, and anaerobiosis even if nitrate was present, but the compound was not accumulated intracellularly against a concentration gradient. Uptake of 2,4-DCBA by BRI 6011 appears to occur by passive diffusion into the cell down its concentration gradient, which is maintained by the intracellular metabolism of the compound. This process could play an important role in the degradation of xenobiotic compounds by microorganisms.  相似文献   

2.
Phosphoglycerate mutase has been purified from methanol-grown Hyphomicrobium X and Pseudomonas AMI by acid precipitation, heat treatment, ammonium sulphate fractionation, Sephadex G-50 gel filtration and DEAE-cellulose column chromatography. The purification attained using the Hyphomicrobium X extract was 72-fold, and using the Pseudomonas AMI extract, 140-fold. The enzyme purity, as shown by analytical polyacrylamide gel electrophoresis, was 50% from Hyphomicrobium X and 40% from Pseudomonas AMI. The enzyme activity was associated with one band. The purified preparations did not contain detectable amounts of phosphoglycerate kinase, phosphopyruvate hydratase, phosphoglycerate dehydrogenase or glycerate kinase activity. The molecular weight of the enzymic preparation was 32000 +/- 3000. The enzyme from both organisms was stable at low temperatures and, in the presence of 2,3-diphosphoglyceric acid, could withstand exposure to high temperatures. The enzyme from Pseudomonas AMI has a broad pH optimum at 7-0 to 7-6 whilst the enzyme from Hyphomicrobium X has an optimal activity at pH 7-3. The cofactor 2,3-diphosphoglyceric acid was required for maximum enzyme activity and high concentrations of 2-phosphoglyceric acid were inhibitory. The Km values for the Hyphomicrobium X enzyme were: 3-phosphoglyceric acid, 6-0 X 10(-3) M: 2-phosphoglyceric acid, 6-9 X 10(-4) M; 2,3-diphosphoglyceric acid, 8-0 X 10(-6) M; and for the Pseudomonas AMI ENzyme: 3-4 X 10(-3) M, 3-7 X 10(-4) M and 10 X 10(-6) M respectively. The equilibrium constant for the reaction was 11-3 +/- 2-5 in the direction of 2-phosphoglyceric acid to 3-phosphoglyceric acid and 0-09 +/- 0-02 in the reverse direction. The standard free energy for the reaction proceeding from 2-phosphoglyceric acid to 3-phosphoglyceric acid was -5-84 kJ mol(-1) and in the reverse direction +5-81 kJ mol(-1).  相似文献   

3.
The site-specific chemical modification of horse heart cytochrome c at Lys-13 and -72 using 4-chloro-3,5-dinitrobenzoic acid (CDNB) increases the electron self-exchange rate of the protein. In the presence of 0.24 M cacodylate (pH* 7.0) the electron self-exchange rate constants, kex, measured by a 1H NMR saturation transfer method at 300 K, are 600, 6 X 10(3) and 6 X 10(4) M-1 X s-1 for native, CDNP-K13 and CDNP-K72 cytochromes c respectively. Repulsive electrostatic interactions, which inhibit cytochrome c electron self-exchange, are differentially affected by modification. Measurements of 1H NMR line broadening observed with partially oxidised samples of native cytochrome c show that ATP and the redox inert multivalent anion Co(CN)3-6 catalyse electron self-exchange. At saturation a limiting value of approximately 1.4 X 10(5) M-1 X s-1 is observed for both anions.  相似文献   

4.
The self-assembly of calf brain tubulin, purified by the modified Weisenberg procedure, was examined in an adiabatic differential heat capacity microcalorimeter. Tubulin solutions at concentrations between 6 and 17 mg/mL were heated from 8 to 40 degrees C at heating rates between 0.1 and 1.0 deg/min in a pH 7.0 phosphate buffer containing 1 X 10(-3) M GTP, 1.6 X 10(-2) M MgCl2, and 3.4 M glycerol. The heat capacity change, deltaCp of the microtubule growth reaction was found to be -1600 +/- 500 cal/(deg mol) per 110 000 molecular weight tubulin dimer incorporated into microtubules, in agreement with the reported van't Hoff deltaCp value of -1500 cal/(deg mol) [Lee, J.C., & Timasheff, S.N. (1977) Biochemistry 16, 1754-1765]. The assembly reaction is characterized by a complex heat uptake pattern comprising both endothermic and exothermic processes.  相似文献   

5.
Guanine deaminase (EC 3.5.4.3, guanine aminohydrolase [GAH]) was purified 3248-fold from human liver to homogeneity with a specific activity of 21.5. A combination of ammonium sulfate fractionation, and DEAE-cellulose, hydroxylapatite, and affinity chromatography with guanine triphosphate ligand were used to purify the enzyme. The enzyme was a dimer protein of a molecular weight of 120,000 with each subunit of 59,000 as determined by gel filtration and sodium dodecyl sulfate-gel electrophoresis. Isoelectric focusing gave a pI of 4.76. It was found to be an acidic protein, as evidenced by the amino acid analysis, enriched with glutamate, aspartate, alanine and glycine. It showed a sharp pH optimum of 8.0. The apparent Km for guanine was determined to be 1.53 X 10(-5) M at pH 6.0 and 2 X 10(-4) M for 8-azaguanine as a substrate at pH 6.0. The enzyme was found to be sensitive to p-hydroxymercuribenzoate inhibition with a Ki of 1.53 X 10(-5) M and a Ki of 5 X 10(-5) M with 5-aminoimidazole-4-carboxamide as an inhibitor. The inhibition with iodoacetic acid showed only a 7% loss in the activity at 1 X 10(-4) M and a 24% loss at 1 X 10(-3) M after 30 min of incubation, whereas p-hydroxymercuribenzoate incubation for 30 min resulted in a 91% loss of activity at a concentration of 1 X 10(-4) M. Guanine was the substrate for all of the inhibition studies. The enzyme was observed to be stable up to 40 degrees C, with a loss of almost all activity at 65 degrees C with 30 min incubation. Two pKa values were obtained at 5.85 and 8.0. Analysis of the N-terminal amino acid proved to be valine while the C-terminal residue was identified as alanine.  相似文献   

6.
Partial purification and characterization of a D-aminoacid oxidase from Octopus vulgaris hepatopancreas are described. An about 25-fold purification was achieved. The pH optimum was near to 9; molecular weight, determined by gel-filtration through G 200 Sephadex was approximately 55000; apparent Km was 10(-3)M. The enzyme showed great affinity for D-Ala and D-Val. Recovery of activity, due to pre-incubation with FAD was observed. The enzyme is strongly inhibited by benzoic acid and moderately inhibited by p-aminobenzoic acid.  相似文献   

7.
The hemocyanin of the channeled whelk, Busycon canaliculatum, is a multisubunit protein with a molecular weight close to 9 X 10(6). The increase in pH above neutrality and the addition of 0-5 M urea and 0-2 M GdnHCl is found to dissociate the whole molecules to half-molecules and smaller dimeric and monomeric fragments of one-tenth and one-twentieth mass of the parent hemocyanin. The molecular weight transitions investigated at constant protein concentration of 5 X 10(-2) g X l-1 show no clearly discernible plateau regions, where essentially only half-molecules and one-tenth molecules are present. The ultracentrifugation patterns in much of the dissociation region produced by urea at pH 6.9 suggests the presence of three distinct components consisting of whole molecules, half-molecules and largely one-tenth molecular weight fragments. At pH 8.2 and higher, where whole molecules are largely absent, the effects of urea on the dissociation of half-molecules to tenths and tenth-molecules to twentieth molecule was investigated by means of light scattering. Analysis of the urea data based on a decamer to dimer and dimer to monomer scheme of dissociation used in our earlier studies gave apparent estimates of about 90 amino acid groups at the contact areas of the dimers in the half-molecules and 110 groups at the monomer contacts forming the dimers. The latter relatively large estimate of groups suggests that the dissociation of the tenth molecules or dimers must occur by longitudinal splitting of the contact areas along both the folded domains and the connecting chain segments of the twentieth molecules. Circular dichroism, absorbance and viscosity data suggest that the secondary structure and conformation of the folded domains of the hemocyanin subunits are largely retained at both high pH and in 3-8 M urea solutions. The molecular weights at pH 9.0-10.6 and in 3-8 M urea are found to be (4.2-4.7) X 10(5), close to one-twentieth of the mass of the parent hemocyanin. Denaturation and unfolding of the subunit domains is observed between 3 and 6 M GdnHCl solutions, as evidenced by the abolition of the characteristic copper absorbance in the neighborhood of 346 nm and the relatively pronounced changes in circular dichroism at 222 nm and intrinsic viscosity. The further decrease in molecular weights to about (2.6-3.2) X 10(5), below one-twentieth of the mass of hemocyanin suggests the presence of hidden breaks or scissions in the polypeptide chains suffered during isolation, which become exposed as a result of complete unfolding in GdnHCl solutions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The polyphenol oxidase (LsPPO) from a wild edible mushroom Lactarius salmonicolor was purified using a Sepharose 4B-L-tyrosine-p-amino benzoic acid affinity column. At the optimum pH and temperature, the K(M) and V(Max) values of LsPPO towards catechol, 4-methylcatechol and pyrogallol were determined as 0.025 M & 0.748 EU/mL, 1.809 x 10(- 3) M & 0.723 EU/mL and 9.465 x 10(- 3) M & 0.722 EU/mL, respectively. Optimum pH and temperature values of LsPPO for the three substrates above ranged between the pH 4.5-11.0 and 5-50 degrees C. Enzyme activity decreased due to heat denaturation with increasing temperature. Effects of a variety of classical PPO inhibitors were investigated opon the activity of LsPPO using catechol as the substrate. IC(50) values for glutathione, p-aminobenzenesulfonamide, L-cysteine, L-tyrosine, oxalic acid, beta-mercaptoethanol and syringic acid were determined as 9.1 x 10(- 4), 2.3 x 10(- 4) M, 1.5 x 10(- 4) M, 3.8 x 10(- 7) M, 1.2 x 10(- 4) M, 4.9 x 10(- 4) M, and 4 x 10(- 4) M respectively. Thus L-tyrosine was by far the most effective inhibitor. Interestingly, sulfosalicylic acid behaved as an activator of LsPPO in this study.  相似文献   

9.
D A Yphantis  T Arakawa 《Biochemistry》1987,26(17):5422-5427
Recombinant DNA derived human interferon gamma (IFN-gamma) from Escherichia coli was examined by equilibrium ultracentrifugation. Short-column equilibrium experiments at pH 6.9 in 0.1 M ammonium acetate buffer gave a z-average molecular weight of 33,500 +/- 1400 at infinite dilution, corresponding to 1.98 +/- 0.08 times the formula weight. Long- (2.6 mm) column experiments at pH 7.5 in 0.04 M imidazole buffer gave a molecular weight of 33,400 +/- 500. Under the latter conditions IFN-gamma behaves somewhat nonideally, with the departure from ideality accounted for by an effective (Donnan) charge of about 6+. No association of this dimer to form tetramer or higher polymers was observed, with the association constant for formation of tetramer from dimer K24 found to be less than 34 L mol-1. Similarly, no dissociation to monomers was observable, with the dissociation constant to monomer K21 being less than 5 X 10(-8) mol L-1. At pH 3.55 in 0.02 M buffer (acetate plus acetic acid), there was virtually complete dissociation of the dimer to monomer. Extreme nonideality was seen in this low ionic strength system, and the effective charge on the protein was estimated to be about 11+. The reduced molecular weight M(1 -upsilon rho) of the monomer was found to be about 4.09 +/- 0.20 kg mol-1; this corresponds to a molecular weight of 16,410 +/- 820, with the Scatchard definition of components. A small amount of a polymer with a molecular weight of about 0.5 X 10(6) was detected under these conditions.  相似文献   

10.
Transport of molybdate by Clostridium pasteurianum.   总被引:12,自引:9,他引:3       下载免费PDF全文
The transport of 99MoO42- into dinitrogen-fixing cells of Clostridium pasteurianum was investigated. Transport of molybdate in this organism is energy dependent; sucrose is required in the minimal media, and the system is inhibited by the glycolysis inhibitors, NaF, iodoacetic acid, and arsenate. The cells accumulate molybdate against a concentration gradient, and the uptake shows a marked dependence on temperature (optimum 37 C) and pH (optimum 6.0). The rate of molybdate uptake with increasing molybdate concentrations shows saturation kinetics with an apparent Km and Vmax of 4.8 X 10(-5) M and 55 nmol/g of dry cells per min, respectively. Inhibition studies with the anions SO42-, S2O32-, WO42-, and VO32- show that SO42- and WO42- competitively inhibit MoO42- uptake (apparent Ki [SO42-] is 3.0 X 10(-5) M; apparent Ki [WO42-] is 2.4 X 10(-5), whereas S2O32- and VO32- have no inhibitory effect. Exchange experiments with MoO42- show that only a small percentage of the 99MoO42- taken up by the cells is exchangeable. Exchange experiments with WO42- and SO42- indicate that once inside the cells WO42- and SO42- cannot substitute for MoO42-.  相似文献   

11.
The thermal depolymerization of porcine submaxillary mucin   总被引:2,自引:0,他引:2  
The time dependence of the molecular weight, radius of gyration, and hydrodynamic size distribution for porcine submaxillary mucin (PSM) in solution have been studied using static and dynamic light scattering. The weight average molecular weight (Mw) of PSM in 6 M guanidine HCl, pH 7, is initially 3 X 10(6) and decreases with time in three phases: rapidly from 3-2 X 10(6), less rapidly from 2-0.9 X 10(6), and slowly below 0.9 X 10(6). The rates of decrease are much greater at pH 2. The energy of activation associated with each phase is 20 kcal/mol, which is similar to that reported for peptide bond cleavage at an aspartic acid residue. Addition of mercaptoethanol to PSM in 6 M guanidine HCl leads to a rapid decrease in Mw to 0.9 X 10(6), followed by a very slow further decrease. These results suggest that native PSM consists of subunits (Mw = 0.9 X 10(6] that are linked by disulfide bonds to form dimers (Mw = 2 X 10(6] and then higher aggregates. This cross-linking appears to occur at unglycosylated regions of the protein core, which are believed to be richer in aspartic acid than the rest of the molecule.  相似文献   

12.
The rate of uptake of propanoic acid and the cell dimensions were measured for 23 yeasts differing in their resistance to weak-acid-type preservatives. Relationships between reciprocal uptake rate, reciprocal permeability, cell volume, cell area, volume/area, and the MICs of benzoic acid and propanoic acid for the yeasts were tested by correlation analysis on pairs of parameters. The MIC of methylparaben, which is not a weak-acid-type preservative, was included. The most significant relationships found were between both reciprocal uptake rate and reciprocal permeability and the MICs of propanoic and benzoic acids Cell volume, area, and volume/area were each individually correlated with propanoic and benzoic acid MICs, but less strongly. In multiple regression analyses, inclusion of terms for volume, area, or volume/area did not markedly increase the significance. The MIC of methylparaben was unrelated to the uptake and permeability parameters, but did show a correlation with cell volume/area. Schizosaccharomyces pombe was anomalous in having very low permeability. Exclusion of these outlying data revealed particularly strong relationships (P < 0.001) between both reciprocal uptake rate and reciprocal permeability and the benzoic acid MIC. MICs for Zygosaccharomyces bailii isolates were substantially higher than for the other species, and therefore Z. baillii isolates had a large influence on the regressions. However, the relationships observed remained significant even after removal of the Z. bailii data. In showing a correlation between the rate at which propanoic acid enters yeast cells and the ability of the cells to tolerate this and other weak-acid-type preservatives, but not methylparaben, the results suggest that the resistance mechanism, in which preservative is continuously removed from the cell, is a common and major determinant of the preservative tolerance of yeast species.  相似文献   

13.
Acid nucleotide pyrophosphatase was isolated from the cell-free extracts of Pichia guilliermondii Wickerham ATCC 9058. The enzyme was 25-fold purified by saturation with ammonium sulphate, gel-filtration on Sephadex G-150 column and ion-exchange chromatography on DEAE-Sephadex A-50 column. The pH optimum was 5.9, temperature optimum--45 degrees C. The enzyme catalyzed the hydrolysis of FAD, NAD+ and NADH, displaying the highest activity with NAD+. The Km, values for FAD, NAD+ and NADH were 1.3 x 10(-5) and 2.9 x 10(-4) M, respectively. The hydrolysis of FAD was inhibited by AMP, ATP, GTP, NAD+ and NADP+. The K1 for AMP was 6.6 x 10(-5) M, for ATP--2.0 X 10(-5) M, for GTP--2.3 X 10(-6) M, for NAD+--1.7 X 10(-4) M. The molecular weight of the enzyme was 136 000 as estimated by gel-filtration on Sephadex G-150 and 142 000 as estimated by thin-layer gel-filtration chromatography on Sephadex G-200 (superfine). Protein-bound FAD of glucose oxidase was not hydrolyzed by acid nucleotide pyrophosphatase. The enzyme was stable at 2 degrees C in 0.05 M tris-maleate buffer, pH 6.2. Alkaline nucleotide pyrophosphatase hydrolyzing FAD was also detected in the cells of P. guilliermondii.  相似文献   

14.
Pyruvate kinase (ATP: pyruvate 2-0-phosphotransferase, EC 2. 7. 1. 40) from bovine adrenal cortex was purified 243 fold. The whole purification procedure included ammonium sulphate fractionation, heat treatment, Sephadex HW-55 chromatography and phosphocellulose chromatography. The specific activity of the preparation is 15.6 U/mg at 30 degrees C, the yield--36%. Pyruvate kinase showed only one protein band as judged by sodium dodecyl sulphate acrylamide gel electrophoresis. The enzyme displayed a hyperbolic saturation curve with respect to P-enolpyruvate. The apparent Km for this substrate was 0.55 X 10(-4) M, pH optimum--6.8-7.0. K+ concentrations above 0.1 M inhibit the enzyme.  相似文献   

15.
Acid alpha-glucosidase [EC 3.2.1.3] was purified from pig liver by a procedure including Sephadex G-100 affinity chromatography. Electrophoresis on SDS-polyacrylamide gel of the purified enzyme indicated the presence of two components with molecular weights of 73K and 64K. The two components of the enzyme were completely separated, in reasonable yield, by chromatography on a DEAE-5PW column. Both components catalyzed the hydrolysis of the alpha-1,4 and alpha-1,6 linkages of glycogen, maltose, isomaltose, dextrin, and a synthetic glucoside at acid pH. The pH optima of both components were 4.3 for maltase and glucoamylase, and 4.8 for isomaltase and dextrinase. But as to the activity on 4MU-alpha-Glc, the pH optimum of the larger component was 4.8 and that of the smaller component 5.3. The Km values of both components for 4MU-alpha-Glc, maltose, glycogen, isomaltose, and dextrin were 1.0 X 10(-4) M, 9.1 X 10(-3) M, 16.7 mg/ml, 6.7 X 10(-2) M, and 12.5 mg/ml, respectively. Erythritol, Tris, and turanose inhibited the two components competitively. The Ki values of the larger component were 5.0 X 10(-2) M, 13.3 X 10(-3) M, and 3.2 X 10(-3) M, and those of the smaller component were 2.5 X 10(-2) M, 6.1 X 10(-3) M, and 4.7 X 10(-3) M, for erythritol, Tris, and turanose, respectively.  相似文献   

16.
The hemocyanin of the giant Pacific chiton, Cryptochiton stelleri has a molecular weight of 4.2 +/- 0.3 X 10(6), determined by light-scattering, and a sedimentation coefficient of 60S. The fully dissociated subunits in nondenaturing solvents, at pH 10.6, 1 X 10(-2)M EDTA and in 8.0 M urea, pH 7.4 have molecular weights of 4.10 X 10(5) and 4.35 X 10(5), close to one-tenth of the molecular mass of the parent hemocyanin decamers. In the pH region from about 3.5 to 11 the molecular weight (Mw), determined at constant protein concentration of 0.10 g1(-1) exhibits a bell-shaped molecular weight profile centering about the physiological pH of the hemolymph of 7.2. The pH-Mw profile is best accounted for in terms of a three state, decamer-dimer-monomer dissociation scheme. Analysis of the Mg2+ and Ca2+ effects on the molecular weight transitions suggest stabilization of the hemocyanin decamers through one bound divalent ion per hemocyanin monomer or dimer. Urea, GdmCl, and the higher members of the chaotropic salt series are effective dissociating agents for Cryptochiton stelleri hemocyanin. The dissociation profile obtained with urea at pH 8.5, 0.01 M Mg2+, 0.01 M Ca2+ has been analyzed in terms of both the two- and three-species schemes of subunit-dissociation. Hydrophobic stabilization of the subunit contacts is suggested by the large number of apparent amino acid groups (Napp), of the order of 30 between dimers stabilizing the decamers, and 120 apparent amino acid groups between each monomer forming the constituent dimers.  相似文献   

17.
A unique phosphatase that selectively hydrolyzed phosphotyrosine and 2'-AMP at alkaline pH and p-nitrophenylphosphate at neutral pH was isolated from a cytosolic fraction of rat brain. The purified enzyme appeared homogenous on SDS-polyacrylamide gel electrophoresis and its molecular weight was estimated to be 42,000. The molecular weight of the native enzyme was 45,000 as determined by molecular sieve chromatography. These findings indicate that the native enzyme is a monomer protein. At pH 8.6, the enzyme hydrolyzed L-phosphotyrosine, D-phosphotyrosine, 2'-AMP, p-nitrophenylphosphate, 3'-AMP, 2'-GMP, and 3'-GMP; the ratio of its activities with these substrates was 100:96:115:68:39:25:16. Its Km values for L-phosphotyrosine, 2'-AMP, and p-nitrophenylphosphate were 0.8 X 10(-4) M, 1.4 X 10(-4) M, and 1.7 X 10(-4) M, respectively. At pH 7.4, the enzyme hydrolyzed p-nitrophenylphosphate, L-phosphotyrosine, and D-phosphotyrosine; the ratio of its activities with these compounds was 100:17:17, and its Km values for L-phosphotyrosine and p-nitrophenylphosphate were 1.8 X 10(-4) M and 2.0 X 10(-4) M, respectively. The enzyme activity was dependent on Mn2+ or Mg2+, and was strongly inhibited by 5'-nucleotides, pyrophosphate, and Zn2+. The enzyme was not sensitive to inhibitors of some well-characterized phosphatases such as NaF, molybdate, L(+)tartrate, tetramisole, vanadate, and lithium salt. The physiological role of the enzyme is discussed with respect to its activities toward phosphotyrosine, 2'-AMP, and p-nitrophenylphosphate.  相似文献   

18.
Connective tissue activating peptide III (CTAP III), a human platelet derived growth factor, induced marked stimulation of 2-deoxy[14C]glucose (2dG) uptake in cultures of human synovial cells, chondrocytes, and dermal fibroblasts. Cytochalasin B (2 X 10(-5) M) blocked the mediator-induced increase in 2dG uptake; phlorhizin (8 X 10(-4) M) partially inhibited this process. When cells were exposed to CTAP III (4 X 10(-6) M) for 30 min prior to uptake assay, 2dG uptake was stimulated by 30-110%; greater stimulation (400-800%) occurred following 17-40-h preincubation with the mediator. A 17-h exposure to CTAP III similarly stimulated 3-O-methylglucose uptake by over 400%, suggesting that CTAP III stimulated 2dG uptake is mediated via changes in hexose transport. Cycloheximide clearly prevented the 17-h effects of CTAP III on 2dG uptake. Insulin (3 X 10(-6) M) stimulated 2dG uptake 40-70% after 30-min preincubation with hormone; little effect was seen after 17-h preincubation. These data suggest that CTAP III stimulates glucose transport shortly after addition to target cells; the major stimulation observed after a 17-h incubation is consistent with the synthesis of new glucose transport protein.  相似文献   

19.
Pipecolic acid oxidase from Rhodotorula glutinis, which converts pipecolic acid to alpha-aminoadipic-delta-semialdehyde, an intermediate of the biosynthetic pathway of lysine, was purified 290-fold. The enzyme from the crude extract and purified preparation exhibited a molecular weight of approximately 43,000 and was composed of a single subunit. The purified enzyme was heat labile and exhibited a pH optimum of 8.5 and an apparent Km for L-pipecolic acid of 1.67 X 10(-3) M. L-Proline acted as a competitive inhibitor for the enzyme. The enzyme was inhibited by the sulfhydryl agents p-chloromercuribenzoate and mercuric chloride. The in vitro enzyme activity required oxygen and upon oxidation of pipecolic acid, oxygen was reduced to hydrogen peroxide.  相似文献   

20.
A S-adenosylmethionine:protein-lysine N-methyltransferase (EC 2.1.1.43) has been purified from rat brain cytosol 7,080-fold with a yield of 8%, using octopus calmodulin as a substrate. It contains a lysine residue that is not fully methylated. The enzyme was purified by ammonium sulfate fractionation, Sephacryl S-200 gel filtration, and phosphocellulose and octopus calmodulin-Sepharose affinity chromatographies. Among protein substrates, it was highly specific toward octupus calmodulin. The Km values for octopus calmodulin and S-adenosyl-L-methionine were found to be 2.2 X 10(-8) M and 0.8 X 10(-6) M, respectively. The molecular weight was estimated to be 57,000 by gel filtration and the pH optimum was between 7.5 and 8.5. The enzyme was stimulated in the presence of 10(-7) M Mn2+ and 10(-4) M Ca2+. HPLC of the acid hydrolysate of methyl-3H-labeled calmodulin showed the formation of epsilon-N-mono, epsilon-N-di, and epsilon-N-trimethyllysine. Reverse-phase HPLC of tryptic peptides of the methyl-3H-labeled calmodulin demonstrated that the labeled N-methyllysine lies in the 107-126 peptide. These findings suggest that this enzyme methylated a specific lysine residue of octopus calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号