首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A radioimmunoassay for hog kidney renin-binding protein (RnBP) was developed. Using this assay method, we investigated the properties of hog kidney RnBP. The lower limit of detection was 24 fmol RnBP. The molecular weight of RnBP in hog kidney extract, as well as the purified RnBP, was estimated to be 65,000 by gel filtration on Ultrogel AcA 44. When the purified RnBP was treated with N-ethylmaleimide (NEM) or 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), the molecular weight was reduced to 38,000. DTNB-treated RnBP was reconverted to the 65,000-dalton species with dithiothreitol. Cross-linked high molecular weight species of RnBP were produced by the reaction of native RnBP with dimethyl suberimidate, but formation of such species was much less with NEM-treated RnBP. These results suggest that the native RnBP exists as a dimeric form and dissociates to a monomeric form by sulfhydryl-alkylating or -oxidizing reagent. It was shown from analysis of amino acid composition of S-carboxymethylated RnBP and titration of sulfhydryl groups of native and NEM-treated RnBP with DTNB that native RnBP contained twelve cysteine residues and that three cysteine residues were alkylated by NEM under the conditions employed.  相似文献   

2.
The crystalline beef liver protein of Sumner and Dounce (A. L. Dounce, P. Z. Allen, and G. A. Mourtzikos (1978) Arch. Biochem. Biophys. 188, 251-265) termed FTBL (football) protein because of the shape of its crystals, has been identified as a crystalline leucine aminopeptidase (LAP), on the basis of its high specific LAP activity and coincidence of its N terminal amino acid sequence (30 amino acids) with that of beef eye lens LAP. Amino acid analyses of the two proteins are also in reasonable agreement when based on the exact monomer molecular weight of beef eye lens protein obtained by the van Loon group ((1982) J. Biol. Chem. 257, 7077-7081). Our previously published monomer molecular weight of the FTBL protein was 25% too high, leading to the erroneous conclusion that the beef liver FTBL-LAP protein was a tetramer rather than a hexamer, as found by the van Loon group for beef lens LAP. The present report, taken together with our first paper on the FTBL protein establishes that the FTBL-LAP protein has been isolated from beef kidney and beef spleen as well as from beef liver. We now find that the properties of FTBL-LAP protein indicate that it is the same protein as beef eye lens LAP. The cellular and intracellular distributions of the FTBL-LAP protein have been considered in our first publication on the FTBL protein.  相似文献   

3.
The pressor enzyme renin (EC 3.4.99.19) was isolated in a pure and stable form from hog kidney by affinity chromatography on a pepstatin/agarose gel followed by three additional steps of conventional chromatography. Destruction of the enzyme by proteolysis during isolation was prevented by chemically eliminating proteases in extracts. The pure preparation was used for the characterization of this enzyme. Renin was found to be a glycoprotein containing glucosamine and possessing binding affinity to concanavalin A. Contrary to previous reports, pure renin is stable at neutral pH either at 4 or -20 degrees for 3 to 8 weeks. It has a molecular weight of 36,400 as determined by equilibrium ultracentrifugation, an isoelectric point of 5.2 and E1%1cm (280 nm) of 9.1. In contrast to crude preparations, the enzyme activity has a broad pH optimum between pH 5.5 and 7.0 for both hog angiotensinogen and the synthetic octapeptide substrate benzyloxycarbonyl-Pro-Phe-His-Leu-Leu-Val-Tyr-Ser-beta-naphthylamide. The rate of formation of angiotensin I from hog angiotensinogen at pH 6.0 and 37 degrees was 267 microng/h/microng of renin, or 2000 Goldblatt units/mg of renin. For the synthetic fluorogenic octapeptide substrate benzyloxycarbonyl-Pro-Phe-His-Leu-Leu-Val-Tyr-Ser-beta-naphthylamide, a Km of 33 micronM and a Vmax of 0.94 micronmol/h/mg of enzyme were obtained at pH 6.5 and 37 degrees.  相似文献   

4.
Lecithin-cholesterol acyltransferase (EC 2.3.1.43) was purified from hog plasma by a highly efficient procedure. The final enzyme preparation was purified 30,000-fold over the starting material and was homogeneous as indicated by polyacrylamide gel electrophoreses in the presence of both SDS and urea. The purified hog lecithin-cholesterol acyltransferase had an apparent molecular weight of 66 000 on SDS-polyacrylamide gel electrophoresis and HPLC and was found to contain about 21.4% (w/w) carbohydrate-hexose, 11.3%; hexosamine, 1.9%; sialic acid, 8.2%. The amino acid composition analysis showed that hog lecithin-cholesterol acyltransferase contains four half cystines per mol; two cysteines were titrated at neutral pH with 5,5'-dithiobis(2-nitrobenzoic acid). Nearly all the phenolic groups were unavailable to the solvent at neutral pH, while they become exposed at around pH 11. Hog lecithin-cholesterol acyltransferase was found to be associated with HDL in the plasma and it prefers HDL as a substrate. The physicochemical properties of hog lecithin-cholesterol acyltransferase were generally similar to those of the human and the rat enzyme.  相似文献   

5.
Pancreatin containing high activities of proteolytic enzymes, amylase and lipase was prepared from optimally autolyzed hog pancreas. About one hundred grams of pancreatin were obtained from one kilogram of hog pancreas. Lipase was purified from the pancreatin preparation through steps of mild alkaline solution extraction, removing proteolytic enzymes by affinity adsorption, first ammonium sulfate fractionation, Sephacryl S-200 gel filtration, and secondary ammonium sulfate fractionation. By these steps, the purity of the enzyme increased 14 fold and the recovery of the enzyme activity was 33%. The purified lipase was not homogeneous and contained several contaminating proteins when examined by disc polyacrylamide gel electrophoresis.  相似文献   

6.
Lysine peptides, X-Lys-OH (Formula: see text) were synthesized, following classic or non-classic routes. Some bacterial and mammalian enzymes, endo- and exo-peptide hydrolases of the enzyme nomenclature type EC 3.4., were tested for their ability to split the epsilon-peptide bond in the above substrates. Kinetic constants (Km,kcat) were evaluated with leucine aminopeptidase from hog kidney and eye lens with aminopeptidase I from yeast. Aminopeptidase M (hog pancreas) and hog intestinal aminopeptidase were additionally examined for their Ki values with the above substrates in comparison to the classic protease substrate leucine p-nitroanilide. Especially the intestinal mucosa hydrolases are shown to be efficient in cleaving epsilon-peptide bonds.  相似文献   

7.
Pretreatment of hog high molecular weight renin for 30 min at 37 degrees C with 0.12 unit of either kallikrein or thrombin significantly increased (p less than 0.001) the amount of angiotensin I formed during subsequent incubations with homologous angiotensinogen. However, the thrombin-treated hog renin had 13 times more activity than the kallikrein-treated enzyme. Aprotinin did not inhibit the kallikrein-mediated activation of renin; the results indicated that aprotinin inhibited renin preferentially. Plasmin (0.25 unit) had little effect on the activity of high molecular weight renin. The molecular weight of hog renin on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was not altered after exposure to either kallikrein, thrombin, or plasmin. These results do not exclude the occurrence of a limited proteolytic event or a conformational change beyond the detection of the current method. The data show that the activation of hog high molecular weight renin by thrombin and kallikrein was not associated with the conversion of renin to Mr = 43,000.  相似文献   

8.
Protein carboxyl methyltransferase activity (S-adenosyl-L-methionine: protein carboxyl-0-methyltransferase; E.C. 2.1.1.24) has been detected in crude soluble extracts of cow eye lens. The activity incorporates methyl groups from S-adenosyl-L-methionine into endogenous lens proteins in vitro, and several of these species co-migrate electrophoretically with lens crystallins. A 2600-fold purification of the enzyme free of endogenous substrates was achieved by gel filtration and affinity chromatography. The lens methyltransferase has a native molecular weight of approximately 27,000, and catalyzes the substoichiometric incorporation of highly alkali-labile methyl ester groups into a broad range of protein substrates. The lens enzyme appears to be similar to that found in human erythrocytes, which specifically recognizes and modifies D-aspartic acid residues in aged proteins in a postulated degradative or racemization-repair pathway (McFadden, P.N., and Clarke, S. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2460-2464).  相似文献   

9.
The preceding paper described the identification and some properties of peptidylarginine deiminase, which catalyzes the deimination of arginyl residues in protein, from rabbit skeletal muscle, kidney, brain, and lung. In the present work we purified peptidylarginine deiminase from rabbit skeletal muscle with a 16% yield by 7 steps. The purification involved ion-exchange chromatography on DEAE-Sephacel, gel filtration on Bio-Gel A-0.5 m, and affinity chromatography on soybean trypsin inhibitor-Sepharose 4B and aminohexyl-Sepharose 4B. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis with and without sodium dodecyl sulfate. The molecular weight of the enzyme was estimated to be about 83,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis and 130,000-140,000 by gel filtration on Sephadex G-200. The isoelectric point was 5.3 and the amino acid composition was also determined. The enzyme preferably catalyzed the formation of citrulline derivatives from arginine derivatives in which both the amino and carboxyl groups were substituted and showed the highest activity towards Bz-L-Arg-O-Et among the arginine derivatives tested. The Km value for Bz-L-Arg-O-Et was found to be 0.50 X 10(-3) M. The enzyme also showed marked activities towards native protein substrates, such as protamine sulfate, soybean trypsin inhibitor, histone and bovine serum albumin.  相似文献   

10.
The complete purification of renin raises difficult problems due to its extremely low concentration in kidney (less than 1/50,000 of total proteins). The complete purification of hog kidney renin has been realized on a large scale, starting from 300 kg of fresh hog kidneys. 14.6 mg of pure renin were obtained with an overall yield of 4%. The purification procedure involved 14 steps. The enzyme was extracted at pH 3.5. Subsequent purification steps were performed in the presence of protease inhibitors to decrease renin proteolysis. These steps included an ammonium sulfate precipitation and a batch-chromatography on DEAE-cellulose. The major purification step was an affinity chromatography on Sepharose-hexamethylene-diaminopepstatin. The enzyme obtained was further purified by molecular sieving gel filtration and isoelectric focusing.  相似文献   

11.
Electrophoretically pure hog kidney diamine oxidase has been isolated by an improved procedure and subjected to molecular weight and subunit analyses. Sedimentation/diffusion and sedimentation equilibrium ultracentrifugation clearly show that the native enzyme has a molecular weight of 172,000. Acrylamide gel electrophoresis indicates that the enzyme consists of two apparently identical subunits of 91,000 daltons each. The native enzyme contains two firmly bound Cu(II) ions. The isolation procedure described provides diamine oxidase in 50–60% yield of activity and of the highest specific activity yet reported (1.2 units/mg).  相似文献   

12.
An aminopeptidase has been purified to homogeneity from bovine lens tissue by gel filtration and DEAE-cellulose chromatography. This enzyme has a molecular weight of 96,000 under both native and denaturing conditions. The purified enzyme hydrolyzed a variety of synthetic substrates as well as di-, tri-, and higher molecular weight peptides. Significantly this enzyme is capable of hydrolyzing arginine, lysine, and proline aminoacyl bonds. The pH optimum for activity and stability was 6.0. Both a reduced sulfhydryl group and a divalent metal ion are essential for activity. The native enzyme contains 1.6 mol of zinc and 1.0 mol of copper/mol of enzyme. No activation was seen upon incubation with either magnesium or manganese; however, heavy metal ions were inhibitory. Bestatin and puromycin were effective inhibitors and no endopeptidase activity could be detected in the purified preparation. This enzyme is clearly distinct from the lens leucine aminopeptidase, but rather, is identical to a cytosolic aminopeptidase III isolated from other tissues. Evidence is presented which argues that this enzyme may be the major lens aminopeptidase under in vivo conditions.  相似文献   

13.
This paper describes the physical characterization of the monomeric unit of hog kidney D-amino acid oxidase apoenzyme in 6 M guanidine hydrochloride (GuHCl) solution by means of differential refractometry, densimetry, light scattering, equilibrium sedimentation, and high-speed gel filtration chromatography. In 6 M GuHCl solution, the oxidase interacts preferentially with GuHCl: the values of the preferential interaction parameter are 0.11 +/- 0.03 (S.D.) g/g of protein by densimetry and 0.14 +/- 0.04 g/g of protein by refractometry. The volume change, delta V, of the oxidase on transfer from the native to the denatured state is -350 ml/mol. The molecular weight of the monomeric apoenzyme is 39,600 +/- 1,700 by light scattering and 38,000 +/- 1,200 by high-speed equilibrium sedimentation. The values of the molecular weight estimated by the empirical methods, i.e., sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and high-speed gel filtration chromatography in 6 M GuHCl, agree well with those obtained by the thermodynamic methods mentioned above. These results confirm definitely that the complex of the apoenzyme with SDS normally behaves in the same manner as those of standard proteins in SDS-gel electrophoresis. This is also supported in this study by the analysis of the electrophoretic data at several gel concentrations by Ferguson plots. The molecular weight of quasi-D-amino acid oxidase apoenzyme was also examined by the empirical methods.  相似文献   

14.
High performance anion-exchange chromatography was used to separate two carnosine-hydrolysing dipeptidases from hog kidney. Both enzymes (peaks I and II) were cytosolic and were activated and stabilized by Mn2+ and dithiothreitol. Peak I had a narrow specificity when assayed without added metal ions, but a broad specificity in the presence of Mn2+ or Co2+. Peak II was inactive unless both Mn2+ and dithiothreitol were present. Bestatin and leucine inhibited peak II, but not peak I. Peak I had a Km of 0.4 mM carnosine, a pI of 5.5 and a Mr of 57,000. Peak II had a Km of 5 mM carnosine, a pI of 5.0 and a Mr of 70,000. Hog and rat brain and liver carnosinase activity was completely inhibited by bestatin, indicating that these organs contained peak II, with little or no peak I enzyme. Hog kidney peak I contained the classical carnosinase of Hanson and Smith, who first described this enzyme. It also contained activity against homocarnosine ("homocarnosinase") and showed "manganese-independent carnosinase" activity. These three activities could not be separated using 8 different chromatographic procedures; it was concluded that they are attributable to one enzyme. It is recommended that the name carnosinase be retained for this enzyme and the names "homocarnosinase" and "manganese-independent carnosinase" be withdrawn. The properties of hog kidney peak II closely resembled those of human tissue carnosinase (also known as prolinase, a non-specific dipeptidase), mouse "manganese-dependent carnosinase" and a rat brain enzyme termed "beta-Ala-Arg hydrolase". Since these terms appear to represent closely related enzymes with broad specificity, the recommended name for each is "non-specific cytosolic dipeptidase".  相似文献   

15.
The carboxypeptidase activity occurring in hog intestinal mucosa is apparently due to two distinct enzymes which may be responsible for the release of basic COOH-terminal amino acids from short peptides. The plasma membrane-bound carboxypeptidase activity which occurs at neutral optimum pH levels was found to be enhanced by CoCl(2) and inhibited by guanidinoethylmercaptosuccinic acid, o-phenanthroline, ethylenediamine tetraacetic acid and cadmium acetate; whereas the soluble carboxypeptidase activity which occurs at an optimum pH level of 5.0 was not activated by CoCl(2) and only slightly inhibited by o-phenanthroline, ethylenediamine tetraacetic acid, NiCl(2) and CdCl(2). The latter activity was presumably due to lysosomal cathepsin B, which is known to be present in the soluble fraction of hog intestinal mucosa. Although the membrane-bound enzyme was evenly distributed along the small intestine, it was not anchored in the phospholipidic bilayer via a glycosyl-phosphatidylinositol moiety, as carboxypeptidase M from human placenta is. The enzyme was not solubilized by phosphatidylinositol-specific phospholipase C, but was solubilized to practically the same extent by several detergents. The purified trypsin-solubilized form is a glycoprotein with a molecular mass of 200 kDa, as determined by performing SDS-PAGE and gel filtration, which differs considerably from the molecular mass of human placental carboxypeptidase M (62 kDa). It was found to cleave lysyl bonds more rapidly than arginyl bonds, which is not so in the case of carboxypeptidase M, and immunoblotting analysis provided further evidence that hog intestinal and human placental membrane-bound carboxypeptidases do not bear much resemblance to each other. Since the latter enzyme has been called carboxypeptidase M, it is suggested that the former might be carboxypeptidase D, the recently described new member of the carboxypeptide B-type family.  相似文献   

16.
Dihydroorotase (DHOase) catalyzes the reversible cyclization of N-carbamoyl-L-aspartate (L-CA) to L-5,6-dihydroorotate (L-DHO), which is the third enzyme in de novo pyrimidine biosynthesis. The enzyme was purified from two parasitic protozoa, Crithidia fasciculata (about 16,000-fold) and Plasmodium berghei (about 790-fold). The C. fasciculata enzyme had a native molecular weight (Mr) of 42,000 +/- 5000, determined by gel filtration chromatography, and showed a single detectable protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with Mr 44,000 +/- 3000. The DHOase from P. berghei had a native molecular weight of 40,000 +/- 4000 and a subunit molecular weight on SDS-PAGE of 38,000 +/- 3000. The DHOase from both parasites, in contrast to the mammalian enzyme which resides on a trifunctional protein of the first two enzymes of the pathway, carbamoyl-phosphate synthase and aspartate transcarbamylase, is monomeric and has no oligomeric structure as studied by chemical cross-linking with dimethyl suberimidate. The rate of cyclization of L-CA by the C. fasciculata enzyme was relatively high at acidic pH, decreasing to a very low rate at alkaline pH. In contrast, the rate of ring cleavage of L-DHO was very low at acidic pH and increased to a higher rate at alkaline pH. These pH-activity profiles gave an intersection at pH 6.6. The Km and kcat for L-CA were 0.846 +/- 0.017 mM and 39.2 +/- 6.4 min-1, respectively; for L-DHO, they were 25.85 +/- 2.67 microM and 258.6 +/- 28.5 min-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Glutathione S-transferase was isolated from supernatant of camel kidney homogenate centrifugation at 37,000 xg by glutathione agarose affinity chromatography. The enzyme preparation has a specific activity of 44 mumol/min/mg protein and recovery was more than 85% of the enzyme activity in the crude extract. Glutathione agarose affinity chromatography resulted in a purification factor of about 49 and chromatofocusing resolved the purified enzyme into two major isoenzymes (pI 8.7 and 7.9) and two minor isoenzymes (pI 8.3 and 6.9). The homogeneity of the purified enzyme was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration on Sephadex G-100. The different isoenzymes were composed of a binary combination of two subunits with molecular weight of 29,000 D and 26,000 D to give a native molecular weight of 55,000 D. The substrate specificities of the major camel kidney glutathione S-transferase isoenzymes were determined towards a range of substrates. 1-chloro-2,4-dinitrobenzene was the preferred substrate for all the isoenzymes. Isoenzyme III (pI 7.9) had higher specific activity for ethacrynic acid and isoenzyme II (pI 8.3) was the only isoenzyme that exhibited peroxidase activity. Ouchterlony double-diffusion analysis with rabbit antiserum prepared against the camel kidney enzyme showed fusion of precipitation lines with the enzymes from camel brain, liver and lung and no cross reactivity was observed with enzymes from kidneys of sheep, cow, rat, rabbit and mouse. Different storage conditions have been found to affect the enzyme activity and the loss in activity was marked at room temperature and upon repeated freezing and thawing.  相似文献   

18.
Glutathione S-transferase was isolated from supernatant of camel kidney homogenate centrifugation at 37, 000 xg by glutathione agarose affinity chromatography. The enzyme preparation has a specific activity of 44 μ;mol/min/mg protein and recovery was more than 85% of the enzyme activity in the crude extract. Glutathione agarose affinity chromatography resulted in a purification factor of about 49 and chromatofocusing resolved the purified enzyme into two major isoenzymes (pI 8.7 and 7.9) and two minor isoenzymes (pI 8.3 and 6.9). The homogeneity of the purified enzyme was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration on Sephadex G-100.

The different isoenzymes were composed of a binary combination of two subunits with molecular weight of 29, 000 D and 26, 000 D to give a native molecular weight of 55, 000 D.

The substrate specificities of the major camel kidney glutathione S-transferase isoenzymes were determined towards a range of substrates. l-chloro-2, 4-dinltrobenzene was the preferred substrate for all the isoenzymes. Isoenzyme III (pI 7.9) had higher specific activity for ethacrynic acid and isoenzyme II (pI 8.3) was the only isoenzyme that exhibited peroxidase activity. Ouchterlony double-diffusion analysis with rabbit antiserum prepared against the camel kidney enzyme showed fusion of precipitation lines with the enzymes from camel brain, liver and lung and no cross reactivity was observed with enzymes from kidneys of sheep, cow, rat, rabbit and mouse.

Different storage conditions have been found to affect the enzyme activity and the loss in activity was marked at room temperature and upon repeated freezing and thawing.  相似文献   

19.
The (H+,K+)ATPase-enriched microsomal fraction prepared from hog gastric mucosa by sucrose density gradient centrifugation was effectively solubilized with Emulgen, with apparent preservation of the enzyme activity, and then the ATPase was highly purified by polyethylene glycol fractionation, and Blue Sepharose CL-6B and amino-hexyl Sepharose chromatographies. The purified enzyme showed a single band, with an apparent molecular mass of approximately 94 kDa, on SDS-PAGE, and exhibited both K+-ATPase and K+-stimulated-p-nitrophenyl phosphatase (pNPPase) activities. The optimum pH for the ATPase activity was 7.0. Amino acid analysis of the purified enzyme showed that it contains a large amount of hydrophobic amino acid (42%) and a small amount of glucosamine and galactosamine. The rabbit antibody monospecific for the ATPase, in the Ouchterlony double immunodiffusion and Western blotting tests, markedly inhibited both the K+-ATPase and K+-pNPPase activities.  相似文献   

20.
1. Molecular and kinetic properties of angiotensin converting enzymes from seven different species' kidneys were similar concerning apparent molecular weight, heat sensitivity, Km value, optimum pH, activation by chloride ion, and inhibition by specific converting enzyme inhibitors (captopril and SA 446). 2. Rabbit antibody against pure human kidney enzyme cross-reacted partially with each animal kidney enzyme except for the rabbit enzyme. Antigenic determinants of animal enzymes were variable from species to species and differed from those of the human enzyme in extent and specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号