首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to study the role of tyrosine autophosphorylation in insulin receptor signalling, we investigated a mutant human insulin receptor whereby the three major tyrosine autophosphorylation sites at positions 1158, 1162, and 1163 in the receptor beta-subunit were mutated to phenylalanines. When these mutant receptors were expressed in HTC rat hepatoma cells, there was no enhanced beta-subunit autophosphorylation and tyrosine kinase activity. In these cells there was enhanced insulin stimulation of [3H]AIB uptake and [3H]thymidine incorporation when compared to wild type HTC cells. The present study suggests therefore that the presence of the major insulin autophosphorylation sites is not a requirement for insulin stimulation of amino acid transport and mitogenesis.  相似文献   

2.
Insulin-stimulated phosphoinositide metabolism in isolated fat cells   总被引:6,自引:0,他引:6  
Treatment of isolated fat cells with insulin produced increases of up to 4.8-fold in the incorporation of [3H]inositol into phosphatidylinositol. This effect of insulin was both time- and dose-dependent with half-maximal stimulation at 30 microunits/ml of insulin. Insulin increased the labeling of phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate but not phosphatidylinositol 4-monophosphate in cells which had been preincubated with [3H]inositol for 90 min. Incubation of the cells in a Ca2+-free buffer increased the basal level of phosphatidylinositol labeling and enhanced the effect of insulin. Glucagon and isoprenaline, both of which stimulate lipolysis, had no effect on phosphatidylinositol labeling but did potentiate insulin-stimulated incorporation of [3H]inositol into phosphatidylinositol. Phosphoinositide breakdown was measured by the accumulation of inositol phosphates. Insulin did not increase the level of the inositol phosphates at all concentrations of the hormone tested. By comparison, phenylephrine and vasopressin were able to stimulate phosphoinositide breakdown. Pretreatment of the cells with insulin enhanced the effect of phenylephrine on inositol phosphates' accumulation, suggesting that insulin may potentiate phenylephrine-mediated phosphoinositide turnover. From these data we conclude that insulin stimulates the de novo synthesis of phosphatidylinositol and phosphatidylinositol 4,5-biphosphate, but has no effect on phosphoinositide breakdown.  相似文献   

3.
In our studies of the growth-promoting effect of a cytokine, interleukin-1 (IL-1), on cultured porcine granulosa cells, we found that the potency of IL-1 action correlated with the serum concentration in the culture medium and that IL-1 acted synergistically with insulin to increase the number of cells in the presence of low serum concentrations (0.1-1%). With granulosa cells maintained in a quiescent state under serum-free conditions, we therefore examined the effects of combined treatment with IL-1 and peptide growth factors, including insulin, on [3H]thymidine incorporation by these cells. IL-1 by itself enhanced [3H]thymidine incorporation in a concentration-dependent manner. Moreover, IL-1 acted synergistically with insulin, epidermal growth factor (EGF), or fibroblast growth factor (FGF) to enhance [3H]thymidine incorporation. Combinations of maximally effective concentrations of insulin (1 micrograms/ml), EGF (1 ng/ml), or FGF (50 ng/ml) with the maximally effective concentration of IL-1 (10 ng/ml) increased the levels of [3H]thymidine incorporation to 10-, 22-, and 20-fold, respectively, over the control values. Whereas IL-2 (0.1-100 ng/ml) did not affect [3H]thymidine incorporation, tumor necrosis factor alpha (TNF alpha) stimulated [3H]thymidine incorporation by itself and reproduced the actions of IL-1 to act synergistically with insulin, EGF, or FGF. When IL-1 and TNF alpha were added together in relatively low concentrations (1 ng/ml each), the combination had synergistic effects in enhancing [3H]thymidine incorporation. The present study demonstrates that cytokines and peptide growth factors act synergistically to markedly enhance porcine granulosa cell growth in vitro.  相似文献   

4.
Islets of Langerhans isolated from adult rats were maintained in tissue culture for 3 days in the continued presence of [3H]leucine. Labelled proinsulin, C-peptide and insulin were measured by quantitative h.p.l.c., a method which also allowed for resolution of C-peptide I and II, and of insulin I and II (the products of the two rat insulin genes). The results showed that: (1) at early times, proinsulin was the major radiolabelled product; with progressive time in culture, intra-islet levels of [3H]proinsulin decreased, despite continuous labelling with [3H]leucine, indicating that the combined rates of proinsulin conversion into insulin and of proinsulin release, exceeded the rate of synthesis; (2) insulin I levels were always greater than those of insulin II, both in the islets and for products released to the medium; (3) the molar ratio of [3H]insulin I and II to their respective 3H-labelled C-peptides increased with time for products retained within islets, reaching a value close to 3:1 by 3 days; by contrast, for products released to the medium during the culture period, the ratio was always close to unity; (4) when islets were incubated with [3H]leucine for 2 days, and then left for a further 1 day without label (chase period), the intra-islet [3H]insulin/[3H]C-peptide ratios rose to values as high as 9:1. Again, for material released to the medium, the values were close to 1:1; (5) it is concluded that C-peptide is degraded more rapidly than insulin within islet cells, thereby accounting for the elevated insulin/C-peptide ratios. The difference between the ratios observed in the islets and those for material released to the medium is taken to indicate that degradation occurs in a discrete cellular compartment and not in the secretory granule itself.  相似文献   

5.
Fatty acid CoA ligase (AMP) (EC 6.2.1.3) specific activity was increased approximately 2-fold in microsomes prepared from isolated rat fat cells incubated with 400 microunits of insulin/ml (2.9 nM) for 45 to 60 min compared to paired controls using an assay based on the conversion of [3H]oleic acid to [3H]oleoyl-CoA. Similar insulin-dependent increases in microsomal fatty acid CoA ligase specific activities were observed using an assay based on the conversion of [3H]CoA to fatty acyl-[3H]CoA. Fatty acid CoA ligase activity was predominately (about 80%) associated with the microsomal fraction. The insulin-dependent increase in microsomal fatty acid CoA ligase specific activity was maximal in 2 to 5 min at 400 microunits/ml. At 10 min, 80 to 100 microunits of insulin/ml caused a maximal increase in fatty acid CoA ligase specific activity. Similar apparent Km values for ATP, CoA, and fatty acid were observed for fatty acid CoA ligase activity in microsomal preparations from control and insulin-exposed cells. These data suggest that fatty acid CoA ligase activity is regulated in adipose tissue by insulin. Such regulation may serve to promote the capture of fatty acid and thereby, triacylglycerol synthesis in adipose tissue.  相似文献   

6.
Glucose uptake across the plasma membrane in animal cells plays a crucial role in whole-body glucose homeostasis. Insulin-stimulated glucose transport activity in vivo in several tissues was estimated using the 2-deoxy-D-[1-(3)H]glucose ([(3)H]2DG) uptake determination method. A tracer dose of [(3)H]2DG was injected intravenously into 8-day-old chicks (Gallus gallus) administered simultaneously or previously with porcine insulin (40 microg/kg BW). After 10 or 20 min, several major tissues, including skeletal and cardiac muscle, were sampled and their 2-deoxy-D-[1-(3)H]glucose 6-phosphate content analyzed. Plasma glucose concentration and [(3)H]2DG radioactivity were lowered by insulin within 20 min of [(3)H]2DG administration, while the plasma [(3)H]2DG/glucose ratio was not significantly different between chicks injected with insulin and their control counterparts. A marked uptake of 2DG was observed in cardiac tissue and brain, followed by kidney and skeletal muscles. In skeletal muscles, insulin increased the 2DG uptake in soleus, extensor digitorum longus and pectoralis superficialis muscles. On the other hand, no significant increases in insulin-induced 2DG uptake were detected in cardiac muscle or adipose tissue compared to controls. The results show that glucose transport across the plasma membrane in vivo in most skeletal muscles tested, but not cardiac muscle, was increased by insulin administration to chicks. These findings suggest that an insulin-responsive glucose transport mechanism is present in chickens, even though they intrinsically lack GLUT4 homologous gene, the insulin-responsive glucose transporter in mammals.  相似文献   

7.
The effects of diabetes and insulin administration on certain aspects of phosphoinositide metabolism in R3230AC mammary tumors were studied in vivo. Three weeks after diabetes was induced by streptozotocin, [3H]myoinositol incorporation into PI, PIP and PIP2 was increased in R3230AC tumors, whereas the formation of [3H]IP, [3H]IP2 and [3H]IP3 was decreased. Administration of protamine zinc insulin (3IU, twice daily, for 3 days) to diabetic rats decreased [3H]myoinositol incorporation into phosphoinositides and inositol phosphates in these mammary tumors. The R3230AC tumor from insulin-treated diabetic hosts had lower levels of unmetabolized [3H]-myoinositol compared to tumors from diabetic animals. Enzymatically-dissociated tumor cells from insulin-treated animals displayed decreased myoinositol transport in vitro. These findings suggest that the insulin-induced decrease in the turnover of inositol lipids in vivo in R3230AC mammary tumors could have resulted from the decreased level of [3H]myoinositol in these cells.  相似文献   

8.
D-Mannoheptulose was recently postulated to be transported into cells by GLUT2. The validity of such an hypothesis was assessed by comparing the uptake of tritiated D-mannoheptulose by pancreatic islets versus pieces of pancreas and, in the latter case, by comparing results obtained in control rats versus animals injected with streptozotocin (STZ). The uptake of D-[3H] mannoheptulose by islets represents a time-related and temperature-sensitive process, inhibited by cytochalasin B and enhanced by D-glucose. The uptake of the tritiated heptose was much lower in pieces of pancreatic tissue and inhibited by D-glucose, at least in the STZ rats. Whether in pieces of pancreas exposed in vitro to D-[3H] mannoheptulose or after intravenous injection of the tritiated heptose, the radioactive content of the pancreatic tissue was lower in STZ rats than in control animals. This contrasted with an unaltered radioactive content of liver and muscle in the STZ rats, at least when treated with insulin. Suitably radiolabelled D-mannoheptulose or an analogue of the heptose could thus conceivably be used for quantification of the endocrine pancreatic mass.  相似文献   

9.
In muscle cells, protein degradation occurs by lysosomal and nonlysosomal mechanisms but the mechanism by which insulin inhibits protein degradation is not well understood. Using cultured L6 myotubes, the effect of insulin on muscle cell protein degradation was examined. Cells were labeled for 18 h with [3H]leucine or [3H]tyrosine and protein degradation measured by release of TCA-soluble radioactivity. Incubation with insulin for 0.5, 1, 2, or 3 h produced 0, 6, 12, and 13% inhibition, respectively, at 10(-7) M. If the cells were incubated for 3 h prior to the addition of insulin to remove short-lived proteins, the effect of insulin was enhanced, producing 26% inhibition. Very long-lived protein degradation (cells labeled for 48 h, chased for 24 h before the addition of insulin) was only inhibited 17% by insulin. This was due to serum starvation during the chase since the addition of serum to the chase medium produced a subsequent inhibition of 38% by insulin. Thus insulin had a greater effect on the degradation of longer-lived proteins. Use of inhibitors suggested that insulin requires internalization and degradation to produce inhibition of protein degradation and acts through both the proteasome and lysosomes. There appears to be no interaction with the calpains.  相似文献   

10.
We previously suggested that insulin increases diacylglycerol (DAG) in BC3H-1 myocytes, both by increases in synthesis de novo of phosphatidic acid (PA) and by hydrolysis of non-inositol-containing phospholipids, such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). We have now evaluated these insulin effects more thoroughly, and several potential mechanisms for their induction. In studies of the effect on PA synthesis de novo, insulin stimulated [2-3H]glycerol incorporation into PA, DAG, PC/PE and total glycerolipids of BC3H-1 myocytes, regardless of whether insulin was added simultaneously with, or after 2 h or 3 or 10 days of prelabelling with, [2-3H]glycerol. In prelabelled cells, time-related changes in [2-3H]glycerol labelling of DAG correlated well with increases in DAG content: both were maximal in 30-60 s and persisted for 20-30 min. [2-3H]Glycerol labelling of glycerol 3-phosphate, on the other hand, was decreased by insulin, presumably reflecting increased utilization for PA synthesis. Glycerol 3-phosphate concentrations were 0.36 and 0.38 mM before and 1 min after insulin treatment, and insulin effects could not be explained by increases in glycerol 3-phosphate specific radioactivity. In addition to that of [2-3H]glycerol, insulin increased [U-14C]glucose and [1,2,3-3H]glycerol incorporation into DAG and other glycerolipids. Effects of insulin on [2-3H]glycerol incorporation into DAG and other glycerolipids were half-maximal and maximal at 2 nM- and 20 nM-insulin respectively, and were not dependent on glucose concentration in the medium, extracellular Ca2+ or protein synthesis. Despite good correlation between [3H]DAG and DAG content, calculated increases in DAG content from glycerol 3-phosphate specific radioactivity (i.e. via the pathway of PA synthesis de novo) could account for only 15-30% of the observed increases in DAG content. In addition to increases in [3H]glycerol labelling of PC/PE, insulin rapidly (within 30 s) increased PC/PE labelling by [3H]arachidonic acid, [3H]myristic acid, and [14C]choline. Phenylephrine, ionophore A23187 and phorbol esters did not increase [2-3H]glycerol incorporation into DAG or other glycerolipids in 2-h-prelabelling experiments; thus activation of the phospholipase C which hydrolyses phosphatidylinositol, its mono- and bis-phosphate, Ca2+ mobilization, and protein kinase C activation, appear to be ruled out as mechanisms to explain the insulin effect on synthesis de novo of PA, DAG and PC.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Madin-Darby canine kidney (MDCK) cells were previously shown to have few or no plasma membrane insulin binding sites (Hofmann et al: J Biol Chem 258:11774, 1983]. Accordingly, neither insulin-stimulated incorporation of [14C]glucose into glycogen, nor insulin-induced uptake of radiolabeled alpha-aminoisobutyrate ([3H]AIB) could be demonstrated. To probe for receptors, MDCK cultures were surface-labeled with Na125I or were labeled with [35S]methionine. When solubilized cells were immunoprecipitated with sera containing antibodies to the insulin receptor, and immunoprecipitates were analyzed on SDS-gel electrophoresis, no evidence for insulin receptor components was found. Also, when intact MDCK cells wee incubated first with serum containing antibodies to the insulin receptor and then with 125I-protein A, no radiolabeling of insulin receptors occurred. Various agents reported to have insulin-like activity were tested on MDCK cells. The insulinomimetic lectins concanavalin A and wheat germ agglutinin as well as hydrogen peroxide enhanced incorporation of [14C]glucose into glycogen and induced stimulated [3H]AIB uptake, whereas trypsin, vanadate, and serum containing antibodies to the insulin receptor were without effects. Altogether, these results showed that MDCK cells had few or no insulin receptors and were correspondingly insulin-insensitive. However, since insulin-associated responses could be elicited by some insulin mimickers, the post-receptor limb of response in MDCK cells was apparently intact.  相似文献   

12.
1. When rat isolated fat-cells were incubated with fructose and palmitate, insulin significantly stimulated glyceride synthesis as measured by either [14C]fructose incorporation into the glycerol moiety or of [3H]palmitate incorporation into the acyl moiety of tissue glycerides. Under certain conditions the effect of insulin on glyceride synthesis was greater than the effect of insulin on fructose uptake. 2. In the presence of palmitate, insulin slightly stimulated (a) [14C]pyruvate incorporation into glyceride glycerol of fat-cells and (b) 3H2O incorporation into glyceride glycerol of incubated fat-pads. 3. At low extracellular total concentrations of fatty acids (in the presence of albumin), insulin stimulated [14C]fructose, [14C]pyruvate and 3H2O incorporation into fat-cell fatty acids. Increasing the extracellular fatty acid concentration greatly inhibited fatty acid synthesis from these precursors and also greatly decreased the extent of apparent stimulation of fatty acid synthesis by insulin. 4. These results are discussed in relation to the suggestion [A.P. Halestrap & R.M.Denton (1974) Biochem. J. 142, 365-377] that the tissue may contain a specific acyl-binding protein which is subject to regulation. It is suggested that an insulin-sensitive enzyme component of the glyceride-synthesis process may play such a role.  相似文献   

13.
From the Chinese hamster ovary (CHO) cell, genetic variants (MonR-31 and MonR-32) relatively resistant to monensin, an ionophoric antibiotic, have been isolated. Growth of both MonR-31 and MonR-32 clones required higher doses of serum than CHO. Addition of insulin to media containing a low dose of serum restored full colony formation, but growth of MonR-31 or MonR-32 cells required more insulin than CHO cells. Specific binding of [125I]insulin was observed in these cell lines. The two MonR clones bound about one-half or less the [125I]insulin bound by CHO cells. Scatchard analysis for [125I]insulin binding at 4 degrees C and 37 degrees C showed altered number of binding sites, but not insulin affinity: The number of binding sites in the MonR cell was about a half or less that of the parental CHO cell. Down-regulation of insulin receptor was assayed when both CHO and MonR cells were incubated with 1 microgram/ml insulin. A 50-60% decrease in levels of insulin surface binding capacities was observed in CHO after exposure to insulin, whereas there was no decrease in MonR cell. The cellular uptake of 2-[3H]deoxyglucose into CHO cells was significantly enhanced in the presence of insulin, but only slight, if any, increase was observed in MonR cells.  相似文献   

14.
A quantitative method allowing determination of glucose metabolism in vivo in muscles and white adipose tissue of the anaesthetized rat is presented. A tracer dose of 2-deoxy[3H]glucose was injected intravenously in an anaesthetized rat and the concentration of 2-deoxy[3H]glucose was monitored in arterial blood. After 30-80 min, three muscles, the soleus, the extensor digitorum longus and the epitrochlearis, periovarian white adipose tissue and brain were sampled and analysed for their content of 2-deoxy[3H]glucose 6-phosphate. This content could be related to glucose utilization during the same time period, since (1) the integral of the decrease of 2-deoxy[3H]glucose in arterial blood was known and (2) correction factors for the analogue effect of 2-deoxyglucose compared with glucose in the transport and phosphorylation steps were determined from experiments in vitro. Glucose utilization was then measured by this technique in the tissues of post-absorptive rats in the basal state (0.1 munit of insulin/ml of plasma) or during euglycaemic-hyperinsulinaemic glucose clamp (8 munits of insulin/ml of plasma) and of 48 h-starved rats. Results corresponded qualitatively and quantitatively to the known physiological characteristics of the tissues studied.  相似文献   

15.
Pancreatic tissue contains an [3H]estradiol-binding protein that requires a coligand in the steroid-binding reaction. The endogenous coligand appears to be the tetradecapeptide somatostatin. Yeast alpha-factor, a tridecapeptide pheromone that induces conjugation between haploid cells of opposite mating type, was found to be as effective as somatostatin in enhancing specific binding of [3H]estradiol to partially purified pancreatic protein. Supernatant fractions from yeast cells also contain an [3H]estradiol-binding protein. alpha-Factor can enhance specific binding of [3H]estradiol to such yeast fractions. Somatostatin, somatostatin analogues, and an analogue of alpha-factor enhanced binding of [3H]estradiol but did not inhibit cell growth or induce morphological changes in S. cerevisiae. Thus, it appears that coligand-requiring [3H]estradiol-binding activity and mating in yeast are not directly related.  相似文献   

16.
Incorporation of [3H]glucosamine into hyaluronate synthesized by chondrocyte cultures was dependent on the concentration of foetal calf serum in the culture medium. [3H]Hyaluronate levels in cultures supplemented with 2% serum, or maintained without serum, were about 60 and 43%, respectively, of that in cultures maintained with 15% serum. Addition of insulin to cultures maintained with 15% serum had no significant effect on [3H]hyaluronate synthesis. Addition of the hormone to cultures maintained with 2% serum increased [3H]hyaluronate synthesis to levels either the same (1 ng insulin/ml), or greater than (100 ng insulin/ml) that in cultures maintained with 15% serum. The [3H]hyaluronate synthesized by the cultures was of very high molecular weight irrespective of the level of synthesis. [3H]Hyaluronate formed about 12% of the total [3H]glycosaminoglycan synthesized under all culture conditions. Synthesis of 35S, 3H-labelled proteoglycan was reduced, or increased, by the same relative amounts as [3H]hyaluronate, under the different culture conditions. Incorporation of [3H]glucosamine into hyaluronate by near confluent cultures of fibroblasts derived from the Swarm rat chondrosarcoma was reduced by 50% in cultures treated with 2% foetal calf serum compared to those maintained with 15% serum. [3H]Hyaluronate synthesis by fibroblast cultures treated with 2% serum was not stimulated by addition of insulin.  相似文献   

17.
The effects of insulin and glucose on parameters of metabolism were investigated in myoblast-like (MBL) cells, a human myoblast-like cell line derived from a Wilms' tumor. Insulin responses were studied after 4 hr pre-incubation in serum free media, with or without 5 mM glucose. Insulin was added during the last 2 hr. Glucose starvation markedly increased basal glucose transport (measured as 2-deoxyglucose uptake) as well as the net uptake of [14C]glucose and [14C]glucose incorporation into glycogen. Insulin stimulated net glucose uptake and incorporation into glycogen in a dose-dependent manner in glucose-fed and starved cells. These insulin responses were markedly enhanced in glucose-starved cells. Insulin accelerated 2-deoxyglucose transport in glucose-fed cells but did not further stimulate basal glucose transport in glucose-deprived cells. Insulin increased the incorporation of [3H]leucine into protein in glucose-fed or -starved MBL cells equally. The dose of insulin required for half-maximal insulin responses was similar for all parameters studied. Cycloheximide did not prevent the increased basal glucose incorporation in glucose-starved cells, but markedly inhibited the insulin response, while in glucose-fed cells, cycloheximide stimulated basal glucose incorporation. We conclude that MBL cells resemble fibroblasts in their insulin-independent stimulation of glucose transport in response to glucose-deprivation; when provided with glucose, they respond to insulin like fibroblasts. However, after brief glucose-starvation, the stimulated glucose transport system is no longer insulin-responsive in MBL cells, while pathways leading to the synthesis of macromolecules demonstrate preserved or enhanced stimulation by insulin, suggesting that these cells may serve as models to study the regulation of receptor-response coupling by the metabolic milieu.  相似文献   

18.
Incubation of isolated rat islets of Langerhans with melittin resulted in a dose-dependent stimulation of insulin secretion with half the maximal response occurring at 4 micrograms/ml melittin. The effect of melittin on insulin secretion was dependent on extracellular calcium, was inhibited by the phospholipase A2 inhibitor quinacrine and by the lipoxygenase inhibitor nordihydroguaiaretic acid. Stimulation of insulin secretion by melittin was associated with a calcium-dependent loss of [3H]arachidonic acid from phospholipids in islet cells prelabelled with [3H]arachidonic acid. Analysis of the islet phospholipids involved in this response revealed that the [3H]arachidonic acid was released predominantly from phosphatidylcholine. These results suggest that melittin may stimulate insulin secretion by activating phospholipase A2 in islet cells, causing the release of arachidonic acid from membrane phospholipid. The results are consistent with suggestions that the subsequent metabolism of arachidonic acid via the lipoxygenase pathway may be involved in regulating the insulin secretory response.  相似文献   

19.
When adipocytes were exposed to [3H]leucine for times ranging from 5 to 180 s, leucine was found to enter cells rapidly and equilibrate with the cell interior within 5 s. After an additional 15-30 s [3H]leucine was incorporated into nascent protein, and the rate of incorporation was linear for up to 6 h in both control and insulin-treated cells. Since treatment of adipocytes with 10 ng/ml insulin enhanced the rate of leucine incorporation 2-3-fold with minimal or no effect on the rate of protein degradation or leucine uptake, we conclude that the predominant effect of insulin is on enhancement of protein synthesis. To assess the time required for insulin to stimulate protein synthesis, we preincubated cells with 10 ng/ml of insulin for various times from 2 to 30 min and then measured [3H]leucine incorporation into protein during a 4-min assay. These results revealed that the insulin stimulation of protein synthesis is rapid (t 1/2 of 4.4 min), but 9-fold slower than insulin activation of glucose transport (t 1/2 less than 0.5 min under identical conditions). In contrast to the rapidity of insulin activation, we found that deactivation proceeded at much slower rates (t 1/2 of 32 and 21 min for protein synthesis and glucose transport, respectively). Desensitization of the glucose transport system has previously been shown to occur after adipocytes are exposed to high glucose and insulin. To examine the specificity of desensitization, we treated cells for 6 h with 20 mM glucose and 25 ng/ml insulin and then examined insulin sensitivity and maximal insulin responsiveness of both the glucose transport and protein synthesis systems. After treatment, the glucose transport was markedly insulin-resistant (60% loss in maximal insulin responsiveness and a marked loss in insulin sensitivity), whereas the protein synthesis system exhibited neither diminished insulin responsiveness nor loss of insulin sensitivity. In fact, insulin sensitivity actually increased, as indicated by the finding that less insulin was required to stimulate protein synthesis (insulin ED50 values of 0.25 and 18 ng/ml at 0 and 6 h of treatment). From these studies we conclude that desensitization of the glucose transport system by glucose and insulin treatment appears to be specific for this particular effector system and does not reflect a state of generalized cellular insulin resistance.  相似文献   

20.
Insulin and IGF-1 receptors contain covalently bound palmitic acid   总被引:2,自引:0,他引:2  
We have studied the biosynthesis of the insulin receptor in a human hepatoma cell line, HepG2. As previously reported, these cells synthesize a disulphide-bonded alpha 2 beta 2 tetrameric insulin receptor. Labelling of HepG2 cells with [3H]palmitate or [3H]myristate followed by immunoprecipitation with a polyclonal antireceptor antibody revealed the incorporation of palmitate, but not myristate, into the beta-subunit and alpha beta-precursor of the receptor in a hydroxylamine-sensitive linkage. The extracellular alpha-subunit was not labelled, demonstrating the specificity of incorporation. Acylation of the insulin receptor was an early event as judged by fatty acid incorporation into the alpha beta-precursor and prevention by protein synthesis inhibitors. Pulse-chase studies demonstrated the expected processing of the alpha beta-precursor to mature alpha- and beta-subunits, but no evidence for preferential turnover of the fatty acid moiety was found. The site of acylation appears to be in the transmembrane or cytoplasmic domain since proteolytic treatment of intact cells produced a truncated beta-subunit still containing label. Binding studies showed that HepG2 cells contain approximately half as many insulin-like growth factor-1 receptors as insulin receptors, raising the possibility that this receptor may also be acylated. Indeed, immunoprecipitation with the antiinsulin receptor serum of MDCK cells expressing IGF-1 receptors, but not insulin receptors, revealed bands corresponding to the alpha beta-precursor, alpha- and beta-subunits, of which the alpha beta-precursor and beta-subunits incorporated [3H]palmitate but the alpha-subunit did not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号