首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calmodulin (CaM) is a cytosolic Ca(2+) signal-transducing protein that binds and activates many different cellular enzymes with physiological relevance, including the nitric oxide synthase (NOS) isozymes. CaM consists of two globular domains joined by a central linker; each domain contains an EF hand pair. Four different mutant CaM proteins were used to investigate the role of the two CaM EF hand pairs in the binding and activation of the mammalian inducible NOS (iNOS) and the constitutive NOS (cNOS) enzymes, endothelial NOS (eNOS) and neuronal NOS (nNOS). The role of the CaM EF hand pairs in different aspects of NOS enzymatic function was monitored using three assays that monitor electron transfer within a NOS homodimer. Gel filtration studies were used to determine the effect of Ca(2+) on the dimerization of iNOS when coexpressed with CaM and the mutant CaM proteins. Gel mobility shift assays were performed to determine binding stoichiometries of CaM proteins to synthetic NOS CaM-binding domain peptides. Our results show that the N-terminal EF hand pair of CaM contains important binding and activating elements for iNOS, whereas the N-terminal EF hand pair in conjunction with the central linker region is required for cNOS enzyme binding and activation. The iNOS enzyme must be coexpressed with wild-type CaM in vitro because of its propensity to aggregate when residues of the highly hydrophobic CaM-binding domain are exposed to an aqueous environment. A possible role for iNOS aggregation in vivo is also discussed.  相似文献   

2.
The nitric oxide synthase (NOS) enzymes are bound and activated by the Ca(2+)-binding protein, calmodulin (CaM). We have utilized CaM mutants deficient in binding Ca(2+) with mutations in the N-lobe (CaM(12)), the C-lobe (CaM(34)), or both lobes of CaM (CaM(1234)) to determine their effect on the binding and activation of the Ca(2+)-dependent neuronal (nNOS) and Ca(2+)-independent inducible NOS (iNOS) isoforms. Four different kinetic assays were employed to monitor the effect of these CaM mutants on electron transfer rates in NOS. Protein-protein interactions between CaM and NOS were studied using steady-state fluorescence and spectropolarimetry to monitor the binding of these CaM mutants to nNOS and iNOS CaM-binding domain peptides. The CaM mutants were unable to activate nNOS, however, our CD results show that the C-terminal lobe of CaM is capable of binding to nNOS peptide in the presence of Ca(2+). Our results prove for the first time without the use of chelators that apo-CaM is capable of binding to iNOS peptides and holoenzymes.  相似文献   

3.
Using interferometry-based biosensors the binding and release of endothelial and neuronal nitric oxide synthase (eNOS and nNOS) from calmodulin (CaM) was measured. In both isoforms, binding to CaM is diffusion limited and within approximately three orders of magnitude of the Smoluchowski limit imposed by orientation-independent collisions. This suggests that the orientation of CaM is facilitated by the charge arrays on the CaM-binding site and the complementary surface on CaM. Protein kinase C phosphorylation of eNOS T495, adjacent to the CaM-binding site, abolishes or greatly slows CaM binding. Kinases which increase the activity of eNOS did not stimulate the binding of CaM, which is already diffusion limited. The coupling of Ca(2+) binding and CaM/NOS binding equilibria links the affinity of CaM for NOS to the Ca(2+) dependence of CaM binding. Hence, changes in the Ca(2+) sensitivity of CaM binding always imply changes in the NOS-CaM affinity. It is possible, however, that in some regimes binding and activation are not synonymous, so that Ca(2+) sensitivity need not be tightly linked to CaM sensitivity of activation. This study is being extended using mutants to probe the roles of individual structural elements in binding and release.  相似文献   

4.
Calmodulin (CaM), the ubiquitous Ca(2+)-sensing protein, consists of two globular domains separated by a flexible central linker that properly orients CaM's globular domains to bind and regulate various intracellular proteins, including the nitric oxide synthase (NOS) enzymes. In the present study we determined that the charge and length of the central linker of CaM has an effect on the binding and activation of the NOS isozymes by using a variety of charge CaM mutants (T79D, S81D, T79D/S81D, S101D and E84R/E87K) and CaM mutants with residues removed (Delta84, Delta83-84, and Delta81-84). Our kinetic and spectropolarimetry results demonstrate that the NOS enzymes are not adversely affected by the CaM mutants with the exceptions of S101D, E84R/E87K and the deletion of residue 84. Electrostatic interactions in the central linker between residues 82-87 in combination with hydrophobic interactions in the globular domains of CaM are important for its tight association to inducible NOS.  相似文献   

5.
Endothelial nitric oxide synthase (eNOS), which generates the endogenous vasodilator, nitric oxide (NO), is highly regulated by post-translational modifications and protein interactions. Heat shock protein 90 (HSP90) binds directly to eNOS, augmenting NO production. We have used purified proteins to characterize further the mechanism by which HSP90 increases eNOS activity at low (100 nm) and high (10 microm) Ca(2+) levels. In the presence of calmodulin (CaM), HSP90 increased eNOS activity dose dependently at both low and high Ca(2+) concentrations. This effect was abolished by the specific HSP90 inhibitor geldanamycin (GA) at both calcium concentrations. The EC(50) values of eNOS for both Ca(2+) and CaM were decreased in the presence of HSP90. HSP90 also significantly increased the rate of NADPH-dependent cytochrome c reduction by eNOS at both low and high Ca(2+) concentrations. HSP90 bound to eNOS in a dose-dependent manner, and the amount of bound HSP90 also increased with increasing Ca(2+)/CaM. At 100 nm Ca(2+), HSP90 promoted dose-dependent CaM binding to eNOS that was fully inhibitable by GA. At high calcium, HSP90 did not affect CaM binding to eNOS, but GA inhibited HSP90 binding to eNOS. At high Ca(2+), HSP90 caused the V(max) of eNOS for l-arginine to increase by 2-fold, but the K(m) of eNOS was unchanged. HSP90 bound preferentially to CaM-prebound eNOS and significantly increased both its NO synthesis and reductase activities. These data support that HSP90 promotes eNOS activity by two mechanisms: (i) a CaM-dependent mechanism operative at low Ca(2+) concentrations, characterized by an increase in the affinity of eNOS for CaM and (ii) a CaM-independent mechanism apparent at high Ca(2+) concentrations, characterized by stimulation of eNOS reductase activity without further change in CaM binding. These studies contribute to our understanding of eNOS activation by HSP90 and provide a basis for in vitro studies of other eNOS-interacting proteins.  相似文献   

6.
The neuronal and endothelial nitric-oxide synthases (nNOS and eNOS) differ from inducible NOS in their dependence on the intracellular Ca(2+) concentration. Both nNOS and eNOS are activated by the reversible binding of calmodulin (CaM) in the presence of Ca(2+), whereas inducible NOS binds CaM irreversibly. One major divergence in the close sequence similarity between the NOS isoforms is a 40-50-amino acid insert in the middle of the FMN-binding domains of nNOS and eNOS. It has previously been proposed that this insert forms an autoinhibitory domain designed to destabilize CaM binding and increase its Ca(2+) dependence. To examine the importance of the insert we constructed two deletion mutants designed to remove the bulk of it from nNOS. Both mutants (Delta40 and Delta42) retained maximal NO synthesis activity at lower concentrations of free Ca(2+) than the wild type enzyme. They were also found to retain 30% of their activity in the absence of Ca(2+)/CaM, indicating that the insert plays an important role in disabling the enzyme when the physiological Ca(2+) concentration is low. Reduction of nNOS heme by NADPH under rigorous anaerobic conditions was found to occur in the wild type enzyme only in the presence of Ca(2+)/CaM. However, reduction of heme in the Delta40 mutant occurred spontaneously on addition of NADPH in the absence of Ca(2+)/CaM. This suggests that the insert regulates activity by inhibiting electron transfer from FMN to heme in the absence of Ca(2+)/CaM and by destabilizing CaM binding at low Ca(2+) concentrations, consistent with its role as an autoinhibitory domain.  相似文献   

7.
Caltractin (centrin) is a member of the calmodulin (CaM) superfamily of EF-hand calcium-binding proteins. It is an essential component of the centrosomal structures in a wide range of organisms. Caltractin and calmodulin apparently function in distinct calcium signaling pathways despite substantial sequence similarity. In an effort to understand the structural basis for such differences, the high-resolution three-dimensional solution structure of the complex between the Ca(2+)-activated C-terminal domain of Chlamydomonas reinhardtii caltractin (CRC-C) and a 19 residue peptide fragment comprising the putative cdc31p-binding region of Kar1p (K(19)) has been determined by multi-dimensional heteronuclear NMR spectroscopy. Formation of the complex is calcium-dependent and is stabilized by extensive interactions between CRC-C and three key hydrophobic anchors (Trp10, Leu13 and Leu14) in the peptide as well as favorable electrostatic interactions at the protein-peptide interface. In-depth comparisons have been made to the structure of the complex of Ca(2+)-activated calmodulin and R(20), the CaM-binding domain of smooth muscle myosin light-chain kinase. Although the overall structures of CRC and CaM domains in their respective complexes are very similar, differences in critical regions in the sequences of these proteins and their targets lead to clear differences in the complementarity of their respective binding surfaces. These subtle differences reveal the structural basis for the Ca(2+)-dependent regulation of distinct cellular signaling events by CRC and CaM.  相似文献   

8.
Nitric oxide synthase (NOS) plays a major role in a number of key physiological and pathological processes. Knowledge of how this is regulated is important. The small acidic calcium binding protein, calmodulin (CaM), is required to fully activate the enzyme. The exact mechanism of how CaM activates NOS is not fully understood. Studies have shown CaM to act like a switch that causes a conformational change in NOS to allow for the transfer of an electron between the reductase and oxygenase domains through a process that is thought to be highly dynamic. To investigate the dynamic properties of CaM-NOS interactions, we determined the solution structure of CaM bound to the inducible NOS (iNOS) and endothelial NOS (eNOS) CaM binding region peptides. In addition, we investigated the effect of CaM phosphorylation. Tyrosine 99 (Y99) of CaM is reported to be phosphorylated in vivo. We have produced a phosphomimetic Y99E CaM to investigate the structural and functional effects that the phosphorylation of this residue may have on nitric oxide production. All three mammalian NOS isoforms were included in the investigation. Our results show that a phosphomimetic Y99E CaM significantly reduces the maximal synthase activity of eNOS by 40% while having little effect on nNOS or iNOS activity. A comparative nuclear magnetic resonance study between phosphomimetic Y99E CaM and wild-type CaM bound to the eNOS CaM binding region peptide was performed. This investigation provides important insights into how the increased electronegativity of a phosphorylated CaM protein affects the binding, dynamics, and activation of the NOS enzymes.  相似文献   

9.
Smooth muscle myosin light chain kinase (smMLCK) is a Ca(2+)-calmodulin (CaM)-dependent enzyme that phosphorylates the 20-kDa light chains of myosin. In a previous study (Bagchi, I.C., Kemp, B.E., and Means, A.R. (1989) J. Biol. Chem. 264, 15843-15849), we expressed in bacteria a 40-kDa fragment of smMLCK that displayed Ca(2+)-CaM-regulated catalytic activity. Initial mutagenesis experiments indicated that Gly811 and Arg812 were important for CaM-dependent activation of this 40-kDa enzyme. We have now carried out site-directed mutagenesis within the CaM-binding domain (Ser787 to Leu813) of this enzyme to identify amino acids that are critical for CaM binding and activation. Our studies reveal that the individual mutation of several hydrophobic amino acid residues such as Leu813, Ile810, and Trp800 and the glycine residue Gly804 also resulted in a severe decrease in or complete loss of CaM binding and activation of smMLCK. The hydrophobic residue (Trp800) and the basic residue (Arg812), both of which are mandatory for CaM binding to smMLCK, occur in analogous positions within the CaM-binding domain of a number of CaM-regulated enzymes. We conclude from these results that CaM binding by smMLCK is determined by an interplay of specific hydrophobic and electrostatic interactions which appear to be conserved among various target enzymes of CaM.  相似文献   

10.
The interactions of neuronal nitric-oxide synthase (nNOS) with calmodulin (CaM) and mutant forms of CaM, including CaM-troponin C chimeras, have been previously reported, but there has been no comparable investigation of CaM interactions with the other constitutively expressed NOS (cNOS), endothelial NOS (eNOS), or the inducible isoform (iNOS). The present study was designed to evaluate the role of the four CaM EF hands in the activation of eNOS and iNOS. To assess the role of CaM regions on aspects of enzymatic function, three distinct activities associated with NOS were measured: NADPH oxidation, cytochrome c reduction, and nitric oxide (*NO) generation as assessed by the oxyhemoglobin capture assay. CaM activates the cNOS enzymes by a mechanism other than stimulating electron transfer into the oxygenase domain. Interactions with the reductase moiety are dominant in cNOS activation, and EF hand 1 is critical for activation of both nNOS and eNOS. Although the activation patterns for nNOS and eNOS are clearly related, effects of the chimeras on all the reactions are not equivalent. We propose that cytochrome c reduction is a measure of the release of the FMN domain from the reductase complex. In contrast, cytochrome c reduction by iNOS is readily activated by each of the chimeras examined here and may be constitutive. Each of the chimeras were co-expressed with the human iNOS enzyme in Escherichia coli and subsequently purified. Domains 2 and 3 of CaM contain important elements required for the Ca2+/CaM independence of *NO production by the iNOS enzyme. The disparity between cytochrome c reduction and *NO production at low calcium can be attributed to poor association of heme and FMN domains when the bound CaM constructs are depleted of Ca2+. In general cNOSs are much more difficult to activate than iNOS, which can be attributed to their extra sequence elements, which are adjacent to the CaM-binding site and associated with CaM control.  相似文献   

11.
The intracellular calcium ion is one of the most important secondary messengers in eukaryotic cells. Ca(2+) signals are translated into physiological responses by EF-hand calcium-binding proteins such as calmodulin (CaM). Multiple CaM isoforms occur in plant cells, whereas only a single CaM protein is found in animals. Soybean CaM isoform 1 (sCaM1) shares 90% amino acid sequence identity with animal CaM (aCaM), whereas sCaM4 is only 78% identical. These two sCaM isoforms have distinct target-enzyme activation properties and physiological functions. sCaM4 is highly expressed during the self-defense reaction of the plant and activates the enzyme nitric-oxide synthase (NOS), whereas sCaM1 is incapable of activating NOS. The mechanism of selective target activation by plant CaM isoforms is poorly understood. We have determined high resolution NMR solution structures of Ca(2+)-sCaM1 and -sCaM4. These were compared with previously determined Ca(2+)-aCaM structures. For the N-lobe of the protein, the solution structures of Ca(2+)-sCaM1, -sCaM4, and -aCaM all closely resemble each other. However, despite the high sequence identity with aCaM, the C-lobe of Ca(2+)-sCaM1 has a more open conformation and consequently a larger hydrophobic target-protein binding pocket than Ca(2+)-aCaM or -sCaM4, the presence of which was further confirmed through biophysical measurements. The single Val-144 --> Met substitution in the C-lobe of Ca(2+)-sCaM1, which restores its ability to activate NOS, alters the structure of the C-lobe to a more closed conformation resembling Ca(2+)-aCaM and -sCaM4. The relationships between the structural differences in the two Ca(2+)-sCaM isoforms and their selective target activation properties are discussed.  相似文献   

12.
The recent finding of an interaction between calmodulin (CaM) and the tobacco mitogen-activated protein kinase phosphatase-1 (NtMKP1) establishes an important connection between Ca(2+) signaling and the MAPK cascade, two of the most important signaling pathways in plant cells. Here we have used different biophysical techniques, including fluorescence and NMR spectroscopy as well as microcalorimetry, to characterize the binding of soybean CaM isoforms, SCaM-1 and -4, to synthetic peptides derived from the CaM binding domain of NtMKP1. We find that the actual CaM binding region is shorter than what had previously been suggested. Moreover, the peptide binds to the SCaM C-terminal domain even in the absence of free Ca(2+) with the single Trp residue of the NtMKP1 peptides buried in a solvent-inaccessible hydrophobic region. In the presence of Ca(2+), the peptides bind first to the C-terminal lobe of the SCaMs with a nanomolar affinity, and at higher peptide concentrations, a second peptide binds to the N-terminal domain with lower affinity. Thermodynamic analysis demonstrates that the formation of the peptide-bound complex with the Ca(2+)-loaded SCaMs is driven by favorable binding enthalpy due to a combination of hydrophobic and electrostatic interactions. Experiments with CaM proteolytic fragments showed that the two domains bind the peptide in an independent manner. To our knowledge, this is the first report providing direct evidence for sequential binding of two identical peptides of a target protein to CaM. Discussion of the potential biological role of this interaction motif is also provided.  相似文献   

13.
We have determined solution structures of the N-terminal half domain (N-domain) of yeast calmodulin (YCM0-N, residues 1-77) in the apo and Ca(2+)-saturated forms by NMR spectroscopy. The Ca(2+)-binding sites of YCM0-N consist of a pair of helix-loop-helix motifs (EF-hands), in which the loops are linked by a short beta-sheet. The binding of two Ca(2+) causes large rearrangement of the four alpha-helices and exposes the hydrophobic surface as observed for vertebrate calmodulin (CaM). Within the observed overall conformational similarity in the peptide backbone, several significant conformational differences were observed between the two proteins, which originated from the 38% disagreement in amino acid sequences. The beta-sheet in apo YCM0-N is strongly twisted compared with that in the N-domain of CaM, while it turns to the normal more stable conformation on Ca(2+) binding. YCM0-N shows higher cooperativity in Ca(2+) binding than the N-domain of CaM, and the observed conformational change of the beta-sheet is a possible cause of the highly cooperative Ca(2+) binding. The hydrophobic surface on Ca(2+)-saturated YCM0-N appears less flexible due to the replacements of Met51, Met71, and Val55 in the hydrophobic surface of CaM with Leu51, Leu71, and Ile55, which is thought to be one of reasons for the poor activation of target enzymes by yeast CaM.  相似文献   

14.
T Arazi  G Baum  W A Snedden  B J Shelp    H Fromm 《Plant physiology》1995,108(2):551-561
We previously provided what to our knowledge is the first evidence that plant glutamate decarboxylase (GAD) is a calmodulin (CaM)-binding protein. Here, we studied the GAD CaM-binding domain in detail. A synthetic peptide of 26 amino acids corresponding to this domain forms a stable complex with Ca2+/CaM with a 1:1 stoichiometry, and amino acid substitutions suggest that tryptophan-485 has an indispensable role in CaM binding. Chemical cross-linking revealed specific CaM/GAD interactions even in the absence of Ca2+. However, increasing KCI concentrations or deletion of two carboxy-terminal lysines abolished these interactions but had a mild effect on CaM/GAD interactions in the presence of Ca2+. We conclude that in the presence of Ca(2+)-hydrophobic interactions involving tryptophan-485 and electrostatic interactions involving the carboxy-terminal lysines mediate CaM/GAD complex formation. By contrast, in the absence of Ca2+, CaM/GAD interactions are essentially electrostatic and involve the carboxy-terminal lysines. In addition, a tryptophan residue and carboxy-terminal lysines are present in the CaM-binding domain of an Arabidopsis GAD. Finally, we demonstrate that petunia GAD activity is stimulated in vitro by Ca2+/CaM. Our study provides a molecular basis for Ca(2+)-dependent CaM/GAD interactions and suggests the possible occurrence of Ca(2+)-independent CaM/GAD interactions.  相似文献   

15.
An increasing number of ion channels have been found to be regulated by the direct binding of calmodulin (CaM), but its structural features are mostly unknown. Previously, we identified the Ca(2+)-dependent and -independent interactions of CaM to the voltage-gated sodium channel via an IQ-motif sequence. In this study we used the trypsin-digested CaM fragments (TR(1)C and TR(2)C) to analyze the binding of Ca(2+)-CaM or Ca(2+)-free (apo) CaM with a sodium channel-derived IQ-motif peptide (NaIQ). Circular dichroic spectra showed that NaIQ peptide enhanced alpha-helicity of the CaM C-terminal lobe, but not that of the CaM N-terminal lobe in the absence of Ca(2+), whereas NaIQ enhanced the alpha-helicity of both the N- and C-terminal lobes in the presence of Ca(2+). Furthermore, the competitive binding experiment demonstrated that Ca(2+)-dependent CaM binding of target peptides (MLCKp or melittin) with CaM was markedly suppressed by NaIQ. The results suggest that IQ-motif sequences contribute to prevent target proteins from activation at low Ca(2+) concentrations and may explain a regulatory mechanism why highly Ca(2+)-sensitive target proteins are not activated in the cytoplasm.  相似文献   

16.
To clarify the role of the autoinhibitory insert in the endothelial (eNOS) and neuronal (nNOS) nitric-oxide synthases, the insert was excised from nNOS and chimeras with its reductase domain; the eNOS and nNOS inserts were swapped and put into the normally insertless inducible (iNOS) isoform and chimeras with the iNOS reductase domain; and an RRKRK sequence in the insert suggested by earlier peptide studies to be important (Salerno, J. C., Harris, D. E., Irizarry, K., Patel, B., Morales, A. J., Smith, S. M., Martasek, P., Roman, L. J., Masters, B. S., Jones, C. L., Weissman, B. A., Lane, P., Liu, Q., and Gross, S. S. (1997) J. Biol. Chem. 272, 29769-29777) was mutated. Insertless nNOS required calmodulin (CaM) for normal NOS activity, but the Ca(2+) requirement for this activity was relaxed. Furthermore, insert deletion enhanced CaM-free electron transfer within nNOS and chimeras with the nNOS reductase, emphasizing the involvement of the insert in modulating electron transfer. Swapping the nNOS and eNOS inserts gave proteins with normal NOS activities, and the nNOS insert acted normally in raising the Ca(2+) dependence when placed in eNOS. Insertion of the eNOS insert into iNOS and chimeras with the iNOS reductase domain significantly lowered NOS activity, consistent with inhibition of electron transfer by the insert. Mutation of the eNOS RRKRK to an AAAAA sequence did not alter the eNOS Ca(2+) dependence but marginally inhibited electron transfer. The salt dependence suggests that the insert modulates electron transfer within the reductase domain prior to the heme/reductase interface. The results clarify the role of the reductase insert in modulating the Ca(2+) requirement, electron transfer rate, and overall activity of nNOS and eNOS.  相似文献   

17.
Thermodynamic parameters of interactions of calcium-saturated calmodulin (Ca(2+)-CaM) with melittin, C-terminal fragment of melittin, or peptides derived from the CaM binding regions of constitutive (cerebellar) nitric-oxide synthase, cyclic nucleotide phosphodiesterase, calmodulin-dependent protein kinase I, and caldesmon (CaD-A, CaD-A*) have been measured using isothermal titration calorimetry. The peptides could be separated into two groups according to the change in heat capacity upon complex formation, DeltaC(p). The calmodulin-dependent protein kinase I, constitutive (cerebellar) nitric-oxide synthase, and melittin peptides have DeltaC(p) values clustered around -3.2 kJ.mol(-1).K(-1), consistent with the formation of a globular CaM-peptide complex in the canonical fashion. In contrast, phosphodiesterase, the C-terminal fragment of melittin, CaD-A, and CaD-A* have DeltaC(p) values clustered around -1.6 kJ.mol(-1).K(-1), indicative of interactions between the peptide and mostly one lobe of CaM, probably the C-terminal lobe. It is also shown that the interactions for different peptides with Ca(2+)-CaM can be either enthalpically or entropically driven. The difference in the energetics of peptide/Ca(2+)-CaM complex formation appears to be due to the coupling of peptide/Ca(2+)-CaM complex formation to the coil-helix transition of the peptide. The binding of a helical peptide to Ca(2+)-CaM is dominated by favorable entropic effects, which are probably mostly due to hydrophobic interactions between nonpolar groups of the peptide and Ca(2+)-CaM. Applications of these findings to the design of potential CaM inhibitors are discussed.  相似文献   

18.
Calmodulin (CaM) is a ubiquitous Ca (2+)-sensor protein that binds and activates the nitric oxide synthase (NOS) enzymes. We have used fluorescence resonance energy transfer (FRET) to examine the conformational transitions of CaM induced by its binding to synthetic nitric oxide synthase (NOS) CaM-binding domain peptides and full length heme-free constitutive NOS (cNOS) enzymes over a range of physiologically relevant free Ca (2+) concentrations. We demonstrate for the first time that the domains of CaM collapse when associated with Ca (2+)-independent inducible NOS CaM-binding domain, similar to the previously solved crystal structures of CaM bound to the Ca (2+)-dependent cNOS peptides. We show that the association of CaM is not detectable with the cNOS peptides at low free Ca (2+) concentrations (<40 nM). In contrast, we demonstrate that CaM associates with the cNOS holo-enzymes in the absence of Ca (2+) and that the Ca (2+)-dependent transition occurs at a lower free Ca (2+) concentration with the cNOS holo-enzymes. Our results suggest that other regions outside of the CaM-binding domain in the cNOS enzymes are involved in the recruitment and binding of CaM. We also demonstrate that CaM binds to the cNOS enzymes in a sequential manner with the Ca (2+)-replete C-lobe binding first followed by the Ca (2+)-replete N-lobe. This novel FRET study helps to clarify some of the observed similarities and differences between the Ca (2+)-dependent/independent interaction between CaM and the NOS isozymes.  相似文献   

19.
L-type Ca(2+) channels are unusual in displaying two opposing forms of autoregulatory feedback, Ca(2+)-dependent inactivation and facilitation. Previous studies suggest that both involve direct interactions between calmodulin (CaM) and a consensus CaM-binding sequence (IQ motif) in the C terminus of the channel's alpha(1C) subunit. Here we report the functional effects of an extensive series of modifications of the IQ motif aimed at dissecting the structural determinants of the different forms of modulation. Although the combined substitution by alanine at five key positions (Ile(1624), Gln(1625), Phe(1628), Arg(1629), and Lys(1630)) abolished all Ca(2+) dependence, corresponding single alanine replacements behaved similarly to the wild-type channel (77wt) in four of five cases. The mutant I1624A stood out in displaying little or no Ca(2+)-dependent inactivation, but clear Ca(2+)- and frequency-dependent facilitation. An even more pronounced tilt in favor of facilitation was seen with the double mutant I1624A/Q1625A: overt facilitation was observed even during a single depolarizing pulse, as confirmed by two-pulse experiments. Replacement of Ile(1624) by 13 other amino acids produced graded and distinct patterns of change in the two forms of modulation. The extent of Ca(2+)-dependent facilitation was monotonically correlated with the affinity of CaM for the mutant IQ motif, determined in peptide binding experiments in vitro. Ca(2+)-dependent inactivation also depended on strong CaM binding to the IQ motif, but showed an additional requirement for a bulky, hydrophobic side chain at position 1624. Abolition of Ca(2+)-dependent modulation by IQ motif modifications mimicked and occluded the effects of overexpressing a dominant-negative CaM mutant.  相似文献   

20.
We have recently investigated by far-UV circular dichroism (CD) the effects of Ca(2+) binding and the phosphorylation of Ser 81 for the synthetic peptide CaM [54-106] encompassing the Ca(2+)-binding loops II and III and the central alpha helix of calmodulin (CaM) (Arrigoni et al., Biochemistry 2004, 43, 12788-12798). Using computational methods, we studied the changes in the secondary structure implied by these spectra with the aim to investigate the effect of Ca(2+) binding and the functional role of the phosphorylation of Ser 81 in the action of the full-length CaM. Ca(2+) binding induces the nucleation of helical structure by inducing side chain stacking of hydrophobic residues. We further investigated the effect of Ca(2+) binding by using near-UV CD spectroscopy. Molecular dynamics simulations of different fragments containing the central alpha-helix of CaM using various experimentally determined structures of CaM with bound Ca(2+) disclose the structural effects provided by the phosphorylation of Ser 81. This post-translational modification is predicted to alter the secondary structure in its surrounding and also to hinder the physiological bending of the central helix of CaM through an alteration of the hydrogen bond network established by the side chain of residue 81. Using quantum mechanical methods to predict the CD spectra for the frames obtained during the MD simulations, we are able to reproduce the relative experimental intensities in the far-UV CD spectra for our peptides. Similar conformational changes that take place in CaM [54-106] upon Ca(2+) binding and phosphorylation may occur in the full-length CaM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号