首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
l-Asparaginase from Serratia marcescens was found to hydrolyze l-glutamine at 5% of the rate of l-asparagine hydrolysis. The ratio of the two activities did not change through several stages of purification, anionic and cationic polyacrylamide disk gel electrophoresis, and partial thermal inactivation. The two activities had parallel blood clearance rates in mice. l-glutamine was found to be a competitive inhibitor of l-asparagine hydrolysis. A separate l-glutaminase enzyme free of l-asparaginase activity was separated by diethylaminoethyl-cellulose chromatography.  相似文献   

2.
Asparagine utilization in Escherichia coli   总被引:5,自引:4,他引:1       下载免费PDF全文
Asparagine-requiring auxotrophs of Escherichia coli K-12 that have an active cytoplasmic asparaginase do not conserve asparagine supplements for use in protein synthesis. Asparagine molecules entering the cell in excess of the pool required for use of this amino acid in protein synthesis are rapidly degraded rather than accumulated. Supplements are conserved when asparagine degradation is inhibited by the asparagine analogue 5-diazo-4-oxo-l-norvaline (DONV) or mutation to cytoplasmic asparaginase deficiency. A strain deficient in cytoplasmic asparaginase required approximately 260 mumol of asparagine for the synthesis of 1 g of cellular protein. The cytoplasmic asparaginase (asparaginase I) is required for growth of cells when asparagine is the nitrogen source. This enzyme has an apparent K(m) for l-asparagine of 3.5 mM, and asparaginase activity is competitively inhibited by DONV with an apparent K(i) of 2 mM. The analogue provides a time-dependent, irreversible inhibition of cytoplasmic asparaginase activity in the absence of asparagine.  相似文献   

3.
l-Asparaginase (EC 3.5.1.1.) activity has been detected in crude extracts of Lupinus arboreus young leaves, root tips, flower buds, and developing seeds. The enzyme was also present in Lupinus angustifolius root tips, developing nodules, and developing seeds. The asparaginase from each of these tissues had the same electrophoretic mobility on polyacrylamide gels and a Km of 6–8 mm for asparagine. In extracts other than those of the developing seeds, asparaginase activity was dependent upon the inclusion of K+ ion and a sulfhydryl protectant in the extraction buffer. No asparaginase activity was detected in mature leaves, in the plant fraction of nodules that were fixing nitrogen, nor in root tissue further than 1.5 cm from the root tip. Asparaginase has been purified 326- and 230-fold from L. arboreus and L. angustifolius developing seeds, respectively. A molecular weight of 75,000 was obtained by gel filtration. An apparent Km of 6.6 and 7.0 mm for asparagine was determined for the purified L. arboreus and L. angustifolius asparaginases, respectively. Of the amides, nitriles, and hydroxamates examined, the L. arboreus enzyme hydrolyzed only l-asparagine and dl-aspartyl hydroxamate. This same enzyme was inhibited by d-asparagine, 5-diazo-4-oxo-l-norvaline, dl-aspartyl hydroxamate, d-and l-aspartate, 3-cyano-l-alanine, glycine, and cysteine. Glutamine, glutamine analogs, and a number of other amino acids, amides and amines did not inhibit the L. arboreus asparaginase.  相似文献   

4.
Squalene synthetase, an integral membrane protein and the first committed enzyme for sterol biosynthesis, was solubilized and partially purified from tobacco (Nicotiana tabacum) cell suspension cultures. Tobacco microsomes were prepared and the enzyme was solubilized from the lipid bilayer using a two-step procedure. Microsomes were initially treated with concentrations of octyl-β-d-thioglucopyranoside and glycodeoxycholate below their critical micelle concentration, 4.5 and 1.1 millimolar, respectively, to remove loosely associated proteins. Complete solubilization of the squalene synthetase enzyme activity was achieved after a second treatment at detergent concentrations above or at their critical micelle concentration, 18 and 2.2 millimolar, respectively. The detergent-solubilized enzyme was further purified by a combination of ultrafiltration, gel permeation, and Fast Protein Liquid Chromatography anion exchange. A 60-fold purification and 20% recovery of the enzyme activity was achieved. The partially purified squalene synthetase protein was used to generate polyclonal antibodies from mice that efficiently inhibited synthetase activity in an in vitro assay. The apparent molecular mass of the squalene synthetase protein as determined by immunoblot analysis of the partially purified squalene synthetase protein separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 47 kilodaltons. The partially purified squalene synthetase activity was optimal at pH 6.0, exhibited a Km for farnesyl diphosphate of 9.5 micromolar, and preferred NADPH as a reductant rather than NADH.  相似文献   

5.
The apparent active site of human leukocyte glycoasparaginase (N4-(beta-acetylglucosaminyl)-L-asparaginase EC 3.5.1.26) has been studied by labeling with an asparagine analogue, 5-diazo-4-oxo-L-norvaline. Glycoasparaginase was purified 4,600-fold from human leukocytes with an overall recovery of 12%. The purified enzyme has a Km of 110 microM, a Vmax of 34 mumol x l-1 x min-1, and a specific activity of 2.2 units/mg protein with N4-(beta-N-acetylglucosaminyl)-L-asparagine as substrate. The carbohydrate content of the enzyme is 15%, and it exhibits a broad pH maximum between 7 and 9. The 88-kDa native enzyme is composed of 19-kDa light (L) chains and 25-kDa heavy (H) chains and it has a heterotetrameric structure of L2H2-type. The glycoasparaginase activity decreases rapidly and irreversibly in the presence of 5-diazo-4-oxo-L-norvaline. At any one concentration of the compound, the inactivation of the enzyme is pseudo-first-order with time. The inhibitory constant, K1, is 80 microM and the second-order rate constant 1.25 x 10(3) M-1 min-1 at pH 7.5. The enzyme activity is competitively protected against this inactivation by its natural substrate, aspartylglucosamine, indicating that this inhibitor binds to the active site or very close to it. The covalent incorporation of [5-14C]diazo-4-oxo-L-norvaline paralleled the loss of the enzymatic activity and one inhibitor binding site was localized to each L-subunit of the heterotetrameric enzyme. Four peptides with the radioactive label were generated, purified by high performance liquid chromatography, and sequenced by Edman degradation. The sequences were overlapping and all contained the amino-terminal tripeptide of the L-chain. By mass spectrometry, the reacting group of 5-diazo-4-oxo-L-norvaline was characterized as 4-oxo-L-norvaline that was bound through an alpha-ketone ether linkage to the hydroxyl group of the amino-terminal amino acid threonine.  相似文献   

6.
The size distribution of methionyl-tRNA synthetase in extracts from sheep liver is compared to that of lysyl-tRNA, isoleucyl-tRNA, leucyl-tRNA and seryl-tRNA synthetases by gel filtration on Biogel A-5m. Extraction conditions are described which lead to isolation of methionyl-tRNA synthetase exclusively in the form of complexes of molecular weight close to 10(6). Limited trypsin treatment of these aggregates releases a fully active low-molecular-weight form of methionyl-tRNA synthetase which was purified to a specific activity of 674 units/mg at 25 degrees C with a yield of 40%. The homogeneous enzyme appears to be undistinguishable from the corresponding enzyme derived from sheep lactating mammary gland, as judged by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and by titration with antibodies raised against the enzyme purified from liver.  相似文献   

7.
L-Glutamine:D-fructose-6-phosphate amidotransferase (glucosamine synthetase) has been purified to homogeneity from Escherichia coli. A subunit molecular weight of 70,800 was estimated by gel electrophoresis in sodium dodecyl sulfate. Pure glucosamine synthetase did not exhibit detectable NH3-dependent activity and did not catalyze the reverse reaction, as reported for more impure preparations [Gosh, S., Blumenthal, H. J., Davidson, E., & Roseman, S. (1960) J. Biol. Chem. 235, 1265]. The enzyme has a Km of 2 mM for fructose 6-phosphate, a Km of 0.4 mM for glutamine, and a turnover number of 1140 min-1. The amino-terminal sequence confirmed the identification of residues 2-26 of the translated E. coli glmS sequence [Walker, J. E., Gay, J., Saraste, M., & Eberle, N. (1984) Biochem. J. 224, 799]. Methionine-1 is therefore removed by processing in vivo, leaving cysteine as the NH2-terminal residue. The enzyme was inactivated by the glutamine analogue 6-diazo-5-oxo-L-norleucine (DON) and by iodoacetamide. Glucosamine synthetase exhibited half-of-the-sites reactivity when incubated with DON in the absence of fructose 6-phosphate. In its presence, inactivation with [6-14C]DON was accompanied by incorporation of 1 equiv of inhibitor per enzyme subunit. From this behavior, a dimeric structure was tentatively assigned to the native enzyme. The site of reaction with DON was the NH2-terminal cysteine residue as shown by Edman degradation.  相似文献   

8.
Glucan synthase activity of Neurospora crassa was isolated by treatment of protoplast lysates with 0.1% 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate and 0.5% octylglucoside in 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, pH 7.4, containing 5 mM EDTA, 1 mM phenylmethylsulfonylfluoride, 200 mM inorganic phosphate, 10 microM GTP, 1 mM DTT, 10 mM sodium fluoride, and 600 mM glycerol. Resulting activity was partially purified by sucrose gradient density sedimentation. Approximately 70% of enzyme activity in the sucrose gradient peak fraction was soluble and enzyme activity was purified 7.3-fold. Partially purified enzyme activity had a half-life of several weeks at 4 degrees C, and a Km(app) of 1.66 +/- 0.28 mM. Inhibitors (Cilofungin, papulacandin B, aculeacin A, echinocandin B, sorbose and UDP) of 1,3-beta-D-glucan synthase activity were tested against crude particulate and detergent treated enzyme fractions and the Ki(app) of each inhibitor determined. It seems likely that this stable preparation of glucan synthase activity may be useful for in vitro enzyme screens for new glucan synthase inhibitors.  相似文献   

9.
Author index     
Thymidylate synthetase has been purified from cultures of Escherichia coli infected with bacteriophages T4 or T5, with the T4 enzyme being purified to at least 50% of homogeneity, and both enzymes being resolved from the corresponding host enzyme. The molecular weights are 58,000 for the T4 enzyme and 55,000 for the T5 enzyme, as estimated by gel filtration and confirmed for the T4 enzyme by sucrose gradient analysis. Disc gel electrophoresis of the T4 enzyme in sodium dodecyl sulfate gives a single band with a molecular weight of 29,000, suggesting that the enzyme is composed of two subunits. Kinetic analysis of the inhibition of the T4 enzyme by 5-fluorodeoxyuridylate (FdUMP) gives results similar to those earlier reported for the T2 and T6 enzymes. Inhibition is competitive with respect to deoxyuridylate (dUMP) if the enzyme is not preincubated with inhibitor, but a brief preincubation of enzyme and inhibitor in the presence of 5, 10-methylenetetrahydrofolate generates a pattern of noncompetitive, stoichiometric inhibition. FdUMP remains bound to the enzyme through gel filtration chromatography, consistent with various observations that this inhibitor is covalently bound. However, the enzyme-inhibitor complex is dissociated by treatment with sodium dodecyl sulfate prior to chromatography. Moreover, in contrast to studies on thymidylate synthetase from other sources, oxidation of tetrahydrofolate by FdUMP-inhibited enzyme could not be detected. Inhibition of the T5 enzyme by FdUMP is not stoichiometric, and the enzyme-inhibitor complex is readily dissociated by gel filtration. These findings suggest that there are significant differences in mechanism of FdUMP binding by thymidylate synthetases of different origins. Inhibition of the T4 enzyme by trifluoromethyldeoxyuridine 5′-monophosphate (F3dTMP) follows the kinetics of stoichiometric inhibition, but data from both gel filtration and enzyme-inhibitor titration indicate that the enzyme binds 12–13 times as much F3dTMP as FdUMP, suggesting that most of the F3dTMP is bound at noncatalytic sites.  相似文献   

10.
3-Deoxy-D-manno-octulosonate (KDO)-8-phosphate synthetase has been purified 450-fold from frozen Escherichia coli B cells. The purified enzyme catalyzed the stoichiometric formation of KDO-8-phosphate and Pi from phosphoenolpyruvate (PEP) and D-arabinose-5-phosphate. The enzyme showed no metal requirement for activity and was inhibited by 1 mM Cd2+, Cu2+, Zn2+, and Hg2+. The inhibition by Hg2+ could be reversed by dithiothreitol. The optimum temperature for enzyme activity was determined to be 45 degrees C, and the energy of activation calculated by the Arrhenius equation was 15,000 calories (ca. 3,585 J) per mol. The enzyme activity was shown to be pH and buffer dependent, showing two pH optima, one at pH 4.0 to 6.0 in succinate buffer and one at pH 9.0 in glycine buffer. The isoelectric point of the enzyme was 5.1. KDO-8-phosphate synthetase had a molecular weight of 90,000 +/- 6,000 as determined by molecular sieving through G-200 Sephadex and by Ferguson analysis using polyacrylamide gels. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the 90,000-molecular-weight native enzyme was composed of three identical subunits, each with an apparent molecular weight of 32,000 +/- 4,000. The enzyme had an apparent Km for D-arabinose-5-phosphate of 2 X 10(-5) M and an apparent Km for PEP of 6 X 10(-6) M. No other sugar or sugar-phosphate could substitute for D-arabinose-5-phosphate. D-Ribose-5-phosphate was a competitive inhibitor of D-arabinose-5-phosphate, with an apparent Ki of 1 X 10(-3) M. The purified enzyme has been utilized to synthesize millimole quantities of pure KDO-8-phosphate.  相似文献   

11.
Nitrogenase activity in Rhodospirillum rubrum was inhibited by NH4+ more rapidly in low light than in high light. Furthermore, the nitrogenase of cells exposed to phosphorylation uncouplers was inhibited by NH4+ more rapidly than was the nitrogenase of controls without an uncoupler. These observations suggest that high levels of photosynthate inhibit the nitrogenase inactivation system. L-Methionine-DL-sulfoximine, a glutamine synthetase inhibitor, prevented NH4+ from inhibiting nitrogenase activity, which suggests that NH4+ must be processed at least to glutamine for inhibition to occur. An inhibitor of glutamate synthase activity, 6-diazo-5-oxo-L-norleucine, inhibited nitrogenase activity in the absence of NH4+, but only in cells exposed to low light. The mechanism of 6-diazo-5-oxo-L-norleucine inhibition appeared to be the same as that induced by NH4+, because nitrogenase activity could be restored in vitro by activating enzyme and Mn2+. The inhibitor data suggest that the glutamine pool or a molecule that responds to it activates the Fe protein-modifying (or protein-inactivating) system and that the accumulation of this (unidentified) molecule is retarded when the cells are exposed to high light. It was confirmed here that Anabaena nitrogenase is also inhibited by NH4+, but only when the cells are incubated under low light. This inhibition, however, unlike that in R. rubrum, could be completely reversed in high light, suggesting that the mechanisms of nitrogenase inhibition by NH4+ in these two phototrophs are different.  相似文献   

12.
1. Sporulation of Clostridium pasteurianum effects several changes in its proton-translocating cell-membrane H(+)-ATPase. Notable among these are the acquisition of susceptibility to activation by trypsin and a changed protein subunit composition. 2. A protein was isolated from the mother-cell membrane that inhibited the ATP phosphohydrolase activity of purified vegetative-cell-membrane H(+)-ATPase [BF(0)F(1) complex, which consists of soluble ATPase (BF(1)) and the proton-channel component (BF(0))] and rendered it susceptible to trypsin activation. 3. This trypsin-sensitive inhibitor protein had a molecular weight of 10000 and on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis was indistinguishable from the novel protein subunit e of the mother-cell-membrane ATPase 4. In bacteriorhodopsin-containing everted membrane vesicles, the specific ATP synthetase activity of the mother-cell-membrane ATPase was significantly greater than that of the vegetative-cell-membrane ATPase. 5. Treatment with trypsin-sensitive inhibitor protein of artificial proteoliposomes containing bacteriorhodopsin and vegetative-cell-membrane H(+)-ATPase (BF(0)F(1)) significantly increased the specific ATP synthetase activity of this enzyme. 6. The ATP synthetase activity of crude cell-membrane preparations from cultures of Clostridium pasteurianum increased during that period in the course of sporulation when the membrane ATP phosphohydrolase was both most rapidly decreasing in specific activity and acquiring its susceptibility to activation by trypsin.  相似文献   

13.
The acidic Protease was extracted from the intestine of the grass carp (Ctenopharyngodon idellus) by 0.1 M sodium phosphate buffer, pH 7.0 at 4 degrees C after neat intestine was defatted with acetone, and partially purified by ammonium sulfate precipitation, gel filtration chromatography and ionic exchange chromatography. SDS-PAGE electrophoresis showed that the enzyme was homogeneous with a relative molecular mass of 28,500. Substrate-PAGE at pH7.0 showed that the purified acidic protease has only an active component. Specificity and inhibiting assays showed that it should be a cathepsin D. The optimal pH and optimal temperature of the enzyme were pH2.5 and 37 degrees C, respectively. It retained only 20% of its initial activity after incubating at 50 degrees C for 30 min. The enzyme lost 81% of its activity after incubation with pepstatin A at room temperature, but was not inhibited by soybean trypsin inhibitor or phenylmethylsulfonyl fluoride (PMSF). Its V(max) and K(m) values were determined to be 3.57 mg/mL and 0.75 min(-1), respectively.  相似文献   

14.
The glutamine synthetase from Bacillus licheniformis A5 was purified by using a combination of polyethylene glycol precipitation and chromatography on Bio-Gel A 1.5m. The resulting preparation was judged to be homogeneous by the criteria of polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, equilibrium analytical ultracentrifugation, and electron microscopic analysis. The enzyme is a dodecamer with a molecular weight of approximately 616,000, and its subunit molecular weight is 51,000. Under optimal assay conditions (pH 6.6, 37 degrees C) apparent Km values for glutamate, ammonia, and manganese.adenosine 5'-triphosphate (1:1 ratio) were 3.6, 0.4, and 0.9 mM, respectively. Glutamine synthetase activity was inhibited approximately 50% by the addition of 5 mM glutamine, alanine, glycine, serine, alpha-ketoglutarate, carbamyl phosphate, adenosine 5'-diphosphate, or inosine 5'-triphosphate to the standard glutamine synthetase assay system, whereas 5 mM adenosine 5'-monophosphate or pyrophosphate caused approximately 90% inhibition of enzyme activity. Phosphorylribosyl pyrophosphate at 5 mM enhanced activity approximately 60%. We were unable to detect any physical or kinetic differences in the properties of the enzyme when it was purified from cells grown in the presence of ammonia or nitrate as sole nitrogen source. The data indicate that B. licheniformis A5 contains one species of glutamine synthetase whose catalytic activity is not regulated by a covalent modification system.  相似文献   

15.
R G Moran  P D Colman 《Biochemistry》1984,23(20):4580-4589
Folyl polyglutamate synthetase has been partially purified from mouse liver, and the general features of this enzyme have been characterized. The purification procedure utilized fractionation with ammonium sulfate, gel filtration, and affinity chromatography on ATP-agarose and resulted in a 350-fold increase in specific activity with 8-20% recovery of enzyme activity. Enzyme could be stabilized by glycerol or by ATP, but stability was not appreciably enhanced by folate. The enzymatic reaction was completely dependent on folate, ATP, and Mg2+ while partial reaction rates were observed in the absence of KCl or beta-mercaptoethanol. Highest reaction rates were observed at pH 8.2-9.5 at 37 degrees C. Chromatography of purified enzyme on calibrated gel filtration columns suggested a molecular weight of 65 000. Mouse liver folyl polyglutamate synthetase coupled [3H]glutamic acid to all of the naturally occurring folates studied. Analysis of the reaction products by high-performance liquid chromatography demonstrated that several folyl oligoglutamates were formed at low substrate concentrations but that only folyl diglutamate was formed at substrate concentrations approaching saturation. Dihydrofolate, tetrahydrofolate, 5,10-methylenetetrahydrofolate, 10-formyltetrahydrofolate, and 5-formyltetrahydrofolate were the best substrates. Folic acid and 5-methyltetrahydrofolate were also substrates for this reaction, but much higher concentrations of these compounds were required to saturate the enzyme. These data suggest that all of the tetrahydrofolyl compounds (except 5-methyltetrahydrofolate) are the monoglutamyl substrates for polyglutamation in vivo and that 5-methyltetrahydrofolate is not likely to be a direct precursor for folate polyglutamates in mouse liver.  相似文献   

16.
Establishment of pregnancy in cattle has been proposed to depend on production of a conceptus protein, bovine trophoblast protein-1 (bTP-1), which has a high degree of sequence homology with bovine interferon-alpha (bIFN-alpha), especially the alpha II subfamily. A preparation of bovine conceptus secretory proteins enriched for bTP-1 has antiviral and physico-chemical properties similar to other bIFN-alpha. Antiviral activity is initially detectable in uterine flushings on Day 14 of pregnancy, when the conceptus measures 4-5 mm in length, and increases as the conceptus elongates through Day 18. Day 17 conceptuses produce more than 10(6) U antiviral activity during 24 h of culture. All IFNs induce the enzyme 2',5'-oligoadenylate synthetase, which catalyzes production of 2',5'-oligo(A), which in turn is involved in antiviral and growth inhibitory effects of IFNs. This enzyme activity is induced in Madin-Darby bovine kidney cells by the partially purified bTP-1 preparation similarly to IFN-alpha, -beta, and -gamma. Likewise, the partially purified bTP-1 and bIFN-alpha 1 induce 2',5'-oligo(A) synthetase activity in monolayers of endometrial epithelial and stromal cells. Compared to epithelial cells, stromal cells have higher baseline activity of 2'-5'-oligo(A) synthetase activity (p less than 0.01) and show a greater degree of induction in the presence of either the partially purified bTP-1 or bIFN-alpha 1 (p less than 0.01). Also, 2',5'-oligo(A) synthetase of endometrial stromal cells is induced to a greater degree by our enriched bTP-1 preparation than by bIFN-alpha 1 (p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A simple two-step purification of Vibrio harveyi fatty acyl-acyl carrier protein (acyl-ACP) synthetase, which is useful for the quantitative preparation and analysis of fatty-acylated derivatives of ACP, is described. Acyl-ACP synthetase can be partially purified from extracts of this bioluminescent bacterium by Cibacron blue chromatography and Sephacryl S-300 gel filtration and is stable for months at -20 degrees C in the presence of glycerol. Incubation of ACP from Escherichia coli with ATP and radiolabeled fatty acids (6 to 16 carbons in length) in the presence of the enzyme resulted in quantitative conversion to biologically active acylated derivatives. The enzyme reaction can be monitored by a filter disk assay to quantitate levels of ACP or by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography to detect ACP in cell extracts. With its broad fatty acid chain length specificity and optimal activity in mild nondenaturing buffers, the soluble V. harveyi acyl-ACP synthetase provides an attractive alternative to current chemical and enzymatic methods of acyl-ACP preparation and analysis.  相似文献   

18.
A newly detected amide synthetase, designated 4-methyleneglutamine synthetase, has been partially purified from extracts of 5- to 7-day germinated peanut cotyledons (Arachis hypogaea). Purification steps include fractionation with protamine sulfate and ammonium sulfate followed by column chromatography on Bio-Gel and DEAE-cellulose; synthetase purified over 300-fold is obtained. The enzyme has a molecular weight estimated to be approximately 250,000 and a broad pH optimum with maximal activity at approximately pH 7.5. Maximal rates of activity are obtained with NH+4 (Km = 3.7 mM) as the amide donor and the enzyme is highly specific for 4-methylene-L-glutamic acid (Km = 2.7 mM) as the amide acceptor. Product identification and stoichiometric studies establish the reaction catalyzed to be: 4-methyleneglutamic acid + NH4+ + ATP Mg2+----4-methyleneglutamine + AMP + PPi. PPi accumulates only when F- is added to inhibit pyrophosphatase activity present in synthetase preparations. This enzymatic activity is completely insensitive to the glutamine synthetase inhibitors, tabtoxinine-beta-lactam and F-, and is only partially inhibited by methionine sulfoximine. It is, however, inhibited by added pyrophosphate in the presence of F- as well as by certain divalent metal ions (other than Mg2+) including Hg2+, Ni2+, Mn2+, and Ca2+. All data obtained indicate that this newly detected synthetase is distinct from the well-known glutamine and asparagine synthetases.  相似文献   

19.
gamma-Glutamyltransferase ((5-glutamyl)-peptide:amino-acid 5-glutamyltransferase, EC 2.3.2.2.) from rat pancreas has been purified to homogeneity and shown to be a glycoprotein of apparent molecular weight 68000, composed of one heavy and one light subunit, with respective molecular weights 43000 and 25000. At the optimum pH 8.0 the specific activity of the purified enzyme is 630 units/mg protein, with L-gamma-glutamyl-p-nitroanilide as substrate (Km = 0.9 mM) and 20 mM glycylglycine as acceptor. The enzyme is inactivated by the active-site modifying agent and glutamine analogue, 6-diazo-5-oxo-L-norleucine, through a specific and stoichiometric reaction with the light subunit (Ki = 1.2 mM); both the inactivation and the modification of the light subunit are accelerated by maleate and prevented by S-methylglutathione. The enzyme is also inactivated by the fluorescent alkylating agent 5-iodoacetamidofluorescein, by specific and stoichiometric incorporation of the fluorescent moiety into the light subunit, which is likewise prevented by S-methylglutathione, but is unaffected by maleate. Antiserum to rat kidney gamma-glutamyltransferase cross-reacts with the pancreas enzyme in immunodiffusion and inhibits its activity in the p-nitroanilide assay. Despite structural, enzymological and immunological similarities between the pancreas and kidney enzymes, their amino acid compositions are markedly different. The rat pancreas enzyme shows an interesting ontological development, being present in minimal amounts in the fetus, and increasing dramatically on birth and during the following 2 days.  相似文献   

20.
Purified rabbit skeletal muscle glycogen synthetase, in both the glucose-6-phosphate (P)-dependent (phosphorylated) and the glucose-6-P-independent (dephosphorylated) forms, was subjected to limited proteolysis by trypsin. Both forms could be degraded from their original subunit molecular weight of 85,000 to 76,000 and subsequently to 68,000, as determined with acrylamide-gel electrophoresis in the presence of sodium dodecyl sulfate. Degradation of the glucose-6-P-dependent form of the enzyme resulted in essentially no change in the activity when measured either in the presence or in the absence of glucose-6-P. Degradation of the glucose-6-P-independent form was associated with a progressive increase in glucose-6-P dependency. Phosphorylation of the glucose-6-P-independent form with the adenosine 3′,5′-monophosphate-dependent protein kinase and subsequent digestion of the 32P-labeled enzyme showed that the phosphate group was retained on these subunits. The protein kinase phosphorylated both the original subunit with molecular weight 85,000 and the partially digested subunit with molecular weight 76,000. Upon further digestion of the enzyme into a form having a subunit molecular weight of 68,000, the enzyme was unable to accept a phosphate group from ATP. By contrast with the phosphorylation reaction, the dephosphorylation reaction catalyzed by partially purified glycogen synthetase phosphatase is not stringent in terms of structural integrity of the synthetase. The phosphatase dephosphorylated the glucose-6-P-dependent form of glycogen synthetase equally well at various degrees of degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号