首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyunsaturated fatty acids (PUFAs) have been shown to inhibit both normal and tumor cell growth in vitro. As PUFAs are known to induce a respiratory burst and free radical generation in polymorphonuclear leukocytes and since free radicals are toxic to cells, we investigated the effect of PUFAs on a measure of free radical generation (nitroblue tetrazolium reduction) in normal human fibroblasts and breast cancer cells in vitro. Results suggested that linoleate (LA), gamma-linolenate (GLA), arachidonate (AA) and eicosapentaenoate (EPA) can enhance nitroblue tetrazolium reduction in tumor cells but not in normal cells. GLA, AA and EPA were 1 1/2 to 2 times more effective than LA in inducing free radical generation. This difference was not due to increased uptake of LA, AA and EPA by tumor cells. In fact, the uptake of LA was the same both in normal and tumor cells whereas that of AA and EPA occurred at approximately half the rate in the tumor cells compared to normal cells. This indicates that PUFA induced growth inhibition and cytotoxicity to tumor cells may, at least in part, be due to enhanced free radical generation.  相似文献   

2.
Polymorphonuclear leukocytes from healthy volunteers (HPMN) generated superoxide (O2*-) following treatment with various stimuli, such as phorbol myristate acetate (PMA), opsonized zymozan (OZ) and arachidonic acid (AA). Other types of n-3 polyunsaturated fatty acids (PUFAS), such as docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), and eicosapentaenoic acid (EPA), also stimulated O2*- generation. The free form of DHA enhanced the generation of O2*- induced by PMA but inhibited that induced by OZ. In contrast, the ethylester of DHA (DHA-E) inhibited O2*- generation induced by PMA but stimulated that induced by OZ. Similar effects were also observed with ethylesters of EPA (EPA-E), DPA (DPA-E) and AA (AA-E). High concentrations of DHA-E reduced the PMA-induced formation of superoxide without affecting the cellular activity of protein kinase C (PKC). Similar phenomena were also observed with oral neutrophils from healthy volunteers (OPMN). These results indicate that PUFAS and their esters affect 02*- generation in human PMN via different pathways, thereby modulating inflammatory reactions.  相似文献   

3.
Studying the production of IL-6 (interleukin-6) by monocytes, endothelial cells and smooth muscle cells we observed that cytokine inducers like IL-1, TNF alpha (tumor necrosis factor alpha), LPS (lipopolysaccharide), SAC (Staphylococcus Aureus Cowan 1) and PMA could be divided roughly into two categories. Bacterial products such as LPS or SAC have a potent IL-6 inducing effect on monocytes and minor or no effect on endothelial- and smooth muscle cells. The other category comprising IL-1, TNF alpha and PMA induces IL-6 production in endothelial- and smooth muscle cells. Only IL-1 induces IL-6 production in monocytes as well as in endothelial cells and smooth muscle cells. In addition to IL-6, also IL-1 and TNF alpha are produced by monocytes however with different kinetics. None of the stimuli had any inhibitory effect on IL-6 production with the exception of PMA. Whereas PMA induced IL-6 production in endothelial cells and it potentiated the induction of IL-6 by IL-1 in these cells, it inhibited LPS-stimulated IL-6 production in monocytes. In line with the effects of PMA, staurosporin induced IL-6 production in monocytes and it inhibited IL-1 driven IL-6 production by endothelial cells.  相似文献   

4.
Polymorphonuclear leukocytes (PMN) may play a key role in acute lung injury and ARDS. The mechanisms of PMN-mediated lung injury include the release of inflammatory mediators, such as oxygen free radicals which cause direct tissue injury, and arachidonic acid metabolites which cause pulmonary vasoconstriction and increased vascular permeability. The goals of this in vitro study were 1) to assess the effects of PMN-activating agents (lipopolysaccharide, LPS; phorbol myristate acetate, PMA; tumor necrosis factor, TNF) on PMN thromboxane B2 (TXB2) release and oxygen free radical production and 2) to determine the effects of agents purported to suppress PMN activity (pentoxifylline, PTX; adenosine; dibutyryl cyclic AMP, DBcAMP; and terbutaline, TBN) on activator-induced PMN TXB2 release and oxygen free radical production. PMN TXB2 release was determined by radioimmunoassay and oxygen free radical production was monitored by chemiluminescence. Our results show that 1) LPS and PMA significantly increase PMN TXB2 release, whereas tumor necrosis factor (TNF) has no effect; 2) LPS and PMA significantly increase PMN chemiluminescence; 3) DBcAMP and TBN significantly reduce LPS-induced PMN TXB2 release whereas PTX and adenosine do not; 4) TBN significantly reduces PMA-induced PMN TXB2 release whereas other agents do not; 5) All agents (PTX, adenosine, DBcAMP, and TBN) significantly reduce LPS-induced PMN chemiluminescence but none attenuate PMA-induced PMN chemiluminescence. We conclude that: LPS and PMA activate PMN manifested by TXB2 release and chemiluminescence. Additionally, all the PMN suppressing agents do attenuate some PMN functions. Of interest, PTX, adenosine, DBcAMP, and TBN have different effects depending upon functional assay and activating agent. It will be important to investigate the mechanisms by which PMN suppressing agents alter signal transduction resulting in differential effects on PMN function.  相似文献   

5.
The biosynthesis of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS) by base-exchange reactions, and of PC and PE by the CDP pathways, was assessed in the membrane phospholipids of human leukocytes (neutrophils, lymphocytes, T lymphocytes, non-T lymphocytes, and monocytes). Of the three base-exchange activities, ethanolamine exchange was the highest and choline exchange the lowest in each leukocyte membrane. In the CDP pathways, ethanolaminephosphotransferase (EPT) and cholinephosphotransferase (CPT) had comparable activities. Among subpopulations of leukocytes, T lymphocytes showed the highest levels of each enzyme activity, and neutrophils showed the least. In contrast to the enzymes of the CDP pathways, each base-exchange activity was directly proportional to the Ca2+ concentration, but markedly inhibited by Mg2+. Despite this Ca2+ dependence, the base-exchange activities were increased in a dose-dependent manner by calmodulin antagonists and, except for ethanolamine exchange, inhibited by the addition of calmodulin; EPT and CPT activities were only slightly inhibited by calmodulin antagonists and were unaffected by calmodulin. PE formation in both neutrophil and lymphocyte base-exchange reactions was enhanced in a dose-dependent manner by the presence of low concentrations of bioactive stimulants (zymosan, 0.05-0.2 mg/ml; Con A, 0.5-2 micrograms/ml), while EPT and CPT activities were not increased by these cell stimulants. Taken together, our data suggest that base-exchange activity, the biological significance of which has been hitherto unclear, may be related to cell activation; in contrast, the CDP pathways appear primarily to involve the constitutive biosynthesis of phospholipids. Our data further suggest that ethanolamine required for base-exchange reactions is a precursor of PE, N-transmethylation of which can serve as a source of cell activation, leading to production of arachidonic through PC by mediation of phospholipase A2 activity.  相似文献   

6.
Secretion of TNF from mouse peritoneal macrophages exposed to LPS in vitro was enhanced in the presence of H2O2 or sodium periodate. Neither of these agents induced release of TNF in the absence of LPS. Both iron chelators and free radical scavengers inhibited this enhanced secretion of TNF, implying the involvement of free radicals via a Fenton-type reaction. Oxidant stress, in the form of alloxan or divicine, also enhanced serum levels of TNF in mice made sensitive to LPS by low-level infection with malaria, and then given i.v. LPS. Pretreatment with the iron chelator, desferal, or the free radical scavenger, BHA, inhibited TNF release in these animals. Less TNF was also detected in mice given desferal before LPS in the absence of exogenous radical generator. These results could have implications for understanding the details of the MLR, the adherence of neutrophils to the walls of pulmonary vessels in free radical-induced lung pathology, and the side effects of bleomycin.  相似文献   

7.
Lipopolysaccharide (LPS, endotoxin) is a potent stimulator of tumor necrosis factor alpha (TNF alpha) synthesis and secretion in mouse macrophage tumor cells (Golenbock, D. T., Hampton, R. Y., Qureshi, N., Takayama, K., and Raetz, C. H. R. (1991) J. Biol. Chem. 266, 19490-19498). In contrast, addition of LPS (10 ng/ml) to human monomyelocytic (Mono Mac 6) cells induces very little production of TNF alpha, as judged by immunoassay of the growth medium. When 30 ng/ml 4-beta-phorbol-12-myristate 13-acetate (PMA) is added together with LPS, large amounts of TNF alpha are secreted. PMA alone is inactive. Maximal TNF alpha levels in the medium are achieved at 1 ng/ml of LPS. Protein kinase C inhibitors, such as H7 (1-(5-isoquinolinylsulfonyl)-2-methylpiperazine), staurosporine, and sphingosine, reduce TNF alpha secretion stimulated by PMA. The effect of PMA has been investigated at each stage of TNF alpha biogenesis. Treatment of Mono Mac 6 cells with LPS alone results in rapid, transient, and full expression of TNF alpha mRNA. Concomitant addition of PMA does not increase TNF alpha mRNA synthesis any further, but it prolongs the half-life of TNF alpha mRNA about 3-fold. However, mRNA stabilization does not account for the striking effect of PMA on TNF alpha secretion. Analysis of TNF alpha synthesis and secretion by immunoprecipitation indicates that LPS alone is fully effective in stimulating the formation of the intracellular 26-kDa TNF alpha precursor. LPS alone is not sufficient to allow processing of the precursor and secretion of mature 17-kDa TNF alpha. The rate of TNF alpha secretion observed immediately after the addition of PMA to LPS-pretreated cells is similar to the maximum rate from LPS/PMA-treated cells, but without the lag observed in cells after being exposed to LPS and PMA simultaneously. In summary, PMA is required for the completion of TNF alpha precursor processing and secretion in LPS-treated human Mono Mac 6 cells, whereas murine RAW cells are able to complete the terminal steps of TNF alpha processing in the absence of PMA.  相似文献   

8.
S Sethi  P Sharma  M Dikshit 《Nitric oxide》2001,5(5):482-493
Previous studies from this lab have shown NO-mediated modulation of free radical generation from polymorphonuclear leukocytes (PMNs), following hypoxic-reoxygenation as well as in the normoxic cells. The present study is an attempt to investigate further the regulation of NO and free radical generation in the lipopolysaccharide (LPS)-treated PMNs. PMNs were isolated from the rat blood and peritoneal cavity, 4 h after LPS (1 mg/kg, i.p.) treatment. Nitric oxide synthase (NOS) activity and nitrite content were increased in the peripheral and peritoneal PMNs following LPS treatment. An increase in the apparent V(max) for l-arginine uptake was also observed in the LPS-treated peripheral PMNs, while peritoneal PMNs exhibited increase in both apparent V(max) and affinity for l-arginine. Synthesis of nitrite did not augment after increasing the availability of substrate to control PMNs, however, peripheral and peritoneal PMNs from LPS-treated rats utilized l-arginine more efficiently for nitrite synthesis. NOS activity, l-arginine uptake, and its utilization were maximal in the peritoneal PMNs. Arachidonic acid (AA, 1 x 10(-6) M)-induced free radical generation from PMNs was also enhanced significantly after LPS treatment. Preincubation of PMNs with nitrite elevated the free radical generation and myeloperoxidase (MPO) release. MPO and antioxidant enzyme activity in the PMNs was significantly augmented after LPS treatment. NOS inhibitors, aminoguanidine and 7-nitroindazole, inhibited arachidonic acid-induced free radical generation from LPS treated PMNs. The results obtained thus indicate that augmentation of free radical generation from rat PMNs following LPS treatment appears to be regulated by NO and MPO.  相似文献   

9.
Human peripheral blood polymorphonuclear leukocytes were preincubated with cystathionine and cystathionine metabolites found in the urine of patients with cystathioninuria. Among the cystathionine metabolites, cystathionine ketimine and N-acetyl-S-(3-oxo-3-carboxy-n-propyl) cysteine (NAc-OCPC) significantly enhanced the N-formylmethionylleucylphenylalanine (fMLP)-induced superoxide generation, but cystathionine, NAc-cystathionine, and cyclothionine did not enhance the superoxide generation. Cystathionine ketimine and NAc-OCPC also enhanced superoxide generation induced by opsonized zymosan (OZ) but not that induced by arachidonic acid (AA) and phorbol 12-myristate 13-acetate (PMA). Superoxide generation induced by cystathionine ketimine and NAc-OCPC was inhibited by genistein, an inhibitor of tyrosine kinase, and was enhanced by 1-(5-isoquinoline sulfonyl)-2-methylpiperazine (H-7), an inhibitor of protein kinase C. Cystathionine ketimine and NAc-OCPC markedly also increased phosphorylation of 45-kDa protein in human neutrophils and the phosphorylation depended on the concentrations of cystathionine ketimine and NAc-OCPC. The phosphorylation of 45-kDa protein induced by cystathionine ketimine and NAc-OCPC was inhibited by genistein and herbimycin A, inhibitors of tyrosine kinase, but was not inhibited by H-7 and staurosporine, inhibitors of protein kinase C. Cystathionine metabolites and l-cystathionine sulfoxides were separated into two diastereoisomers, CS-I and CS-II. CS-I enhanced the superoxide generation induced by AA and PMA but not that induced by fMLP and OZ. In contrast, CS-II enhanced the superoxide generation induced by fMLP and OZ, but not that induced by AA and PMA.  相似文献   

10.
The effect was investigated of combinations of cytokines known to be cytostatic for some tumor cells, namely interleukin 1 alpha (IL-1 alpha), interferon-beta (IFN-beta), and tumor necrosis factor (TNF), on the growth and differentiation of the mouse myeloid leukemic cell line, M1, cells. IL-1 alpha, IFN-beta, and TNF by themselves are antiproliferative for M1 cells. Treatment of cells with a mixture of any two of the three cytokines resulted in at least additive growth inhibition. None of these cytokines by themselves induced differentiation of M1 cells as assessed by increased expression of Fc receptors (FcR), stimulation of phagocytic activity and by morphologic criteria. However, as little as 1 U/ml IL-1 alpha in conjunction with IFN-beta or TNF increased FcR expression, phagocytic activity and morphologic changes in addition to inhibiting the growth of M1 cells. The combination of IFN-beta and TNF did not induce differentiation, although the growth of the cells was markedly inhibited. Both TNF and lipopolysaccharide (LPS) induced the in vitro production of IFN activity by M1 cells. Furthermore, the induction of differentiation of M1 cells by a combination of IL-1 alpha with either IFN-beta, TNF, or LPS was inhibited by antibody against mouse IFN-beta. Therefore, it appears that IFN-beta provides one of the two required signals for differentiation of M1 cells by these combinations of stimulants, the other being IL-1. Furthermore, the cytostatic effect of TNF by itself on M1 cells was also partly blocked by anti-IFN-beta antibody, suggesting that IFN-beta is also involved in the growth inhibitory effect of TNF for M1 cells. In contrast, the cytostatic effect of IL-1 on M1 cells was not blocked by anti-IFN-beta antibody. In conclusion, both the cytostatic and differentiative effect of TNF appear to be mediated by IFN-beta. Thus, the combination of IL-1 and IFN-beta or inducers of IFN-beta resulted in terminal differentiation of M1 cells. Northern blot analysis using cDNAs for murine IFN-beta1 or human IFN-beta2 showed an increased expression of mRNA for IFN-beta1 but not for IFN-beta2 by stimulation with TNF or LPS, strongly suggesting that IFN-beta 1 rather than IFN-beta 2 is responsible for TNF or LPS effects.  相似文献   

11.
Neutrophils/polymorphonuclear leukocytes (PMNs), an important component of innate immune system, release extracellular traps (NETs) to eliminate invaded pathogens; however understanding of the role of signaling molecules/proteins need to be elucidated. In the present study role of p38 MAPK and extracellular signal regulated kinase (ERK) against phorbol 12‐myristate 13‐acetate (PMA) induced reactive oxygen species (ROS) generation and NETs formation has been investigated. Human neutrophils were treated with PMA to induce free radical generation and NETs release, which were monitored by NBT reduction and elastase/DNA release, respectively. PMA treatment led to the time dependent phosphorylation of p38 MAPK and ERK in PMNs. Pretreatment of PMNs with SB202190 or U0126 did not significantly reduce PMA induce free radical generation, but prevented NETs release. Pretreatment of PMNs with NADPH oxidase inhibitor (diphenyleneiodonium chloride) significantly reduced free radical generation, p38 MAPK and ERK phosphorylation as well as NETs release, suggesting that p38 MAPK and ERK activation was downstream to free radical generation. The present study thus demonstrates ROS dependent activation of ERK and p38 MAPK, which mediated PMA induced NETs release from human neutrophils. J. Cell. Biochem. 114: 532–540, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Huang KL  Shaw KP  Wang D  Hsu K  Huang TS  Chen HI 《Life sciences》2002,71(11):1237-1244
Intravenous amphetamine abuse may cause serious cardiopulmonary complications via unknown mechanisms. We investigated the role of free radicals in the amphetamine-induced lung injury using isolated rat lungs. Adding amphetamine into the perfusate caused dose-dependent increases in perfusion pressure and lung weight. Amphetamine increased the filtration coefficient (K(f)) by 90 +/- 20% and 210 +/- 10% at doses of 10 microM and 50 microM, respectively, as compared to the baseline level. Pretreatment with dimethylthiourea (DMTU), an oxygen radical scavenger, abolished the pulmonary hypertension, lung weight gain, and permeability changes. We also examined the effect of amphetamine on free radical generation in polymorphonuclear leukocytes (PMN). Adding phorbol myristate acetate (PMA, 1 nM) enhanced the chemiluminescence indicating the functional viability of the isolated PMN. Amphetamine (50 microM) significantly enhanced the chemiluminescence generation of PMN by 152 +/- 26% as compared with the baseline value. Combination of amphetamine and PMA increased free radical formation by 360 +/- 85%. In summary, our results showed that amphetamine may cause acute lung injury by overproduction of free radicals. Although amphetamine can activate PMN, the source of free radicals remains to be determined.  相似文献   

13.
D O Keyser  B E Alger 《Neuron》1990,5(4):545-553
Arachidonic acid (AA) is a second messenger liberated via receptor activation of phospholipase A2 or diacylglycerol-lipase. We used whole-cell voltage clamp of acutely isolated hippocampal CA1 pyramidal cells to investigate the hypothesis that AA modulates Ca2+ channel current (ICa) via activation of protein kinase C (PKC) and generation of free radicals. AA depressed ICa in a dose- and time-dependent manner similar to that previously reported for the action of phorbol esters on ICa. A similar depression was seen with a xanthine-based free radical generating system. The specific PKC inhibitor PKCI (19-36), the protein kinase inhibitor H-7, and the superoxide free radical scavenger SOD each blocked ICa depression by 70%-80%. Complete block of the AA response occurred when SOD was used simultaneously with a PKC inhibitor. These data suggest that PKC and free radicals play a role in AA-induced suppression of ICa.  相似文献   

14.
Sjursen W  Brekke OL  Johansen B 《Cytokine》2000,12(8):1189-1194
The involvement of cytosolic phospholipase A(2)(cPLA(2)) and secretory non-pancreatic PLA(2)(npPLA(2)) in release of arachidonic acid (AA) preceding eicosanoid formation in the human keratinocyte cell line HaCaT was examined. Interleukin 1beta (IL-1beta) and tumour necrosis factor-alpha (TNF), phorbol myristate acetate (PMA) and calcium ionophore A(23187)increased the extracellular AA release, and stimulated eicosanoid synthesis as determined by HPLC analysis. The main metabolites after stimulation with IL-1beta, PMA or A(23187)were PGE(2), an unidentified PG and LTB(4), while TNF stimulated HETE-production. Both cPLA(2)and npPLA(2)message and enzyme activity were detected in unstimulated HaCaT cells. IL-1beta, PMA and TNF increased both cPLA(2)enzyme activity and expression, but did not lead to any increase in npPLA(2)expression or activity. The selective npPLA(2)inhibitors LY311727 and 12-epi-scalaradial, or the cPLA(2)inhibitor arachidonyl trifluoro methyl ketone (AACOCF(3)) reduced IL-1beta-induced eicosanoid production in a concentration dependent manner. The results presented strongly suggest that both cPLA(2)and npPLA(2)contribute to the long-term generation of AA preceding eicosanoid production in differentiated, human keratinocytes. Inhibitors against npPLA2 or cPLA2 enzymes should be useful in treating inflammatory skin diseases, such as psoriasis.  相似文献   

15.
Human IL-1 beta and TNF alpha production by normal and transformed monocytoid cells was studied using biological assays, cytokine specific ELISA and by immunocytochemical methods on a single cell level. Quiescent human blood monocytes and cultured in vitro transformed human monocytoid cell lines U-937, THP-1 and HL-60 did not contain IL-1 beta and TNF alpha in their cytoplasm. IL-1 beta synthesis and secretion was induced by LPS stimulation in nearly 90% monocytes, 15-20% U-937, 3-5% THP-1 and in no HL-60 cells. Normal human blood monocytes had a more rapid kinetics of IL-1 beta synthesis. IL-1 beta positive cells stained with antibodies to human IL-1 beta appeared at 1-2 hours after LPS application, while in monocytic cell lines only after 4-6 hours. Using immunoperoxidase staining of U-937 cells pulse labelled with 3H-thymidine, it was shown that proliferating cells did not synthetize IL-1 beta. Instead of IL-1 beta, TNF alpha could be induced by LPS in U-937 cells only after preliminary differentiation with PMA. Recombinant IL-1 beta induced a very low level of TNF alpha production in PMA-treated cells. Similarly recombinant TNF alpha alone induced IL-1 beta synthesis only in a few U-937 cells.  相似文献   

16.
The influence of staphylococcal enterotoxin of type A (SEA) and enterobacterial lipopolysaccharide (LPS) on the production of tumor necrosis factor alpha (TNF alpha), gamma-interferon and active forms of oxygen by mouse peritoneal cells was studied. Both SEA and LPS, when injected to animals, produced stimulating influence on the oxygen metabolism of phagocytizing cells. The highest toxic doses of LPS induced the maximal generation of oxygen radicals. Under the conditions of the development of lethal toxic shock, i.e. after the combined injection of SEA and LPS, the synergic activation of oxygen metabolism was observed, which was also manifested by the pronounced production of TNF alpha and the increased synthesis of gamma-interferon.  相似文献   

17.
The regulation of the 55-kDa TNF receptor (TNF-R) mRNA synthesis, membrane expression, and TNF binding factor (BF) release was examined in resting and activated human monocytic THP-1 and human promyelocytic leukemia HL-60 cells in vitro. Cells were activated with phorbol myristate acetate (PMA) and bacterial lipopolysaccharide (LPS). TNF alpha cytolytic activity in the supernatant of THP-1 cells stimulated by PMA began to appear at 4 hr, reached a peak at 8 hr, and declined by 12 hr. For THP-1 cells stimulated with LPS, the peak of TNF alpha activity appeared at 4 hr and then declined. TNF alpha-binding sites on the cell membrane were down-regulated within 1 hr after PMA and LPS treatment and then reappeared 12 hr later. Fifty-five-kilodalton TNF-R mRNA expression during this time period did not correlate with the level of membrane TNF-binding site expression. Additional studies indicated the presence of a 30-kDa TNF-BF in the supernatants which appeared after 24 hr. These data suggest that activated THP-1 and HL-60 cells are capable of releasing TNF-BF into the supernatant and this material may be involved in the control of secreted TNF alpha activities.  相似文献   

18.
Gram-negative bacterial septicemia is a common clinical syndrome resulting, in part, from the activation of phagocytic leukocytes by LPS. By using flow cytometry, we have characterized LPS-induced expression of the beta 2 integrin CD11b/CD18. After exposure to Salmonella minnesota R595 LPS, expression of neutrophil CD11b/CD18 is rapidly upregulated, beginning within 5 min and achieving a peak fluorescence (typically two- to threefold over base line) by 30 min. The increase in CD11b/CD18 expression was similar in kinetics and magnitude to that produced by FMLP, PMA, and human rTNF-alpha. Concentrations of LPS necessary to stimulate a response were as low as 1 ng/ml of R595 LPS; a maximal response was observed between 30 and 100 ng/ml. The upregulation of CD11b/CD18 due to LPS was not interrupted by protein synthesis inhibitors. A group of glucosamine disaccharide lipid A-like molecules: Rhodobacter sphaeroides lipid A, lipid IVA, KDO2IVA, and deacylated LPS were able to block the stimulatory effect of LPS. This inhibition was specific for the actions of LPS as stimulation of polymorphonuclear leukocytes (PMN) by FMLP, human rTNF alpha, PMA, and rewarming were not altered by the disaccharide inhibitors. PMN which were exposed to the specific disaccharide LPS antagonists and then washed, were refractory to stimulation by LPS. The monosaccharide lipid A precursor lipid X also blocked stimulation of neutrophils by LPS, although with a 100-fold reduction in potency. Unlike the disaccharide inhibitors, PMN exposed to lipid X were still responsive to LPS stimulation after washing. The PMN response to LPS was less sensitive in the absence of serum, although upregulation of CD11b/CD18 could still be seen using higher concentrations of LPS. Monoclonal antibody directed against CD14 (clone 3C10), also specifically inhibited LPS induced PMN CD11b/CD18 expression both in the presence and absence of serum. These findings support the hypothesis that LPS stimulates neutrophils by interacting with specific cellular receptors.  相似文献   

19.
The m1 muscarinic acetylcholine receptor gene was transfected into and stably expressed in A9 L cells. The muscarinic receptor agonist, carbachol, stimulated inositol phosphate generation, arachidonic acid release, and cAMP accumulation in these cells. Carbachol stimulated arachidonic acid and inositol phosphate release with similar potencies, while cAMP generation required a higher concentration. Studies were performed to determine if the carbachol-stimulated cAMP accumulation was due to direct coupling of the m1 muscarinic receptor to adenylate cyclase via a GTP binding protein or mediated by other second messengers. Carbachol failed to stimulate adenylate cyclase activity in A9 L cell membranes, whereas prostaglandin E2 did, suggesting indirect stimulation. The phorbol ester, phorbol 12-myristate 13-acetate (PMA), stimulated arachidonic acid release yet inhibited cAMP accumulation in response to carbachol. PMA also inhibited inositol phosphate release in response to carbachol, suggesting that activation of phospholipase C might be involved in cAMP accumulation. PMA did not inhibit prostaglandin E2-, cholera toxin-, or forskolin-stimulated cAMP accumulation. The phospholipase A2 inhibitor eicosatetraenoic acid and the cyclooxygenase inhibitors indomethacin and naproxen had no effect on carbachol-stimulated cAMP accumulation. Carbachol-stimulated cAMP accumulation was inhibited with TMB-8, an inhibitor of intracellular calcium release, and W7, a calmodulin antagonist. These observations suggest that carbachol-stimulated cAMP accumulation does not occur through direct m1 muscarinic receptor coupling or through the release of arachidonic acid and its metabolites, but is mediated through the activation of phospholipase C. The generation of cytosolic calcium via inositol 1,4,5-trisphosphate and subsequent activation of calmodulin by m1 muscarinic receptor stimulation of phospholipase C appears to generate the accumulation of cAMP.  相似文献   

20.
It has been shown that calmodulin antagonists provide radio-protection in euoxic and sensitization in hypoxic conditions. This differential protection in euoxic conditions might have arisen from the interaction of calmodulin antagonists with oxygen free radicals. This possibility has been tested in the present communication. Radiation induced lipid peroxidation process in liposomes has been used for this purpose. Liposomes prepared from L-alpha-lecithin were irradiated with or without calmodulin antagonists. Calmodulin antagonists inhibited lipid peroxidation significantly. The inhibition was found to increase with increase in concentration of the drugs. These observations suggest that calmodulin antagonists have a capacity to scavenge oxygen free radicals involved in initiation and/or propagation of lipid peroxidation process. This may be the reason for their differential radioprotection in euoxic conditions in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号