首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of highly active, O2-evolving PS II preparations at alkaline pH inhibits donor side electron-transfer reactions in two distinct fashions, one reversible the other irreversible. In both cases, O2 evolution is inhibited, with concomitant loss of the light-induced multiline and g = 4.1 EPR signals and an increased steady-state level of EPR Signal II induced by continuous illumination. However, the inhibition that is observed between pH 7.0 and 8.0 is readily reversible by resuspension at low pH, while above pH 8.0 the effect is irreversible. In addition, under repetitive flash conditions the ms decay kinetics remains largely unchanged at pH less than or equal to 8.0 but shows about a 2-fold increase in amplitude and is slowed at pH above 8.0. The irreversible component of inhibition most likely can be attributed to the loss of Mn and the 16, 24 and 33 kDa proteins. The reversible component may be mediated by displacement of Cl- from an anion-binding site by OH- or by titration of ionizable groups on the protein(s) associated with water-splitting. We propose that the reversible inhibition blocks electron transfer between the O2-evolving complex and an intermediate which serves as the direct donor to Signal II, while the irreversible inhibition blocks the reduction of Signal II by this intermediate donor species.  相似文献   

2.
《BBA》1986,850(2):226-233
The steady-state amplitude and flash-induced kinetics of EPR signal II in two Photosystem II (PS II) reaction center protein complexes from Synechococcus were measured to probe the organization of species involved in the PS II electron-transfer chain. A PS II reaction center complex (E-1) which has 47, 40, 31, 28 and 9 kDa subunits shows both fast decaying (signal IIf) and slowly decaying (signal IIs+u) EPR components. The amplitude of signal IIf, which represents Z (the donor to P-680), is about 1 spin per 30 Chl. This corresponds to one spin per reaction center in this preparation. Signal IIs+u, the slowly decaying component of signal II, reflects D, a donor to PS II on a side chain from the path of water oxidation in higher plants and algae. Signal IIs+u is present in the E-1 preparation in a ratio of about 1 spin per 40 Chl. Flash-induced signal IIf in E-1 shows biexponential decay with half-times of 20 ms and 300 ms. In a PS II reaction center complex (CP2b) which has 47, 31, 28 and 9 kDa subunits, but no 40 kDa subunit, an appreciable amount of signal IIf is observed (about 1 per 50 Chl). Less than 1 spin per 400 Chl of signal IIs+u is visible in this sample. The kinetics of Z+ reduction (signal IIf) in CP2b is similar to that seen in E-1 preparations, indicating that CP2b contains all of the molecules necessary for primary charge separation and secondary electron donation from Z.  相似文献   

3.
We report for the first time significant changes in the P680*+ reduction kinetics of Photosystem II (PS II) in which the 17 and 23 kDa extrinsic polypeptides are intact, in the presence of Ca(2+) or ethylene glycol bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) which were added to vary the Ca(2+) concentration from 5 microM to 30 mM. The decrease in the extent of normal P680*+ reduction decay with lifetimes of 40-370 ns and a corresponding increase in the extent of kinetics with lifetimes of 20-220 micros was interpreted as being due to electron transfer from Y(Z) to P680*+ being replaced by slow forward conduction and by processes including P680*+/Q(A)(-) recombination. The question of whether changes in P680*+ reduction kinetics were caused by loss of Ca(2+) from PS II or by direct interaction of EGTA with PS II was addressed by lowering the free-Ca(2+) concentration of suspensions of PS II core complexes by serial dilution in the absence of EGTA. Despite a significant decrease in the rate of O(2) evolution after this treatment, only small changes in the P680*+ reduction kinetics were observed. Loss of Ca(2+) did not affect P680*+ reduction associated with electron transfer from Y(Z). Since much larger changes in the P680*+ reduction kinetics of intact PS II occurred at comparable free-Ca(2+) concentrations in the presence of EGTA, we conclude that EGTA influenced the P680*+ reduction kinetics by directly interacting with PS II rather than by lowering the free Ca(2+) concentration of the surrounding media. Notwithstanding these effects, we show that useful information about Ca(2+) binding to PS II can be obtained when direct interaction of EGTA is taken into account.  相似文献   

4.
Effects of formate on rates of O(2) evolution and electron paramagnetic resonance (EPR) signals were observed in the oxygen evolving PS II membranes as a function of pH. In formate treated PS II membranes, decrease in pH value resulted in the inhibition of the O(2) evolving activity, a decrease in the intensity of S(2) state multiline signal but an increase in the intensity of the Q(A)(-)Fe(2+) EPR signal. Time-resolved EPR study of the Y(Z)(*) decay kinetics showed that the light-induced intensity of Y(Z)(*) EPR signal was proportional to the formate concentration. The change in the pH affected both the light-induced intensities and the decay rates of Y(Z)(*), which was found to be faster at lower pH. At 253 K, t(1/e) value of Y(Z)(*) decay kinetics was found to be 8-10 s at pH 6.0 and 18-21 s at pH 5.0. The results presented here indicate that the extent of inhibition at the donor and the acceptor side of PS II due to formate is pH dependent, being more effective at lower pH.  相似文献   

5.
Addition of high concentrations of compatible co-solutes such as sugars, sugar alcohols and polyols has recently been shown to lead to marked increases in the thermal stability of oxygen-evolution in chloroplasts (Williams et al. (1992) Biochim. Biophys. Acta 1099, 137-144). In this paper, a similar stabilisation is demonstrated for oxygen-evolving PS II core preparations. The presence of such co-solutes appears, however, to have no ability to stabilise PS II reaction-centre preparations against heat-induced changes in their absorption spectrum. Nor do they protect electron transport from artificial electron donors in PS II core preparations lacking the extrinsic 33 kDa polypeptide of the oxygen-evolution system. Measurements performed on core preparations retaining the 33 kDa polypeptide but lacking the 17 kDa and 23 kDa polypeptides indicate that the co-solutes protect PS-II-mediated electron transport by stabilising the binding of the 33 kDa polypeptide to the core complexes. These findings are discussed in terms of an extension of the general principles underlying the Hofmeister effect observed for soluble proteins to the stabilisation of photosynthetic membrane preparations.  相似文献   

6.
The rise time, of Signal IIf and the decay time of P-680+ have been measured kinetically as a function of pH by using EPR. The Photosystem II-enriched preparations which were used as samples were derived from spinach chloroplasts, and they evolved oxygen before Tris washing. The onset kinetics of Signal IIf are in agreement, within experimental error, with the fast component of the decay of an EPR signal attributable to P-680+. The signal IIf rise kinetics also show good agreement with published values of the pH dependence of the decay of P-680+ measured optically (Conjeaud, H. and Mathis, P. (1980) Biochim. Biophys. Acta 590, 353–359). These results are consistent with a model where the species Z (or D1) responsible for Signal IIf is the immediate electron donor to P-680+ in tris-washed Photosystem II fragments.  相似文献   

7.
The ability of salts to inhibit the O2-evolution activity of PS II preparations is shown to parallel closely the Hofmeister series, suggesting that inhibition is related to the solubility of the 16, 24 and 33 kDa proteins in these salt solutions. An examination of the effect of salt inactivation on the low temperature multiline EPR signal indicates that the release of either the 16 and 24 kDa proteins, or additionally the 33 kDa protein blocks or greatly reduces the efficiency of the advancement of the water-splitting complex to the S2-state; under some conditions, this inhibition is reversible.  相似文献   

8.
In order to determine the major site of bicarbonate action in the electron transport complex of Photosystem II, the following experimental techniques were used: electron spin resonance measurements of Signal IIvf, measurements of chlorophyll a fluorescence yield rise and decay kinetics, and delayed light emission decay. From data obtained using these experimental techniques the following conclusions were made: (1) absence of bicarbonate causes a reversible inactivation of up to 40% of Photosystem II reaction center activity; (2) there is no significant effect of bicarbonate on electron flow from the charge accumulating S state to Z; (3) there is no significant effect of bicarbonate on electron flow from Z to P-680+; (4) electron flow from Q-- to the intersystem electron transport pool is inhibited by from 4- to 6-fold under bicarbonate depletion conditions.  相似文献   

9.
The properties of Photosystem II electron donation were investigated by EPR spectrometry at cryogenic temperatures. Using preparations from mutants which lacked Photosystem I, the main electron donor through the Photosystem II reaction centre to the quinone-iron acceptor was shown to be the component termed Signal II. A radical of 10 G line width observed as an electron donor at cryogenic temperatures under some conditions probably arises through modification of the normal pathway of electron donation. High-potential cytochrome b-559 was not observed on the main pathway of electron donation. Two types of PS II centres with identical EPR components but different electron-transport kinetics were identified, together with anomalies between preparations in the amount of Signal II compared to the quinone-iron acceptor. Results of experiments using cells from mutants of Scenedesmus obliquus confirm the involvement of the Signal II component, manganese and high-potential cytochrome b-559 in the physiological process leading to oxygen evolution.  相似文献   

10.
We have used the decay kinetics of Signal IIf in Tris-washed chloroplasts as a direct probe to reactions on the oxidizing side of Photosystem II. A study of the salt concentration dependence of the rate of reduction of Z . + by the ascorbate monoanion has been interpreted by using the Gouy-Chapman diffuse double layer model and allows the calculation of an inner membrane surface charge density of -3.4 +/- 0.3 microC . cm-2 at pH = 8.0 in the vicinity of Photosystem II. We have also measured the outer membrane surface charge density at this pH in Tris- and sucrose-washed chloroplasts by monitoring the rate of potassium ferricyanide oxidation of Q-, and arrive at values of -2.2 +/- 0.3 microC . cm-2 and -2.1 microC . cm-2, respectively. From these experiments we conclude that in dark-adapted chloroplasts at pH 8.0 there exists a transmembrane electric field in the vicinity of Photosystem II which arises from this surface charge asymmetry. In the presence of 10 mM monovalent salts, the transmembrane potential difference is of the order of 20 mV, corresponding to a field of 4 . 10(4) V . cm-1 (negative inside) for a 50A membrane. It is both smaller in magnitude and in the opposite direction compared to the photoinduced transmembrane field which gives rise to the 515 nm absorption change. We have also found non-double layer Ca2+ effects on the decay kinetics of Signal IIf with both charged (ascorbate monoanion) and neutral (diphenylcarbazide) donors. These results suggest a change in the environment of Z from lipophilic to hydrophilic upon specific binding of Ca2+.  相似文献   

11.
P. Jursinic  J. Warden 《BBA》1976,440(2):322-330
In order to determine the major site of bicarbonate action in the electron transport complex of Photosystem II, the following experimental techniques were used: electron spin resonance measurements of Signal IIvf, measurements of chlorophyll a fluorescence yield rise and decay kinetics, and delayed light emission decay. From data obtained using these experimental techniques the following conclusions were made: (1) absence of bicarbonate causes a reversible inactivation of up to 40% of Photosystem II reaction center activity; (2) there is no significant effect of bicarbonate on electron flow from the charge accumulating S state to Z; (3) there is no significant effect of bicarbonate on electron flow from Z to P-680+; (4) electron flow from Q? to the intersystem electron transport pool is inhibited by from 4- to 6-fold under bicarbonate depletion conditions.  相似文献   

12.
Treatment of intact thylakoid membranes with Triton X-100 at pH 6 produces a preparation of the PS II complex capable of high rates of O2 evolution. The preparation contains four managanese, one cytochrome b-559, one Signal IIf and one Signal IIs per 250 chlorophylls. By selective manipulation of the preparation polypeptides of approximate molecular weights of 33, 23 and 17 kDa can be removed from the complex. Release of 23 and 17 kDa polypeptides does not release functional manganese. Under these conditions Z+ is not readily and directly accessible to an added donor (benzidine) and it appears as if at least some of the S-state transitions occur. Evidence is presented which indicates that benzidine does have increased access to the oxygen-evolving complex in these polypeptide depleted preparations. Conditions which release the 33 kDa species along with Mn and the 23 and 17 kDa polypeptides generate an alteration in the structure of the oxidizing side of PS II, which becomes freely accessible to benzidine. These findings are examined in relationship to alterations of normal S-state behavior (induced by polypeptide release) and a model is proposed for the organization of functional manganese and polypeptides involved in the oxygen-evolving reaction.  相似文献   

13.
The effects of various formate concentrations on both the donor and the acceptor sides in oxygen-evolving PS II membranes (BBY particles) were examined. EPR, oxygen evolution and variable chlorophyll fluorescence have been observed. It was found that formate inhibits the formation of the S(2) state multiline signal concomitant with stimulation of the Q(A)(-)Fe(2+) signal at g = 1.82. The decrease and the increase in intensities of the multiline and Q(A)(-)Fe(2+) signals, respectively, had a linear relation for formate concentrations between 5 and 500 mM. The g = 4.1 signal formation measured in the absence of methanol was not inhibited by formate up to 250 mM in the buffer. In the presence of 3% methanol the g = 4.1 signal evolved as formate concentration increased. The evolved signal could be ascribed to the inhibited centers. Oxygen evolution measured in the presence of an electron acceptor, phenyl-p-benzoquinone, was also inhibited by formate proportionally to the decrease in the multiline signal intensity. The inhibition seemed to be due to a retarded electron transfer from the water-oxidizing complex to Y(Z)(+), which was observed in the decay kinetics of the Y(Z)(+) signal induced by illumination above 250 K. These results show that formate induces inhibition of water oxidation reactions as well as electron transfer on the PS II acceptor side. The inhibition effects of formate in PS II were found to be reversible, indicating no destructive effect on the reaction center induced by formate.  相似文献   

14.
Interfering RNA was used to suppress the expression of the genes At1g06680 and At2g30790 in Arabidopsis thaliana, which encode the PsbP-1 and PsbP-2 proteins, respectively, of photosystem II (PS II). A phenotypic series of transgenic plants was recovered that expressed intermediate and low amounts of PsbP. Chlorophyll fluorescence induction and Q(A)(-) decay kinetics analyses were performed. Decreasing amounts of expressed PsbP protein led to the progressive loss of variable fluorescence and a marked decrease in the fluorescence quantum yield (F(V)/F(M)). This was primarily due to the loss of the J to I transition. Analysis of the fast fluorescence rise kinetics indicated no significant change in the number of PS II(beta) centers present in the mutants. Analysis of Q(A)(-) decay kinetics in the absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea indicated a defect in electron transfer from Q(A)(-) to Q(B), whereas experiments performed in the presence of this herbicide indicated that charge recombination between Q(A)(-) and the oxygen-evolving complex was seriously retarded in the plants that expressed low amounts of the PsbP protein. These results demonstrate that the amount of functional PS II reaction centers is compromised in the plants that exhibited intermediate and low amounts of the PsbP protein. Plants that lacked detectable PsbP were unable to survive in the absence of sucrose, indicating that the PsbP protein is required for photoautotrophy. Immunological analysis of the PS II protein complement indicated that significant losses of the CP47 and D2 proteins, and intermediate losses of the CP43 and D1 proteins, occurred in the absence of the PsbP protein. This demonstrates that the extrinsic protein PsbP is required for PS II core assembly/stability.  相似文献   

15.
Removal of 23 and 17 kDa water-soluble polypeptides from PS II membranes causes a marked decrease in oxygen-evolution activity, exposes the oxidizing side of PS II to exogenous reductants (Ghanotakis, D.F., Babcock, G.T. and Yocum, C.F. (1984) Biochim. Biophys. Acta 765, 388–398) and alters a high-affinity binding site for Ca2+ in the oxygen-evolving complex (Ghanotakis, D.F., Topper, J.N., Babcock, G.T. and Yocum, C.F. (1984) FEBS Lett. 170, 169–173). We have examined further the state of the functional Mn complex in PS II membranes from which the 17 and 23 kDa species have been removed by high-salt treatment. These membranes contain a structurally altered Mn complex which is sensitive to destruction by low concentrations of NH2OH which cannot, in native PS II membranes, cause extraction of functional Mn. In addition to NH2OH, a wide range of other small (H2O2, NH2NH2, Fe2+) and bulky (benzidine, hydroquinone) electron donors extract Mn (up to 80%) from the polypeptide-depleted PS II preparations. This extraction is due to reduction of the functional Mn complex since light, which would generate higher oxidation states within the Mn complex, prevents Mn release by reductants. Release of Mn by reductants does not extract the 33 kDa water-soluble protein implicated in Mn binding to the oxidizing side of PS II, although the protein can be partially or totally extracted from Mn-depleted preparations by exposure to high ionic strength or to high (0.8 M) concentrations of Tris. We view our results as evidence for a shield around the Mn complex of the oxygen-evolving complex comprised of the 33 kDa polypeptide along with the 23 and 17 kDa proteins and tightly bound Ca2+.  相似文献   

16.
A Photosystem two (PS II) core preparation containing the chlorophyll a binding proteins CP 47, CP 43, D1 and D2, and the non-chlorophyll binding cytochrome-b559 and 33 kDA polypeptides, has been isolated from PS II-enriched membranes of peas using the non-ionic detergent heptylthioglucopyranoside and elevated ionic strengths. The primary radical pair state, P680+Pheo-, was studied by time-resolved absorption and fluorescence spectroscopy, under conditions where quinone reduction and water-splitting activities were inhibited. Charge recombination of the primary radical pair in PS II cores was found to have lifetimes of 17.5 ns measured by fluorescence and 21 ns measured by transient decay kinetics under anaerobic conditions. Transient absorption spectroscopy demonstrated that the activity of the particles, based on primary radical pair formation, was in excess of 70% (depending on the choice of kinetic model), while time-resolved fluorescence spectroscopy indicated that the particles were 91% active. These estimates of activity were further supported by steady-state measurements which quantified the amount of photoreducible pheophytin. It is concluded that the PS II core preparation we have isolated is ideal for studying primary radical pair formation and recombination as demonstrated by the correlation of our absorption and fluorescence transient data, which is the first of its kind to be reported in the literature for isolated PS II core complexes from higher plants.Abbreviations CP 43 and CP 47 chlorophyll binding proteins of PS II having apparent molecular weights on SDS-PAGE of 43 kDa and 47 kDa, respectively - D1 and D2 polypeptides PS II reaction centre polypeptides encoded by the psbA and psbD genes, respectively - HPLC high performance liquid chromatography - PS II Photosystem two - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - P680 primary electron donor of PS II - Pheo phenophytin a - SPC single photon counting - PBQ phenyl-p-benzoquinone - DPC 1,5-diphenylcarbazide AFRC Photosynthesis Research Group, Department of Biochemistry  相似文献   

17.
Manganese in the oxygen-evolving complex is a physiological electron donor to Photosystem II. PS II depleted of manganese may oxidize exogenous reductants including benzidine and Mn2+. Using flash photolysis with electron spin resonance detection, we examined the room-temperature reaction kinetics of these reductants with Yz +, the tyrosine radical formed in PS II membranes under illumination. Kinetics were measured with membranes that did or did not contain the 33 kDa extrinsic polypeptide of PS II, whose presence had no effect on the reaction kinetics with either reductant. The rate of Yz + reduction by benzidine was a linear function of benzidine concentration. The rate of Yz + reduction by Mn2+ at pH 6 increased linearly at low Mn2+ concentrations and reached a maximum at the Mn2+ concentrations equal to several times the reaction center concentration. The rate was inhibited by K+, Ca2+ and Mg2+. These data are described by a model in which negative charge on the membrane causes a local increase in the cation concentration. The rate of Yz + reduction at pH 7.5 was biphasic with a fast 400 s phase that suggests binding of Mn2+ near Yz + at a site that may be one of the native manganese binding sites.Abbreviations PS II Photosystem II - YD tyrosine residue in Photosystem II that gives rise to the stable Signal II EPR spectrum - Yz tyrosine residue in Photosystem II that mediates electron transfer between the reaction center chlorophyll and the site of water oxidation - ESR electron spin resonance - DPC diphenylcarbazide - DCIP dichlorophenolindophenol  相似文献   

18.
Extraction of PS II particles with 50 mM cholate and 1 M NaCl releases several proteins (33-, 23-, 17- and 13 kDa) and lipids from the thylakoid membrane which are essential for O2 evolution, dichlorophenolindophenol (DCIP) reduction and for stable charge separation between P680+ and QA -. This work correlates the results on the loss of steady-state rates for O2 evolution and PS II mediated DCIP photo-reduction with flash absorption changes directly monitoring the reaction center charge separation at 830 nm due to P680+, the chlorophyll a donor. Reconstitution of the extracted lipids to the depleted membrane restores the ability to photo-oxidize P680 reversibly and to reduce DCIP, while stimulating O2 evolution minimally. Addition of the extracted proteins of masses 33-, 23- and 17- kDa produces no further stimulation of DCIP reduction in the presence of an exogenous donor like DPC, but does enhance this rate in the absence of exogenous donors while also stimulating O2 evolution. The proteins alone in the absence of lipids have little influence on charge separation in the reaction center. Thus lipids are essential for stable charge separation within the reaction center, involving formation of P680+ and QA -.Abbreviations A830 Absorption change at 830 nm - Chl Chlorophyll - D1 primary electron donor to P680 - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - MOPS 3-(N-morpholino)propanesulfonic acid - P680 reaction center chlorophyll a molecule of photosystem II - PPBQ Phenyl-p-benzoquinone - PS II Photosystem II - QA, QB first and second quinone acceptors in PS II - V-DCIP rate of DCIP reduction - V-O2 rate of oxygen evolution - Y water-oxidizing enzyme system - CHAPS 3-Cyclohexylamino-propanesulfonic acid  相似文献   

19.
Oxygen-evolving photosystem II (PSII) particles were purified from Chlamydomonas reinhardtii having His-tag extension at the C terminus of the CP47 protein, by a single-step Ni(2+)-affinity column chromatography after solubilization of thylakoid membranes with sucrose monolaurate. The PSII particles consisted of, in addition to intrinsic proteins, three extrinsic proteins of 33, 23 and 17 kDa. The preparation showed a high oxygen-evolving activity of 2,300-2,500 micro mol O(2) (mg Chl)(-1) h(-1) in the presence of Ca(2+) using ferricyanide as the electron acceptor, while its activity was 680-720 micro mol O(2) (mg Chl)(-1) h(-1) in the absence of Ca(2+) and Cl(-) ions. The activity was 710-820 micro mol O(2) (mg Chl)(-1) h(-1) independent of the presence or absence of Ca(2+) and Cl(-) when 2,6-dichloro-p-benzoquinone was used as the acceptor. These activities were scarcely inhibited by DCMU. The kinetics of flash-induced fluorescence decay revealed that the electron transfer from Q(A)(-) to Q(B) was significantly inhibited, and the electron transfer from Q(A)(-) to ferricyanide was largely stimulated in the presence of Ca(2+). These results indicate that the acceptor side, Q(B) site, was altered in the PSII particles but its donor side remained intact. Release-reconstitution experiments revealed that the extrinsic 23 and 17 kDa proteins were released only partially by NaCl-wash, while most of the three extrinsic proteins were removed when treated with urea/NaCl, alkaline Tris or CaCl(2). The 23 and 17 kDa proteins directly bound to PSII independent of the other extrinsic proteins, and the 33 kDa protein functionally re-bound to CaCl(2)-treated PSII which had been reconstituted with the 23 and 17 kDa proteins. These binding properties were largely different from those of the extrinsic proteins in higher plant PSII, and suggest that each of the three extrinsic proteins has their own binding sites independent of the others in the green algal PSII.  相似文献   

20.
Selective solubilization of Photosystem II membranes with the non-ionic detergent octyl thioglucopyranoside has allowed the isolation of a PS II system which has been depleted of the 22 and 10 kDa polypeptides but retains all three extrinsic proteins (33, 23 and 17 kDa). The PS II membranes which have been depleted of the 22 and 10 kDa species show high rates of oxygen evolution activity, external calcium is not required for activity and the manganese complex is not destroyed by exogenous reductants. When we compared this system to control PS II membranes, we observed a minor modification of the reducing side, and a conversion of the high-potential to the low-potential form of cytochrome b 559.Abbreviations Chl- chlorophyll - DCBQ- 2,5-dichloro-p-benzoquinone - DCMU- 3-(3,4-dichlorophenyl)-1,1-dimethylurea - ESR- electron spin resonance - MES- 2-(N-morpholino)ethanesulfonic acid - OTG- octyl--d-thioglucopyranoside - PS II- Photosystem II - PEG- polyethylene glycol, Mr=6000 - Tris- 2-amino-2-hydroxyethylpropane-1,3-diol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号