首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Triiodothyronine (T (3)) is known to increase liver lipogenic enzyme gene expression both in vivo and in tissue culture. Conflicting results have been reported on the effect of T (3) on lipogenic enzyme gene expression in white adipose tissue. The results presented in this paper indicate that administration of pharmacological doses of T (3) in rats leads to increased fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), ATP-citrate lyase (ACL) and malic enzyme (ME) activity in white adipose tissue. The increase in lipogenic enzyme activity was associated with increased FAS, ACC, ACL and ME mRNA levels. The response was dose-dependent. Activity of lipogenic enzyme and the lipogenic enzyme mRNA levels were positively correlated to serum T (3) concentration. The in vivo effect of T (3) on lipogenic enzyme gene expression could be reproduced in primary white rat adipocyte culture. In conclusion, the results presented in this paper indicate that T (3) exerts a stimulatory effect on lipogenic enzyme gene expression in white adipose tissue both in vivo and in tissue culture. Significant effects of T (3) on lipogenic enzyme gene expression were only observed in the presence of relatively high (pharmacological) concentrations of the hormone.  相似文献   

2.
PPARalpha-deficiency in mice fed a high-carbohydrate, low-cholesterol diet was associated with a decreased weight of epididymal adipose tissue and an increased concentration of adipose tissue cholesterol. Consumption of a high (2% w/w) cholesterol diet resulted in a further increase in the concentration of cholesterol and a further decrease in epididymal fat pad weight in PPARalpha-null mice, but had no effect in the wild-type. These reductions in fat pad weight were associated with an increase in hepatic triacylglycerol content, indicating that both PPARalpha-deficiency and cholesterol altered the distribution of triacylglycerol in the body. Adipose tissue de novo lipogenesis was increased in PPARalpha-null mice and was further enhanced when they were fed a cholesterol-rich diet; no such effect was observed in the wild-type mice. The increased lipogenesis in the chow-fed PPARalpha-null mice was accompanied paradoxically by lower mRNA expression of SREBP-1c and its target genes, acetyl-CoA carboxylase and fatty acid synthase. Consumption of a high-cholesterol diet increased the mRNA expression of these genes in the PPARalpha-deficient mice but not in the wild-type. De novo cholesterol synthesis was not detectable in the adipose tissue of either genotype despite a relatively high expression of the mRNA's encoding SREBP-2 and 3-hydroxy-3-methylglutaryl Coenzyme A reductase. The mRNA expression of these genes and of the LDL-receptor in adipose tissue of the PPARalpha-deficient mice was lower than that of the wild-type and was not downregulated by cholesterol feeding. The results suggest that PPARalpha plays a role in adipose tissue cholesterol and triacylglycerol homeostasis and prevents cholesterol-mediated changes in de novo lipogenesis.  相似文献   

3.
White adipose tissue (WAT) has been examined to determine whether the gene encoding metallothionein (MT), a low-molecular-weight stress response protein, is expressed in the tissue and whether MT may be a secretory product of adipocytes. The MT-1 gene was expressed in epididymal WAT, with MT-1 mRNA levels being similar in lean and obese (ob/ob) mice. MT-1 mRNA was found in each of the main adipose tissue sites (epididymal, perirenal, omental, subcutaneous), and there was no major difference between depots. Separation of adipocytes from the stromal-vascular fraction of WAT indicated that the MT gene (MT-1 and MT-2) was expressed in adipocytes themselves. Treatment of mice with zinc had no effect on MT-1 mRNA levels in WAT, despite strong induction of MT-1 expression in the liver. MT-1 gene expression in WAT was also unaltered by fasting or norepinephrine. However, administration of a beta(3)-adrenoceptor agonist, BRL-35153A, led to a significant increase in MT-1 mRNA. On differentiation of fibroblastic preadipocytes to adipocytes in primary culture, MT was detected in the medium, suggesting that the protein may be secreted from WAT. It is concluded that WAT may be a significant site of MT production; within adipocytes, MT could play an antioxidant role in protecting fatty acids from damage.  相似文献   

4.
Recent evidence has been presented that expression of lipogenic genes is downregulated in adipose tissue of ob/ob mice as well as in human obesity, suggesting a functionally lipoatrophic state. Using (2)H(2)O labeling, we measured three adipose tissue biosynthetic processes concurrently: triglyceride (TG) synthesis, palmitate de novo lipogenesis (DNL), and cell proliferation (adipogenesis). To determine the effect of the ob/ob mutation (leptin deficiency) on these parameters, adipose dynamics were compared in ob/ob, leptin-treated ob/ob, food-restricted ob/ob, and lean control mice. Adipose tissue fluxes for TG synthesis, de novo lipogenesis (DNL), and adipogenesis were dramatically increased in ob/ob mice compared with lean controls. Low-dose leptin treatment (2 microg/day) via miniosmotic pump suppressed all fluxes to control levels or below. Food restriction in ob/ob mice only modestly reduced DNL, with no change in TG synthesis or adipogenesis. Measurement of mRNA levels in age-matched ob/ob mice showed generally normal expression levels for most of the selected lipid anabolic genes, and leptin treatment had, with few exceptions, only modest effects on their expression. We conclude that leptin deficiency per se results in marked elevations in flux through diverse lipid anabolic pathways in adipose tissue (DNL, TG synthesis, and cell proliferation), independent of food intake, but that gene expression fails to reflect these changes in flux.  相似文献   

5.
6.
An ORF2 gene located upstream of the cellulose synthase (bcs) operon of Acetobacter xylinum BPR2001 was disrupted and a mutant (M2-2) was constructed. In static cultivation, the parent strain produced a tough, colorless, and insoluble cellulose pellicle, whereas M2-2 culture produced a thin, yellow, and fragile pellicle. The results of X-ray diffraction and 13C solid-state NMR indicated that the product of M2-2 is a mixture of cellulose I, cellulose II, and amorphous cellulose. The cellulose I to cellulose II ratio of the mixture was evaluated from the signal areas of C6 to be about 1:2. Electron microscopy revealed that the product of M2-2 included ribbon-like cellulose and irregularly shaped particles attached to the ribbons. On the other hand, the mutant complemented with plasmid pSA-ORF2/k containing the ORF2 gene and BPR2001 produced only cellulose I. These results indicate that the ORF2 gene is involved in the production and crystallization of cellulose I microfibrils by this microorganism.  相似文献   

7.
To understand the molecular mechanisms responsible for the sepsis-induced enhanced glucose uptake, we have examined the levels of GLUT4 and GLUT1 mRNA and protein in the adipose tissue of septic animals. Rats were challenged with a nonlethal septic insult where euglycemia was maintained and hexose uptake in adipose tissue was markedly elevated. Northern blot analysis of total RNA isolated from epididymal fat pads indicated differential regulation of the mRNA content for the two transporters: GLUT1 mRNA was increased 2.6 to 4.6-fold, while GLUT4 mRNA was decreased by 2.5 to 2.9-fold. Despite the difference in mRNA levels, both GLUT1 and GLUT4 protein were down regulated in plasma membranes (40% and 25%, respectively) and microsomal membranes (42% and 25%, respectively) of the septic animals. The increased glucose uptake cannot be explained by the membrane content of GLUT1 and GLUT4 protein. Thus, during hypermetabolic sepsis, increased glucose utilization by adipose tissue is dependent on alternative processes.  相似文献   

8.
The activities of alanine-, aspartate- and branched-chain amino-acid transaminases, glutamine synthetase, glutamate dehydrogenase and adenylate deaminase in white adipose tissue of adult male rats have been determined in animals submitted to 12-h cold exposure (4 degrees C) or to 24-h food deprivation. Starvation resulted in small changes in glutamate dehydrogenase and alanine transaminase when expressed per unit of protein weight, inducing an increase in branched-chain amino-acid transaminase and glutamine synthetase. Cold exposure showed the same effects as starvation with respect to glutamate dehydrogenase and alanine transaminase, but induced increases in glutamine synthetase and aspartate transaminase. It is concluded that starvation increases the handling of some amino acids by white adipose tissue and the detoxification of the ammonia thus evolved. The changes observed suggest a different pattern of amino-acid metabolism enzyme changes with either cold or starvation.  相似文献   

9.
1. In organ cultures of mammary tissue from C3H mice we observed increases in the activity of glucose 6-phosphate dehydrogenase similar to that occurring at parturition. 2. In 22hr. cultures of tissue from late-pregnant mice insulin was required for the increases, but the further addition of prolactin, corticosterone and certain other hormones had no effect. The rise in activity occurred over the second half of the culture period. 3. Results from culture of adipose tissue, and mammary tissue rich in adipose tissue, strongly suggest that the rise in activity occurs in mammary parenchymal rather than adipose cells. 4. In 45hr. cultures prolactin prevented a fall in enzyme activity between 22hr. and 45hr. If the medium contained serum the activity at 22hr. was unaffected, but it continued to rise up to 45hr., and prolactin then had no effect. 5. The enzyme also increased in activity in cultures of mammary tissue from mid-pregnant mice. Insulin was again required, the activity was higher at 45hr. than at 24hr. and prolactin increased the activities at both these times. 6. Actinomycin D, cycloheximide and puromycin at low concentration in the media of 22hr. cultures all prevented increases in enzyme activity. Hydroxyurea at a concentration that inhibited the incorporation of [(3)H]thymidine into DNA by 92% had little effect. 7. Actinomycin D and cycloheximide largely failed to prevent the rise in enzyme activity if added after 3.5hr. and 12hr. respectively. Hence all essential RNA and protein synthesis appears to be finished by 3.5hr. and 12hr., although most of the increase in enzyme activity occurs gradually between 12hr. and 22hr. 8. We suggest that the increases in enzyme activity, both in culture and in the living animal at parturition, are induced by an influx of glucose that is restrained during pregnancy by the growth-hormone-like action of placental lactogen.  相似文献   

10.
An approach to the mechanism which may govern the behaviour of biological compartmentalized systems is presented. Artificial enzyme membranes with immobilized glucose oxidase, invertase or hexokinase were used to separate two compartments of a specially designed diffusion cell. Asymmetry in volume, hydrodynamic conditions and enzyme location was purposely chosen in order to create situations which could not be obtained with an enzyme free in solution, and was then used to tentatively mimic situations existing in vivo. Experiments were conducted and a translocation effect of H2O2, glucose and glucose 6-phosphate was obtained. A theoretical analysis taking into account the different identified parameters of the system was elaborated.  相似文献   

11.
In the present study we intended to determine how BAT (brown adipose tissue) maintained thermogenesis under treatment with OE (oleoyl-oestrone), a powerful slimming hormone that sheds off body lipid but maintains the metabolic rate. Overweight male rats were subjected to daily gavages of 10 nmol/g of OE or vehicle (control) for 10 days. A PF (pair-fed) vehicle-receiving group was used to discount the effects attributable to energy availability limitation. Interscapular BAT mass, lipid, DNA, mRNA and the RT-PCR (real-time PCR) expression of lipid and energy metabolism genes for enzymes and regulatory proteins were measured. BAT mass and lipid were decreased in OE and PF, with the latter showing a marked reduction in tissue mRNA. Maintenance of perilipin gene expression in PF and OE rats despite the loss of lipid suggests the preservation of the vacuolar interactive surface, a critical factor for thermogenic responsiveness. OE and, to a lesser extent, PF maintained the expression of genes controlling lipolysis and fatty acid oxidation, but markedly decreased the expression of those genes involved in lipogenic and acyl-glycerol synthesis. OE did not affect UCP1 (uncoupling protein 1) (decreased in PF), beta(3) adrenergic receptors or hormone-sensitive lipase gene mRNAs, which may translate in maintaining a full thermogenic system potential. OE rats were able to maintain a less energetically stressed BAT (probably through glucose utilization) than PF rats. These changes were not paralleled in PF rats, in which lower thermogenesis and glucose preservation resulted in a heavier toll on internal fat stores. Thus the mechanism of action of OE is more complex and tissue-specific than previously assumed.  相似文献   

12.
In studies of glucose oxidation in white retroperitoneal adipose tissue of BIO 14.6 dystrophic and F1B normal hamsters aged 55-67 and 368-379 days, no difference was found in the basal state of radiolabelled 14CO2 production using either D-[6-14C]glucose or D-[1-14C]glucose. When C6-labelled glucose was used, insulin induced a slightly greater increase in glucose oxidation in dystrophic adipose tissue at both ages. When C1-labelled glucose was used, insulin enhanced glucose oxidation in dystrophic tissue more than twice normal in tissues from young animals and five times normal in tissues from the old ones. The increase in oxidation with D-[1-14C]glucose likely represents enhanced activity of the pentose phosphate pathway, which has also been observed in certain tissues of other animals with inherited skeletal-muscle degeneration. The change can probably be classified as being compensatory, an attempt by tissues to maintain functional integrity.  相似文献   

13.
1. Brown adipose tissue (BAT) and liver lipogenesis in vivo estimated by using 3H2O as tracer was very low and did not change significantly between 10 and 20 days after birth. Lipogenesis increased dramatically in both tissues by weaning at 20 days, peaking between 25 and 30 days of age. Since that time the rate of fatty acid synthesis in BAT decreased gradually to reach adult level after 2 months, whereas in the liver there was a sharp decrease of lipogenesis. 2. The activities of fatty acid synthase, citrate cleavage enzyme, malic enzyme and glucose 6-phosphate dehydrogenase essentially followed a similar course of developmental changes as lipogenesis. 3. In contrast to the enzymes listed above NADP-linked isocitrate dehydrogenase remained unaltered over the period studied, whereas lactate and malate dehydrogenases exhibited very high activity at 10 days after birth and from then decreased to reach adult level at the age of about 20 days. 4. The data obtained indicate that no substantial differences could be detected in the developmental pattern of lipogenesis and lipogenic enzyme activities between BAT and liver up to 30 days of age but after this time these processes were not co-ordinated in both tissues. Beyond this time the BAT was characterized by a much higher rate of lipogenesis than the liver. 5. The results are discussed in terms of the nutrient changes and the relationship between thermogenesis and lipogenesis in BAT.  相似文献   

14.
The state of activation of glycogen synthase enhanced by glucose, other sugars and gluconeogenic precursors shows a strong positive correlation with the intracellular concentrations of glucose 6-P when ATP concentrations remain constant. The concentrations of glucose 6-P achieved upon incubation of hepatocytes with glucose plus mannoheptulose, an inhibitor of glucokinase and hexokinase, were lower than those found when the incubation was carried out with glucose alone. Under these conditions, in keeping with the decrease in glucose 6-P, the activation of glycogen synthase by glucose was also impaired. On the other hand the inactivation of glycogen phosphorylase was not altered in the presence of mannoheptulose.  相似文献   

15.
16.
Summary Previous studies examining the regulation of the synthesis of G6PDH and 6PGDH in rat liver and adipose tissue have focused on the induction of these enzymes by different diets and some hormones. In rat liver these enzymatic activities seem to be regulated by a mechanism involving changes in the NADPH requirements. In this paper we have studied the effect of changes in the flux through different NADPH-consuming pathways on G6PDH and 6PGDH levels in adipose tissue and on the NADPH/NADP ratio. The results show that: I) an increase in the consumption of NADPH, caused by the activation of either fatty acid synthesis or detoxification systems which consume NADPH, is paralleled by an increase in the levels of these enzymes; II) when the increase in consumption of NADPH is prevented, the G6PDH and 6PGDH levels do not change.Abbreviations G6PDH Glucose-6-Phosphate Dehydrogenase - 6PGDH 6-Phosphogluconate Dehydrogenase - GR Glutathione Reductase - ME Malic Enzyme - tBHP t-Butyl Hydroperoxide - NF Nitrofurantoin - CumOOH Cumene Hydroperoxide  相似文献   

17.
Lipogenic response to feeding was measured in vivo in liver, epididymal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), during the development of obesity in gold-thioglucose (GTG)-injected mice. The fatty acid synthesis after a meal was higher in all tissues of GTG-treated mice on a total-tissue basis, but the magnitude of this increase varied, depending on the tissue and the time after the initiation of obesity. Lipogenesis in BAT from GTG mice was double that of control mice for the first 2 weeks, but subsequently decreased to near control values. In WAT, lipogenesis after feeding was highest 2-4 weeks after GTG injection, and in liver, lipid synthesis in fed obese mice was greatest at 7-12 weeks after the induction of obesity. The post-prandial insulin concentration was increased after 2 weeks of obesity, and serum glucose concentration was higher in fed obese mice after 4 weeks. These results indicate that increased lipogenesis in GTG-injected mice may be due to an increase in insulin concentration after feeding and that insulin resistance (assessed by lipogenic response to insulin release) is apparent in BAT before WAT and liver.  相似文献   

18.
19.
This work was designed to study the effect of different lipid sources on the activities of lipoprotein lipase and lipogenic enzymes in adipose tissue from rats fedad libitum or energy-controlled diets. Male Wistar rats were fed diets containing 40% of energy as fat (olive oil, sunflower oil, palm oil or beef tallow), for 4 wk. Underad libitum feeding no differences were found among dietary fat groups in final body weight, adipose tissue weights and total body fat. Under energy-controlled feeding, despite isoenergetic intake, rats fed the beef tallow diet gained significantly less weight than rats fed the other three diets. Beef tallow fed rats showed the lowest values for adipose tissue weights and total body fat. When rats had free access to food no effect of dietary lipid source on lipogenic enzyme activities was found. In contrast, under energy-controlled feeding rats fed the beef tallow diet showed significantly higher activities of glucose-6-phosphate dehydrogenase and fatty acid synthase than rats fed the other three diets. Heparin-releasable lipoprotein lipase activity in perirenal and subcutaneous adipose tissues was not different among rats fed olive oil, safflower oil, palm oil or beef tallow. When comparing both adipose tissue anatomical locations, significantly higher activities were found in subcutaneous than in perirenal fat pad independently of dietary fat. In conclusion, under our experimental protocol, lipogenesis in rat adipose tissue does not seem to be affected by dietary fat type.  相似文献   

20.
When rats were exposed to a cold environment (4 degrees C) for 10 days, tissue glucose utilization was increased in brown adipose tissue (BAT), a tissue specified for non-shivering thermogenesis, but not in skeletal muscle. Cold exposure also caused an increase in the amount of GLUT4, an isoform of glucose transporters expressed in insulin-sensitive tissues, in parallel with an increased cellular level of GLUT4 mRNA. In contrast to BAT, no significant effect of cold exposure was found in skeletal muscle. The results suggest the cold-induced increase in glucose utilization by BAT is attributable, at least in part, to the increased expression of GLUT4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号