首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Circadian rhythms are daily cycles of physiology and behavior that are driven by an endogenous oscillator with a period of approximately one day. In mammals, the hypothalamic suprachiasmatic nuclei are our principal circadian oscillators which influences peripheral tissue clocks via endocrine, autonomic and behavioral cues, and other brain regions and most peripheral tissues contain circadian clocks as well. The circadian molecular machinery comprises a group of circadian genes, namely Clock, Bmal1, Per1, Per2, Per3, Cry1 and Cry2. These circadian genes drive endogenous oscillations which promote rhythmically expression of downstream genes and thereby physiological and behavioral processes. Disruptions in circadian homeostasis have pronounced impact on physiological functioning, overall health and disease susceptibility. This review introduces the general profile of circadian gene expression and tissue-specific circadian regulation, highlights the connection between the circadian rhythms and physiological processes, and discusses the role of circadian rhythms in human disease.  相似文献   

4.
5.
6.
7.
8.
Food intake profoundly affects systemic physiology. A large body of evidence has indicated a link between food intake and circadian rhythms, and ~24‐h cycles are deemed essential for adapting internal homeostasis to the external environment. Circadian rhythms are controlled by the biological clock, a molecular system remarkably conserved throughout evolution. The circadian clock controls the cyclic expression of numerous genes, a regulatory program common to all mammalian cells, which may lead to various metabolic and physiological disturbances if hindered. Although the circadian clock regulates multiple metabolic pathways, metabolic states also provide feedback on the molecular clock. Therefore, a remarkable feature is reprogramming by nutritional challenges, such as a high‐fat diet, fasting, ketogenic diet, and caloric restriction. In addition, various factors such as energy balance, histone modifications, and nuclear receptor activity are involved in the remodeling of the clock. Herein, we review the interaction of dietary components with the circadian system and illustrate the relationships linking the molecular clock to metabolism and critical roles in the remodeling process.  相似文献   

9.
10.
11.
12.
13.
14.
Circadian rhythms have been observed in innumerable physiological processes in most of organisms. Recent molecular and genetic studies on circadian clocks in many organisms have identified and characterized several molecular regulatory factors that contribute to generation of such rhythms. The cyanobacterium is the simplest organism known to harbor circadian clocks, and it has become one of most successful model organisms for circadian biology. In this review, we will briefly summarize physiological observations and consideration of circadian rhythms in cyanobacteria, molecular genetics of the clock using Synechococcus, and current knowledge of the input and output pathways that support the cellular circadian system. Finally, we will document some current problems in the studies on the cyanobacterial circadian clock.  相似文献   

15.
The circadian timing system plays a key role in orchestrating lipid metabolism. In concert with the solar cycle, the circadian system ensures that daily rhythms in lipid absorption, storage, and transport are temporally coordinated with rest-activity and feeding cycles. At the cellular level, genes involved in lipid synthesis and fatty acid oxidation are rhythmically activated and repressed by core clock proteins in a tissue-specific manner. Consequently, loss of clock gene function or misalignment of circadian rhythms with feeding cycles (e.g., in shift work) results in impaired lipid homeostasis. Herein, we review recent progress in circadian rhythms research using lipidomics, i.e., large-scale profiling of lipid metabolites, to characterize circadian-regulated lipid pathways in mammals. In mice, novel regulatory circuits involved in fatty acid metabolism have been identified in adipose tissue, liver, and muscle. Extensive diversity in circadian regulation of plasma lipids has also been revealed in humans using lipidomics and other metabolomics approaches. In future studies, lipidomics platforms will be increasingly used to better understand the effects of genetic variation, shift work, food intake, and drugs on circadian-regulated lipid pathways and metabolic health.  相似文献   

16.
17.
18.
19.
Temperature compensation of their period is one of the canonical characteristics of circadian rhythms, yet it is not restricted to circadian rhythms. This short review summarizes the evidence for ultradian rhythms, with periods from 1 minute to several hours, that likewise display a strict temperature compensation. They have been observed mostly in unicellular organisms in which their constancy of period at different temperatures, as well as under different growth conditions (e.g., medium type, carbon source), indicates a general homeostasis of the period. Up to eight different parameters, including cell division, cell motility, and energy metabolism, were observed to oscillate with the same periodicity and therefore appear to be under the control of the same central pacemaker. This suggests that these ultradian clocks should be considered as cellular timekeeping devices that in fast-growing cells take over temporal control of cellular functions controlled by the circadian clock in slow-growing or nongrowing cells. Being potential relatives of circadian clocks, these ultradian rhythms may serve as model systems in chronobiolog-ical research. Indeed, mutations have been found that affect both circadian and ultradian periods, indicating that the respective oscillators share some mechanistic features. In the haploid yeast Schizosaccharomyces pombe, a number of genes have been identified where mutation, deletion, or overex-pression affect the ultradian clock. Since most of these genes play roles in cellular metabolism and signaling, and mutations have pleiotropic effects, it has to be assumed that the clock is deeply embedded in cellular physiology. It is therefore suggested that mechanisms ensuring temperature compensation and general homeostasis of period are to be sought in a wider context. (Chronobiology International, 14(5), 469–479, 1997)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号