首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fibrinolytic enzyme (SFE1) from Streptomyces sp. XZNUM 00004 was purified to electrophoretic homogeneity with the methods including ammonium sulfate precipitation, polyacrylamide gel, DEAE-Sepharose Fast Flow anion exchange and gel-filtration chromatography. The molecular weight of SFE1 was estimated to be 20 kDa by SDS-PAGE, fibrin zymography, and gel filtration chromatography. The isoelectric point was 4.9. K (m) and V (max) values were 0.96 mg/ml and 181.8 unit/ml, respectively. It was very stable at pH 5.0-8.0 and below 65 °C. The optimum pH for enzyme activity was 7.8. The optimum temperature was 35 °C. The fibrinolytic activity of SFE1 was enhanced by Na(+), K(+), Mn(2+), Mg(2+), Zn(2+) and Co(2+). Conversely, Cu(2+) showed strong inhibition. Furthermore, the fibrinolytic activity was strongly inhibited by PMSF, and partly inhibited by EDTA and EGTA. SFE1 rapidly hydrolyzed the Aα-chain of fibrinogen, followed by the Bβ-chain and finally the γ-chain. The first 15 amino acids of the N-terminal sequence were APITLSQGHVDVVDI. Additionally, SFE1 directly digested fibrin and not by plasminogen activators in vitro. SFE1 can be further developed as a potential candidate for thrombolytic therapy.  相似文献   

2.
An ionically unbound and thermostable polyphenol oxidase (PPO) was extracted from the leaf of Musa paradisiaca. The enzyme was purified 2.54-fold with a total yield of 9.5% by ammonium sulfate precipitation followed by Sephadex G-100 gel filtration chromatography. The purified enzyme exhibited a clear single band on native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS) PAGE. It was found to be monomeric protein with molecular mass of about 40 kD. The zymographic study using crude extract as enzyme source showed a very clear band around 40 kD and a faint band at around 15 kD, which might be isozymes. The enzyme was optimally active at pH 7.0 and 50°C temperature. The enzyme was active in wide range of pH (4.0-9.0) and temperature (30-90°C). From the thermal inactivation studies in the range 60-75°C, the half-life (t(1/2)) values of the enzyme ranged from 17 to 77?min. The inactivation energy (Ea) value of PPO was estimated to be 91.3?kJ mol(-1). It showed higher specificity with catechol (K(m)?=?8?mM) as compared to 4-methylcatechol (K(m)?=?10?mM). Among metal ions and reagents tested, Cu(2+), Fe(2+), Hg(2+), Mn(2+), Ni(2+), protocatechuic acid, and ferrulic acid enhanced the enzyme activity, while K(+), Na(+), Co(2+), kojic acid, ascorbic acid, ethylenediamine tetraacetic acid (EDTA), sodium azide, β-mercaptoethanol, and L-cysteine inhibited the activity of the enzyme.  相似文献   

3.
Recombinant Streptomyces platensis transglutaminase (MtgA) produced by the Streptomyces lividans transformant 25-2 was purified by ammonium sulfate fractionation, followed by CM-Sepharose CL-6B fast flow, and blue-Sepharose fast flow chromatography. The purification factor was ~33.2-fold, and the yield was 65%. The molecular weight of the purified recombinant MtgA was 40.0 KDa as estimated by SDS-PAGE. The optimal pH and the temperature for the enzyme activity were 6.0 and 55 degrees C, respectively, and the enzyme was stable at pH 5.0-6.0 and at temperature 45-55 degrees C. Enzyme activity was not affected by Ca(2+), Li(+), Mn(2+), Na(+), Fe(3+), K(+), Mg(2+), Al(3+), Ba(2+), Co(2+), EDTA, or IAA but was inhibited by Fe(2+), Pb(2+), Zn(2+), Cu(2+), Hg(2+), PCMB, NEM, and PMSF. Optimization of the fermentation medium resulted in a twofold increase of recombinant MtgA activity in both flasks (5.78 U/ml) and 5-l fermenters (5.39 U/ml). Large-scale productions of the recombinant MtgA in a 30-l air-lift fermenter and a 250-l stirred-tank fermenter were fulfilled with maximal activities of 5.36 and 2.54 U/ml, respectively.  相似文献   

4.
1. Isolated outer membranes from rat spleen mitochondria can be stored in liquid N(2) for several weeks without significant loss of ATPase (adenosine triphosphatase) activity. 2. The ATPase reaction has a broad pH optimum centering on neutral pH, with little significant activity above pH9.0 or below pH5.5. 3. A sigmoidal response of the ATPase activity to temperature is observed between 0 and 55 degrees C, with complete inactivation at 60 degrees C. The Arrhenius plot shows that the activation energy above the transition temperature (22 degrees C) (E(a)=144kJ/mol) is one-third of that calculated for below the transition temperature (E'(a)=408kJ/mol). 4. The outer-membrane ATPase (K(m) for MgATP=50mum) is inactive unless Mg(2+) is added, whereas the inner-membrane ATPase (K(m) for ATP=11mum) is active without added Mg(2+) unless the mitochondria have been depleted of all endogenous Mg(2+) (by using ionophore A23187). 5. The substrate for the outer-membrane ATPase is a bivalent metal ion-nucleoside triphosphate complex in which Mg(2+) (K(m)=50mum) can be replaced effectively by Ca(2+) (K(m)=6.7mum) or Mn(2+), and ATP by ITP. Cu(2+), Co(2+), Sr(2+), Ba(2+), Ni(2+), Cd(2+) and Zn(2+) support very little ATP hydrolysis. 6. Univalent metal ions (Na(+), K(+), Rb(+), Cs(+) and NH(4) (+), but not Li(+)) stimulate the MgATPase activity (<10%) at low concentrations (50mm), but, except for K(+), are slightly inhibitory (20-30%) at higher concentrations (500mm). 7. The Mg(2+)-stimulated ATPase activity is significantly inhibited by Cu(2+) (K(i)=90mum), Ni(2+) (K(i)=510mum), Zn(2+) (K(i)=680mum) and Co(2+) (K(i)=1020mum), but not by Mg(2+), Ca(2+), Ba(2+) or Sr(2+). 8. The outer-membrane ATPase is insensitive to the inhibitors oligomycin, NN'-dicyclohexylcarbodiimide, NaN(3), ouabain and thiol-specific reagents. A significant inhibition is observed at high concentrations of AgNO(3) (0.5mm) and NaF (10mm). 9. The activity towards MgATP is competitively inhibited by the product MgADP (K(i)=0.7mm) but not by the second product P(i) or by 5'-AMP.  相似文献   

5.
The synaptic vesicle protein synaptophysin was solubilized from rat brain synaptosomes with a relatively low concentration of Triton X-100 (0.2%) and was highly purified (above 95%) using a rapid single chromatography step on hydroxyapatite/celite resin. Purified synaptophysin was reconstituted into a planar lipid bilayer and the channel activity of synaptophysin was characterized. In asymmetric KCl solutions (cis 300 mM/trans 100 mM), synaptophysin formed a fast-fluctuating channel with a conductance of 414 +/- 13 pS at +60 mV. The open probability of synaptophysin channels was decreased upon depolarization, and channels were found to be cation-selective. Synaptophysin channels showed higher selectivity for K(+) over Cl(-) (P(K(+))/P(Cl(-)) > 8) and preferred K(+) over Li(+), Na(+), Rb(+), Cs(+), or choline(+). The synaptophysin channel is impermeable to Ca(2+), which has no effect on its channel activity. This study is the second demonstration of purified synaptophysin channel activity, but the first biophysical characterization of its channel properties. The availability of large amounts of purified synaptophysin and of its characteristic channel properties might help to establish the role of synaptophysin in synaptic transmission.  相似文献   

6.
2,3-Dihydroxybiphenyl-1,2-dioxygenase plays an important role in the degradation of polychlorinated biphenyls. The gene (BsbphCI) encoding a 2,3-DHBP dioxygenase from Bacillus sp. JF8 is 960 bp. We synthesized a 960 bp BsbphCI gene encoding a 2,3-DHBP dioxygenase derived from Bacillus sp. JF8 and expressed it in Escherichiacoli. The recombinant protein was about 36 kDa, confirmed by SDS-PAGE. The concentration of the purified protein was about 1.8 mg/mL. With 2,3-DHBP as a substrate, the optimal temperature for enzyme activity at pH 8.5 was 50 °C. The optimal pH for the 2,3-DHBP dioxygenase was 8.5. The enzyme retained 33% activity after heating at 60 °C for 60 min. We found that Cu(2+), K(+), Zn(2+), Mg(2+), Ni(2+), Co(2+), and Cd(2+) activated the enzyme. However, Ca(2+), Fe(2+), Li(+), and Cr(3+) inhibited it. Enzyme activity was reduced by exposure to H(2)O(2), SDS, and KI. The results of HPLC indicated that the transgenic E. coli strain with the BsbphCI gene degraded 2,3-DHBP more quickly than the wild type strain.  相似文献   

7.
Schizophyllum commune produces phytase through solid-state fermentation using different agroindustrial residues. After optimization of phytase production, a maximal level of phytase (113.7 Units/gram of dry substrate) was obtained in wheat bran based medium containing 5% sucrose, 50% humidity, 7.5% of biomass at 33 °C pH 7.0 during 72 h and a 285% improvement in enzyme titre was achieved. Analysis of fermentation parameters profile for phytase production showed the highest productivity (1.466 Units/gram of dry substrate/hour) in 66 h of fermentation. Phytase has an optimal pH of 5.0, an optimal temperature of 50 °C and K (m) and V (max) values of 0.16 mM and 1.85 μmol mL(-1) min(-1), respectively. Phytase activity was stimulated essentially in the presence of K(+), Ca(2+), Mg(2+), Mn(2+), Zn(2+), Cu(2+), Fe(2+), Fe(3+), Co(2+), Ni(2+), acetate and citrate at concentrations of 1 mM. Phytase had the best shelf life when stored at a cooling temperature, maintaining 38% of its initial activity after 112 days of storage, and still presenting enzymatic activity after 125 days of storage. Stability studies of phytase performed in aqueous enzyme extracts showed satisfactory results using polyethyleneglycol 3350, carboxymethylcellulose, methylparaben, mannitol and benzoic acid in concentrations of 0.25, 0.025, 0.025, 0.25, and 0.0025%, respectively. PEG 3350 was shown to be the best stabilizing agent, resulting in 109% of phytase activity from the initial crude extract remaining activity in after 90 days.  相似文献   

8.
To better comprehend the role of gill ion regulatory mechanisms, the modulation by Na(+), K(+), NH(4)(+) and ATP of (Na(+), K(+))-ATPase activity was examined in a posterior gill microsomal fraction from the hermit crab, Clibanarius vittatus. Under saturating Mg(2+), Na(+) and K(+) concentrations, two well-defined ATP hydrolyzing sites were revealed. ATP was hydrolyzed at the high-affinity sites at a maximum rate of V=19.1+/-0.8 U mg(-1) and K(0.5)=63.8+/-2.9 nmol L(-1), obeying cooperative kinetics (n(H)=1.9); at the low-affinity sites, hydrolysis obeyed Michaelis-Menten kinetics with K(M)=44.1+/-2.6 mumol L(-1) and V=123.5+/-6.1 U mg(-1). Stimulation by Na(+) (V=149.0+/-7.4 U mg(-1); K(M)=7.4+/-0.4 mmol L(-1)), Mg(2+) (V=132.0+/-5.3 U mg(-1); K(0.5)=0.36+/-0.02 mmol L(-1)), NH(4)(+) (V=245.6+/-9.8 U mg(-1); K(M)=4.5+/-0.2 mmol L(-1)) and K(+) (V=140.0+/-4.9 U mg(-1); K(M)=1.5+/-0.1 mmol L(-1)) followed a single saturation curve and, except for Mg(2+), obeyed Michaelis-Menten kinetics. Under optimal ionic conditions, but in the absence of NH(4)(+), ouabain (K(I)=117.3+/-3.5 mumol L(-1)) and orthovanadate inhibited up to 67% of the ATPase activity. The inhibition studies performed suggest the presence of F(0)F(1), V- and P-ATPases, but not Na(+)-, K(+)- or Ca(2+)-ATPases as contaminants in the gill microsomal preparation. (Na(+), K(+))-ATPase activity was synergistically modulated by NH(4)(+) and K(+). At 20 mmol L(-1) K(+), a maximum rate of V=290.8+/-14.5 U mg(-1) was seen as NH(4)(+) concentration was increased up to 50 mmol L(-1). However, at fixed NH(4)(+) concentrations, no additional stimulation was found for increasing K(+) concentrations (V=135.2+/-4.1 U mg(-1) and V=236.6+/-9.5 U mg(-1) and for 10 and 30 mmol L(-1) NH(4)(+), respectively). This is the first report to detail ionic modulation of gill (Na(+), K(+))-ATPase in C. vittatus, revealing an asymmetrical, synergistic stimulation of the enzyme by K(+) and NH(4)(+), as yet undescribed for other (Na(+), K(+))-ATPases, and should provide a better understanding of NH(4)(+) excretion in pagurid crabs.  相似文献   

9.
1. Washed-cell suspensions of Escherichia coli, incubated at the optimum pH of 6.4 and with a saturating substrate concentration of approx. 10mm, convert dl-1-aminopropan-2-ol into aminoacetone at a rate of approx. 4.0mmumoles/mg. dry wt. of cells/min. at 30 degrees . 2. Mg(2+), Mn(2+), Co(2+), Zn(2+), Ca(2+), K(+) and NH(4) (+), as sulphates, and EDTA have no effect on this rate, although Cu(2+) inhibits and Fe(2+) activates to some extent. 3. Conditions of growth markedly affect the rate of aminoacetone production by cell suspensions. 4. Dialysed cell-free extracts of E. coli exhibit 1-aminopropan-2-ol-dehydrogenase activity, the enzyme having optimum activity at pH7.0, a requirement for NAD(+) and K(+), and a K(m) for the amino alcohol substrate of 0.8mm, calculated for a single enantiomorph. 5. Under optimum conditions 1-aminopropan-2-ol dehydrogenase forms aminoacetone at rate of approx. 3.0mmumoles/mg. of protein/min. at 37 degrees . The enzyme is only slightly inhibited by dl-3-hydroxybutyrate and dl-2-hydroxy-2-phenylethyl-amine. 6. l-Threonine-dehydrogenase activity is exhibited by both whole cells and cell-free extracts. Whole cells produce aminoacetone from l-threonine more slowly than they do from dl-1-aminopropan-2-ol, whereas the situation is reversed in cell-free extracts. Both kinetic evidence, and the fact that synthesis of 1-aminopropan-2-ol dehydrogenase, but not of threonine dehydrogenase, is repressed by compounds such as glucose and pyruvate, provide evidence that the amino alcohol is oxidized by a specific enyme. 7. The metabolic role of 1-aminopropan-2-ol dehydrogenase is discussed.  相似文献   

10.
Based on the following observations we propose that the cytoplasmic loop between trans-membrane segments M6 and M7 (L6/7) of the alpha subunit of Na(+),K(+)-ATPase acts as an entrance port for Na(+) and K(+) ions. 1) In defined conditions chymotrypsin specifically cleaves L6/7 in the M5/M6 fragment of 19-kDa membranes, produced by extensive proteolysis of Na(+),K(+)-ATPase, and in parallel inactivates Rb(+) occlusion. 2) Dissociation of the M5/M6 fragment from 19-kDa membranes is prevented either by occluded cations or by competitive antagonists such as Ca(2+), Mg(2+), La(3+), p-xylylene bisguanidinium and m-xylylene bisguanidinium, or 1-bromo-2,4, 6-tris(methylisothiouronium)benzene and 1,3-dibromo-2,4,6-tris (methylisothiouronium)benzene (Br(2)-TITU(3+)). 3) Ca(2+) ions raise electrophoretic mobility of the M5/M6 fragment but not that of the other fragments of the alpha subunit. It appears that negatively charged residues in L6/7 recognize either Na(+) or K(+) ions or the competitive cation antagonists. Na(+) and K(+) ions are then occluded within trans-membrane segments and can be transported, whereas the cation antagonists are not occluded and block transport at the entrance port. The cytoplasmic segment of the beta subunit appears to be close to or contributes to the entrance port, as inferred from the following observations. 1) Specific chymotryptic cleavage of the 16-kDa fragment of the beta subunit to 15-kDa at 20 degrees C (Shainskaya, A., and Karlish, S. J. D. (1996) J. Biol. Chem. 271, 10309-10316) markedly reduces affinity for Br(2)-TITU(3+) and for Na(+) ions, detected by Na(+) occlusion assays or electrogenic Na(+) binding, whereas Rb(+) occlusion is unchanged. 2) Na(+) ions specifically protect the 16-kDa fragment against this chymotryptic cleavage.  相似文献   

11.
The ability of Li(+), Na(+), K(+), Rb(+), Cs(+), Mg(2+), Ca(2+), Sr(2+), Ba(2+), Cu(2+), Cd(2+), Al(3+), V(4+), Hg(2+), Pd(2+), Au(3+), and Pt(4+) to provoke liquid crystalline (LC) phases in high molecular weight DNA was investigated. The alkali and alkaline earth metal ions provoked typical cholesteric/columnar structures, whereas transition metal ions precipitated DNA into solid/translucent gel-like aggregates. Heavy metal ions reduced viscosity of DNA solution, disrupting rigid, rod-like DNA structure necessary for LC textures. Three-layer quantum mechanical-molecular mechanical (QM/MM) studies of Li(+), Na(+), K(+), Mg(2+), and Ca(2+) binding DNA fragment suggested several possible binding modes of these ions to the phosphate groups. The dianion mode of metal binding, involving the phosphate groups of both strands of DNA, allowed for higher DNA binding affinity of the alkaline earth metal ions. These results have implications in understanding the biological role of metal ions and developing DNA-based sensors and nanoelectronic devices.  相似文献   

12.
We have cloned, sequenced, and expressed a human cDNA encoding 1-d-myo-inositol-3-phosphate (MIP) synthase (hINO1). The encoded 62-kDa human enzyme converted d-glucose 6-phosphate to 1-d-myo-inositol 3-phosphate, the rate-limiting step for de novo inositol biosynthesis. Activity of the recombinant human MIP synthase purified from Escherichia coli was optimal at pH 8.0 at 37 degrees C and exhibited K(m) values of 0.57 mm and 8 microm for glucose 6-phosphate and NAD(+), respectively. NH(4)(+) and K(+) were better activators than other cations tested (Na(+), Li(+), Mg(2+), Mn(2+)), and Zn(2+) strongly inhibited activity. Expression of the protein in the yeast ino1Delta mutant lacking MIP synthase (ino1Delta/hINO1) complemented the inositol auxotrophy of the mutant and led to inositol excretion. MIP synthase activity and intracellular inositol were decreased about 35 and 25%, respectively, when ino1Delta/hINO1 was grown in the presence of a therapeutically relevant concentration of the anti-bipolar drug valproate (0.6 mm). However, in vitro activity of purified MIP synthase was not inhibited by valproate at this concentration, suggesting that inhibition by the drug is indirect. Because inositol metabolism may play a key role in the etiology and treatment of bipolar illness, functional conservation of the key enzyme in inositol biosynthesis underscores the power of the yeast model in studies of this disorder.  相似文献   

13.
The heavy metals silver, gold, and mercury can strongly inhibit aquaporin-mediated water flow across plant cell membranes, but critical examinations of their side effects are rare. Here, the short-lived radiotracer (42)K is used to demonstrate that these metals, especially silver, profoundly change potassium homeostasis in roots of intact barley (Hordeum vulgare L.) plants, by altering unidirectional K(+) fluxes. Doses as low as 5 μM AgNO(3) rapidly reduced K(+) influx to 5% that of controls, and brought about pronounced and immediate increases in K(+) efflux, while higher doses of Au(3+) and Hg(2+) were required to produce similar responses. Reduced influx and enhanced efflux of K(+) resulted in a net loss of >40% of root tissue K(+) during a 15 min application of 500 μM AgNO(3), comprising the entire cytosolic potassium pool and about a third of the vacuolar pool. Silver also brought about major losses of UV-absorbing compounds, total electrolytes, and NH(4)(+). Co-application, with silver, of the channel blockers Cs(+), TEA(+), or Ca(2+), did not affect the enhanced efflux, ruling out the involvement of outwardly rectifying ion channels. Taken together with an examination of propidium iodide staining under confocal microscopy, the results indicate that silver ions affect K(+) homeostasis by directly inhibiting K(+) influx at lower concentrations, and indirectly inhibiting K(+) influx and enhancing K(+) efflux, via membrane destruction, at higher concentrations. Ni(2+), Cd(2+), and Pb(2+), three heavy metals not generally known to affect aquaporins, did not enhance K(+) efflux or cause propidium iodide incorporation. The study reveals strong and previously unknown effects of major aquaporin inhibitors and recommends caution in their application.  相似文献   

14.
The yeast Rhodotorula glutinis was examined for its ability to remove Pb(2+) from aqueous solution. Within 10 min of contact, Pb(2+) sorption reached nearly 80% of the total Pb(2+) sorption. The optimum initial pH value for removal of Pb(2+ )was 4.5-5.0. The percentage sorption increased steeply with the biomass concentration up to 2 g/l and thereafter remained more or less constant. Temperature in the range 15-45 degrees C did not show any significant difference in Pb(2+ )sorption by R. glutinis. The light metal ions such as Na(+), K(+), Ca(2+), and Mg(2+) did not significantly interfere with the binding. The Langmuir sorption model provided a good fit throughout the concentration range. The maximum Pb(2+ )sorption capacity q(max) and Langmuir constant b were 73.5 mg/g of biomass and 0.02 l/mg, respectively. The mechanism of Pb(2+) removal by R. glutinis involved biosorption by direct biosorptive interaction with the biomass through ion exchange and precipitation by phosphate released from the biomass.  相似文献   

15.
Expansins and coleoptile elongation in wheat   总被引:2,自引:0,他引:2  
Gao Q  Zhao M  Li F  Guo Q  Xing S  Wang W 《Protoplasma》2008,233(1-2):73-81
Expansins are now generally accepted to be the key regulators of wall extension during plant growth. The aim of this study was to characterize expansins in wheat coleoptiles and determine their roles in regulating cell growth. Endogenous and reconstituted wall extension activities of wheat coleoptiles were measured. The identification of beta-expansins was confirmed on the basis of expansin activity, immunoblot analysis, and beta-expansin inhibition. Expansin activities of wheat coleoptiles were shown to be sensitive to pH and a number of exogenously applied factors, and their optimum pH range was found to be 4.0 to 4.5, close to that of alpha-expansins. They were induced by dithiothreitol, K(+), and Mg(2+), but inhibited by Zn(2+), Cu(2+), Al(3+), and Ca(2+), similar to those found in cucumber hypocotyls. An expansin antibody raised against TaEXPB23, a vegetative expansin of the beta-expansin family, greatly inhibited acid-induced extension of native wheat coleoptiles and only one protein band was recognized in Western blot experiments, suggesting that beta-expansins are the main members affecting cell wall extension of wheat coleoptiles. The growth of wheat coleoptiles was closely related to the activity and expression of expansins. In conclusion, our results suggest the presence of expansins in wheat coleoptiles, and it is possible that most of them are members of the beta-expansin family, but are not group 1 grass pollen allergens. The growth of wheat coleoptiles is intimately correlated with expansin expression, in particularly that of beta-expansins.  相似文献   

16.
The purified glucoamylase of the thermophilic mold Thermomucor indicae-seudaticaehad a molecular mass of 42 kDa with a pI of 8.2. It is a glycoprotein with 9-10.5% carbohydrate content, which acted optimally at 60 degrees C and pH 7.0, with a t(1/2) of 12 h at 60 degrees C and 7 h at 80 degrees C. Its experimental activation energy was 43 KJ mol(-1) with temperature quotient (Q(10)) of 1.35, while the values predicted by response surface methodology (RSM) were 43 KJ mol(-1) and 1.28, respectively. The enzyme hydrolyzed soluble starch at 50 degrees C (K(m) 0.50 mg mL(-1) and V(max) 109 micromol mg(-1) protein min(-1)) and at 60 degrees C (K(m) 0.40 and V(max) 143 micromol mg(-1) protein min(-1)). The experimental K(m) and V(max) values are in agreement with the predicted values at 50 degrees C (K(m) 0.45 mg mL(-1) and V(max) 111.11 micromol mg(-1) protein min(-1)) and at 60 degrees C (K(m) 0.36 mg mL(-1)and V(max) 142.85 micromol mg(-1) protein min(-1)). An Arrhenius plot indicated thermal activation up to 60 degrees C, and thereafter, inactivation. The enzyme was strongly stimulated by Co(2+), Fe(2+), Ag(2+), and Ca(2+), slightly stimulated by Cu(2+) and Mg(2+), and inhibited by Hg(2+), Zn(2+), Ni(2+), and Mn(2+). Among additives, dextran and trehalose slightly enhanced the activity. Glucoamylase activity was inhibited by EDTA, beta-mercaptoethanol, dithiothreitol, and n-bromosuccinimide, and n-ethylmaleimide inhibited its activity completely. This suggested the involvement of tryptophan and cysteine in catalytic activity and the critical role of disulfide linkages in maintaining the conformation of the enzyme. The enzyme hydrolyzed around 82% of soluble starch and 65% of raw starch (K(m) 2.4 mg mL(-1), V(max) 50 micromol mg(-1) protein min(-1)), and it was remarkably insensitive to glucose, suggesting its applicability in starch saccharification.  相似文献   

17.
Photosynthetic characteristics, leaf ionic content, and net fluxes of Na(+), K(+), and Cl(-) were studied in barley (Hordeum vulgare L) plants grown hydroponically at various Na/Ca ratios. Five weeks of moderate (50 mM) or high (100 mM) NaCl stress caused a significant decline in chlorophyll content, chlorophyll fluorescence characteristics, and stomatal conductance (g(s)) in plant leaves grown at low calcium level. Supplemental Ca(2+) enabled normal photochemical efficiency of PSII (F(v)/F(m) around 0.83), restored chlorophyll content to 80-90% of control, but had a much smaller (50% of control) effect on g(s). In experiments on excised leaves, not only Ca(2+), but also other divalent cations (in particular, Ba(2+) and Mg(2+)), significantly ameliorated the otherwise toxic effect of NaCl on leaf photochemistry, thus attributing potential targets for such amelioration to leaf tissues. To study the underlying ionic mechanisms of this process, the MIFE technique was used to measure the kinetics of net Na(+), K(+), and Cl(-) fluxes from salinized barley leaf mesophyll in response to physiological concentrations of Ca(2+), Ba(2+), Mg(2+), and Zn(2+). Addition of 20 mM Na(+) as NaCl or Na(2)SO(4) to the bath caused significant uptake of Na(+) and efflux of K(+). These effects were reversed by adding 1 mM divalent cations to the bath solution, with the relative efficiency Ba(2+)>Zn(2+)=Ca(2+)>Mg(2+). Effect of divalent cations on Na(+) efflux was transient, while their application caused a prolonged shift towards K(+) uptake. This suggests that, in addition to their known ability to block non-selective cation channels (NSCC) responsible for Na(+) entry, divalent cations also control the activity or gating properties of K(+) transporters at the mesophyll cell plasma membrane, thereby assisting in maintaining the high K/Na ratio required for optimal leaf photosynthesis.  相似文献   

18.
Metal-ion complexes of Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ba(2+), Pb(2+), Cd(2+), Hg(2+) with 4,6-O-benzylidene-N-(o-carboxyphenyl)-beta-D-glucopyranosylamine were synthesized and isolated as solid products and characterized by analytical means as well as by spectral techniques, such as, 1H and 13C NMR, FTIR, absorption, FAB mass spectrometry, optical rotation and CD. While the alkali metal ions formed ML type of complexes, the other metal ions formed ML(2) type complexes. Molecular weights of the complexes of Li(+), Na(+) and K(+) were established based on the molecular-ion peaks in the FAB mass spectra. The saccharide portion remains in the beta-anomeric form even after the complexation. The spectral data, as well as the trends observed in the chemical shifts, indicate the interaction preferences between this glycosyl amine and different metal ions, and further reveal certain structural features of the complexes.  相似文献   

19.
Bacteroides amylophilus has growth requirements for Na(+), PO(4) (3-), K(+), and small quantities of Mg(2+). No requirement could be shown for Ca(2+) in media previously found growth-yield-limiting for Bacteroides succinogenes. Deletion of Co(2+), Mn(2+), Cl(-), or SO(4) (2-) did not affect growth. Quantitative studies indicate that Na(+), K(+), and PO(4) (3-) have differing effects on the growth of B. amylophilus. A concentration of sodium and potassium ions affects both growth rate and growth yield, whereas a phosphate concentration markedly affects growth yield, but affects growth rate only slightly, if at all. The sodium requirement of B. amylophilus is absolute. It cannot be replaced by K(+), Li(+), Rb(+), or Cs(+). The latter three monovalent cations are toxic to B. amylophilus if supplied to the organism at Na(+)-replacing concentrations. K(+) is inactive at similar concentrations. The K(+) requirement of B. amylophilus may be satisfied by Rb(+). The concentration of Na(+) required by B. amylophilus for abundant growth suggests that B. amylophilus should be considered a slightly halophilic organism. The results suggest that Na(+) may be a more frequent requirement among terrestial bacteria obtained from relatively low-salt environments than has been previously believed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号