首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

2.
Gross and net nitrogen (N) ammonification and nitrification were measured in soils from an uncut and recently cut upland and peatland conifer stand in northwestern Ontario, Canada. Rates of gross total inorganic N immobilization were similar to gross mineralization, resulting in low net mineralization rates in soils from all four upland and peatland conifer stands. Gross ammonification rates were variable but similar in soils from uncut and cut peatland hollows (18–19mgNkg–1day–1) and upland forest floor soils (14–19mgNkg–1day–1). Gross ammonium ( ) immobilization rates were also variable but similar to ammonification rates. Median gross nitrification rates were within 0–2mgNkg–1day–1 in soils from all four upland and peatland cut and uncut stands, although rates were consistently higher for the soils from the cut stands. Large variability in gross nitrification rates were observed in peatland soils, however the highest gross nitrification rates were measured in saturated peatland soils. Net rates remained low in the soils from all four stands due to high nitrate ( ) immobilization and very fast turnover (<0.2 day). Our results suggest that potential losses may be negated by high immobilization in uncut and cut boreal forest stands. This study reveals the potential for the interaction of N production and consumption processes in regulating N retention in upland and peatland conifer forests, and the resilience of the boreal forest to disturbance.  相似文献   

3.
2010年9月-2011年10月,在山西省灵空山油松和辽东栎混交林样地采取随机区组设计,研究了地表凋落物和氮添加处理对土壤微生物生物量碳、氮和微生物活性的影响.凋落物处理包括:剔除凋落物(N)、叶凋落物加倍(L)、枝果凋落物加倍(B)和混合凋落物加倍(LB);氮添加量分别为0(N0)、5 g· m-2·a-1(N1)和10 g·m-2·a-1(N2).结果表明:剔除地表凋落物且无氮添加时,油松和辽东栎混交林地的土壤有机碳(SOC)含量显著降低,其他试验处理间对SOC的影响无显著差异.土壤微生物生物量碳(MBC)、氮(MBN)及其活性(MR)的变化范围依次为:262.42 ~ 873.16 mg·kg-1、73.55 ~ 173.85 mg·kg-1和2.38~3.68mg·kg-1·d-1.MBC、MBN和MR两两间呈极显著正相关.氮添加对MBC、MBN和MR均无显著影响;凋落物处理对MR影响显著,表现为混合凋落物加倍处理的MR最高,叶凋落物加倍处理次之,剔除凋落物处理最低,而对MBC和MBN无显著影响.凋落物和氮添加处理在整个试验过程中未表现出交互作用.短期的氮添加处理和森林地表凋落物变化对土壤微生物过程的影响有限.  相似文献   

4.
Ambus  Per  Jensen  Erik Steen 《Plant and Soil》1997,197(2):261-270
Managing the crop residue particle size has the potential to affect N conservation in agricultural systems. We investigated the influence of barley (Hordeum vulgare) and pea (Pisum sativum) crop residue particle size on N mineralization and denitrification in two laboratory experiments. Experiment 1: 15N-labelled ground (3 mm) and cut (25 mm) barley residue, and microcrystalline cellulose+glucose were mixed into a sandy loam soil with additional inorganic N. Experiment 2: inorganic15 N and C2H2 were added to soils with barley and pea material after 3, 26, and 109 days for measuring gross N mineralization and denitrification.Net N immobilization over 60 days in Experiment 1 cumulated to 63 mg N kg-1 soil (ground barley), 42 (cut barley), and 122 (cellulose+glucose). More N was seemingly net mineralized from ground barley (3.3 mg N kg-1 soil) than from cut barley (2.7 mg N kg-1 soil). Microbial biomass peaked at day 4 with the barley treatments and at day 14 with the cellulose+glucose whereafter the biomass leveled out at values 79 mg C kg-1 (ground), 104 (cut), and 242 (cellulose+glucose) higher than for the control soil. Microbial growth yields were similar for the two barley treatments, ca. 60 mg C g-1 substrate C added, which was lower than the 142 mg C g-1 C added with cellulose+glucose. This suggests that the 75% (w/w) holocelluloses and sugars contained with the barley material remained physically protected despite grinding. In Experiment 2 gross mineralization on day 3 was 4.8 mg N kg-1 d-1 with ground pea, twice as much as for all other treatments. On day 26 the treatment with ground barley had the greatest gross N mineralization. In static cores ground barley denitrified 11-fold more than did cut barley, whereas denitrification was similar for the two pea treatments. In suspensions denitrification was similar for the two treatments both with barley and pea residue.We conclude that the higher microbial activity associated with the initial decomposition of ground plant material is due to a more intimate plant residue-soil contact. On the long term, grinding the plant residues has no significant effect on N dynamics.  相似文献   

5.
Organic matter turnover in a sagebrush steppe landscape   总被引:8,自引:1,他引:7  
Laboratory incubations of15N-amended soils from a sagebrush steppe in south-central Wyoming indicate that nutrient turnover and availability have complex patterns across the landscape and between microsites. Total and available N and P and microbial C and N were highest in topographic depressions characterized by tall shrub communities. Net and gross N mineralization rates and respiration were also highest in these areas, but microbial efficiencies expressing growth relative to respiration cost were highest in soils of exposed ridgetop sites (prostrate shrub communities). Similar patterns occurred between shrub and intershrub soils, with greater nutrient availability under shrubs, but lower microbial efficiencies under shrubs than between. Surface soils had higher soil nutrient pools and N mineralization rates than subsurface soils, but N and C turnover and microbial efficiencies were lower in those surface soils. All soils decreased in respiration, mineralization, and immobilization rates during the 30-day incubation period, apparently approaching a steady-state substrate use. Soil microbial activity of the high organic matter accumulation areas was apparently more limited by labile substrate.  相似文献   

6.
Castells  Eva  Peñuelas  Josep  Valentine  David W. 《Plant and Soil》2003,251(1):155-166
The effects of the understory shrub Ledum palustre on soil N cycling were studied in a hardwood forest of Interior Alaska. This species releases high concentrations of phenolic compounds from green leaves and decomposing litter by rainfall. Organic and mineral soils sampled underneath L. palustre and at nearby non-Ledum sites were amended with L. palustre litter leachates and incubated at controlled conditions. We aimed to know (i) whether L. palustre presence and litter leachate addition changed net N cycling rates in organic and mineral soils, and (ii) what N cycling processes, including gross N mineralization, N immobilization and gross N nitrification, were affected in association with L. palustre. Our results indicate that N transformation rates in the surface organic horizon were not affected by L. palustre presence or leachate addition. However, mineral soils underneath L. palustre as well as soils amended with leachates had significantly higher C/N ratios and microbial respiration rates, and lower net N mineralization and N-to-C mineralization compared to no Ledum and no leachates soils. No nitrification was detected. Plant presence and leachate addition also tended to increase both gross N mineralization and immobilization. These results suggest that soluble C compounds present in L. palustre increased N immobilization in mineral soils when soil biota used them as a C source. Increases in gross N mineralization may have been caused by an enhanced microbial biomass due to C addition. Since both plant presence and leachate addition decreased soil C/N ratio and had similar effects on N transformation rates, our results suggest that litter leachates could be partially responsible for plant presence effects. The lower N availability under L. palustre canopy could exert negative interactions on the establishment and growth of other plant species.  相似文献   

7.
天山林区土壤总氮矿化过程对季节性冻融的响应   总被引:1,自引:0,他引:1  
陈磊  常顺利  张毓涛  张云云 《生态学报》2020,40(12):3968-3978
森林土壤总氮矿化对冻融过程的响应机制尚不明确,氮矿化速率和转化情况尚缺乏定量刻画。通过土壤原位法与室内培养分析相结合,利用15N同位素稀释技术,研究冻融期间天山林区乔木林地、灌丛、草地3种群落类型土壤总氮矿化及转化累积量的动态,分析土壤总氮矿化速率与土壤温度、含水率及微生物量氮(MBN)的相互关系。结果表明:(1)冻融过程及群落类型对总氮矿化速率和MBN含量有极显著的影响(P<0.01),秋、春季冻融期的总氮矿化速率相比冻结期更高;(2)季节性冻融期间,乔木林地土壤总氨化累积量在3种群落类型中最高(163.9 kg N hm-2 a-1),秋、春冻融期占整个时期的比值约为66%;而总硝化累积量在3种群落类型中相差较小,秋、春冻融期占比均约为77.4%;(3)土壤温度和含水率显著影响总氮矿化速率、净氮矿化速率和MBN速率,随土壤温度增加,总氨化速率(林地和灌丛)显著升高(P<0.05);随土壤含水率增加,净氨化速率(灌丛)和净硝化速率(灌丛)显著降低(P<0.05)。通过揭示天山林区土壤总氮矿化速率(总氨...  相似文献   

8.
15N abundances of current needles of Norway spruce collected during 23 yrs of a forest fertilization experiment were studied in order to follow ecosystem gains and losses of N. Unlabelled ammonium nitrate at four rates (N0–N3), phosphorus at three rates (P0–P2), and potassium plus other elements including micronutrients at two rates (K0–K1), had been applied to plots in a complete factorial design. Nitrogen had been applied annually at average rates of 0, 34, 68 and 102 kg N ha-1 yr-1. Tree growth had responded positively to additions of N, but the response was remarkably more positive to the N2P2K1 treatment. In N1 treatments, δ15N (‰) declined over time. This was consistent with an earlier study, and should reflect a change in 15N abundance towards that of fertilizer N (minus discrimination during uptake), which in turn means accretion of most of the N added. As in the earlier study, in which N3 plots lost most of the N added, the present N3 plots showed an increasing δ15N (‰). This pattern was not significantly affected by additions of P and K plus other elements, although a weak negative effect of P on N accretion was indicated, i.e. there was a tendency δ15N (‰) to be higher when P was added. This, and another recent result based on an N budget, shows that so-called revitalization fertilization may well increase growth of trees, but also promotes losses of N from the ecosystem. As in the previous study, a decline in δ15N (‰) on control plots provided evidence of contamination. Given a removal of 100 kg N ha-1 at stem harvest and a leaching of 2 kg N ha-1 yr-1, our data on 15N suggest that a load of 9 kg N ha-1 yr-1 would saturate the ecosystem after 100 years. This load is only about twice the annual deposition at the site.  相似文献   

9.
Organic carbon (C) and nitrogen (N) are essential for heterotrophic soil microorganisms, and their bioavailability strongly influences ecosystem C and N cycling. We show here that the natural 15N abundance of the soil microbial biomass is affected by both the availability of C and N and ecosystem N processing. Microbial 15N enrichment correlated negatively with the C : N ratio of the soil soluble fraction and positively with net N mineralization for ecosystems spanning semiarid, temperate and tropical climates, grassland and forests, and over four million years of ecosystem development. In addition, during soil incubation, large increases in microbial 15N enrichment corresponded to high net N mineralization rates. These results support the idea that the N isotope composition of an organism is determined by the balance between N assimilation and dissimilation. Thus, 15N enrichment of the soil microbial biomass integrates the effects of C and N availability on microbial metabolism and ecosystem processes.  相似文献   

10.
通过室内培养实验,研究了不同氮输入梯度下(N0:0mg·g-1,N1:0.1mg·g-1,N2:0.2mg·g-1,N3:0.5mg·g-1)湿地草甸沼泽土N2O排放和有机碳矿化特征,并分析了土壤微生物量碳、氮变化规律。整个培养期(23d)内,N0、N1、N2和N3处理N2O排放总量分别为91.12、133.02、147.75和303.45μg.kg-1,随氮输入量增大而增大,表明氮输入对N2O排放产生促进作用;氮输入处理的有机碳矿化速率在整个培养期除最后培养阶段外均低于对照,表明氮输入对有机碳矿化有一定的抑制作用;各氮输入处理土壤微生物量碳降低,与对照差异显著(P0.05),但各处理间差异未达到显著水平,土壤微生物量氮随氮输入量增大呈线性增加,各处理间差异显著(P0.05),表明氮输入影响土壤微生物结构和组成,具体影响机理须进一步探讨。  相似文献   

11.
The residual N contribution from faba bean (Vicia faba L.), pea (Pisum sativum L.) and white lupin (Lupinus albus L.) to microbial biomass and subsequent wheat (Triticum aestivum L.) and oilseed rape (Brassica napus L.) was studied in a greenhouse experiment. The grain legumes were 15N labelled in situ with a stem feeding method before incorporated into the soil, which enables the determination of N rhizodeposition. Wheat and rape were subsequently grown on the soil containing the grain legume residues (incl. 15N-labelled rhizodeposits) and were harvested either twice at flowering and at maturity or once at maturity, respectively. The average total N uptake of the subsequent crops was influenced by the legume used as precrop and was determined by the residue N input and the N2-fixation capacity of the legume species. The succeeding crops recovered 8.6–12.1% of the residue N at maturity. Similar patterns were found for the microbial biomass, which recovered 8.2–10.6% of the residue N. Wheat and rape recovered about the same amount of residue N. The absolute contribution of soil derived N to the subsequent crops was similar in all treatments and averaged 149 mg N pot–1 at maturity. At flowering 17–23% of the residue derived N was recovered in the subsequent wheat and in the microbial biomass; 70% of the residue N was recovered in the microbial biomass in the flowering stage and decreased to about 50% at maturity. In contrast, the recovery in wheat and rape constituted only 30% at flowering and increased to 50% at maturity in all treatments, indicating that the residual N uptake by the subsequent wheat was apparently supplied by mobilisation of residue N temporarily immobilised in the microbial biomass.  相似文献   

12.
To examine the effect of organic amendment application on the fate of inorganic-N accumulated in a vegetable field soil during conversion from inorganic to organic input, a pot experiment using 15N-labeled soil was conducted. The soil was labeled with 15N through addition of urea-15N (98 atom % 15N) and was then incubated for 1 year resulting in inorganic soil-N concentration and 15N abundance of 211 mg kg–1 soil and 4.950 atom %, respectively. Chinese cabbage [Brassica campestris (L.) Samjin] plants were grown in the labeled soil for 30 and 60 days after application of organic amendment at the rates of 0 (control), 200, 400, and 600 mg N kg–1 soil. Although organic amendment application did not show any significant effect on the uptake efficiency of inorganic-N by Chinese cabbage during the first 30 days, it significantly (P<0.05) increased inorganic-N uptake efficiency as well as total-N uptake and dry matter yield at the end of the 60-day growth period. Application of the organic amendment also increased microbial immobilization of inorganic-N in both growth periods. Between 30 and 60 days of growth, however, the amount of immobilized N from the inorganic-15N pool decreased, indicating re-mineralization of previously immobilized N. Although the amount of inorganic-15N lost was virtually the same among treatments at day 30, increased immobilization of inorganic-15N caused by organic amendment application led to the higher retention of inorganic-N in the soil and less loss of N at day 60 as compared to the control. These results indicate that increased immobilization by organic amendment application in the early growth season and the subsequent gradual re-mineralization may play an important role in increasing plant uptake of inorganic-15N, while minimizing N loss.  相似文献   

13.
Hu  S.  van Bruggen  A.H.C.  Wakeman  R.J.  Grünwald  N.J. 《Plant and Soil》1997,195(1):43-52
Experiments were designed to examine effects of the soil microbial community, C and N availability on in vitro growth of Pythium ultimum and its infection of cotton seedlings by manipulating the stage of cellulose decomposition, size and activity of microbial populations, and N availability. In comparison to the untreated control (CONT), cellulose addition alone (CELL) reduced soil nitrate by 35–80 fold, but had no significant effect on soil ammonium. Soil microbial biomass C (SMBC) increased over 2 fold in 14 days following cellulose addition, but significantly decreased in the following 10 days due to N limitation. Addition of both cellulose and N (NCELL) resulted in sustained SMBC for 24 days and significantly reduced in vitro P. ultimum growth and disease incidence. In vitro growth of P. ultimum and disease severity were consistently reduced in the order: CONT > CELL > NCELL. In vitro growth of P. ultimum was lower in soils previously incubated for 24 days than in those incubated for 14 days, and was most closely correlated to cumulative soil CO2 evolution (CO2T). Correlations between P. ultimum growth rates and NO3-N or total available N were substantial (p < 0.05), but much less significant than those between the growth rates and SMBC, microbial activity measured as CO2 evolution rates or CO2T (p<0.0001). Addition of available N (NH4NO3) and C (glucose) just before the assays did not increase the in vitro growth of P. ultimum or disease severity on cotton seedlings, suggesting that time-dependent microbial processes or microbial metabolites significantly contributed to suppression of P. ultimum growth.  相似文献   

14.
Seasonal patterns and annual rates of N inputs, outputs, and internal cycling were determined for an old-growth mixed-conifer forest floor in the Sierra Nevada Mountains of California. Rates of net N mineralization within the forest floor, and plant N-uptake and leaching of inorganic N from the forest floor were 13, 10, and 9 kg-N ha-1 yr-1, respectively. The Mediterranean-type climate appeared to have a significant effect on N cycling within this forest, such that all N-process and flow rates showed distrinct seasonal patterns. We estimated the forest floor supplies less than one-third of the total aboveground plant N-uptake in this forest. The rate of net nitrification within the forest floor was always low (1 kg-NO3 --N ha-1 30d-1). Mean residence times for organic matter and N in the forest floor were 13 and 34 years, respectively, suggesting that this forest floor layer is a site of net N immobilization within this ecosystem. We examined the influence of the forest floor on mineral soil N dynamics by injecting small amounts of15N-enriched (NH4)2SO4 solutions into the surface mineral soil with the forest floor present (+FF) or removed (-FF). K2SO4-extractable NO3 --N, total inorganic-N, and total-N pool sizes in the mineral soil were initially increased after forest floor removal (after 4 months), but NO3 --N and total inorganic-N were not significantly different thereafter. Microbial biomass-N and K2SO4-extractable total-N pool sizes were also found to be larger in mineral soils without a forest floor after 1 and 1.3 years, respectively. Total15N-recovery was greater in the +FF treatment compared to the -FF treatment after 1-year (about 50% and 35%, respectively) but did not differ after 1.3 years (both about 35%), suggesting that the forest floor delays but does not prevent the N-loss from the surface mineral soil of this forest. We estimated using our15N data that fungal translocation from the mineral soil to the forest floor may be as large as 9 kg-N ha-1 yr-1 (similar in magnitude to other N flows in this forest), and may account for all of the observed absolute increase of N in litter during the early stages of decomposition at this site. Our results suggest that the forest floor acts both as a source and sink for N in the mineral soil.  相似文献   

15.
Preliminary attempts to make retrospective studies of N balances and water stress in forest fertilization experiments by analyzing changes in the abundances of 15N and 13C, respectively, are discussed. Most evidence is from the Swedish Forest Optimum Nutrition Experiments, which have been running for two decades. Annual additions of N have been given either alone or in combination with other elements, notably P and K, every third year. Processes leading to loss of N, e.g. volatilization of ammonia, nitrification followed by leaching or denitrification, and denitrification alone, discriminate against the heavy isotope 15N. A correlation was found between fractional losses of added N and the change in 15N () during 19 years in current needles in a Scots pine forest, irrespective of source of N. Isotope effects were larger on urea than on ammonium nitrate plots (2 as compared to 9 15N ()) because of ammonia volatilization and higher rates of nitrification. They developed gradually over time, which opens possibilities to analyse the development of N saturation. However, the analysis may be confounded by shifts in 15N abundance of fertilizer N. In another trial, N isotope effects could be seen in both plants and soils 10 years after the last fertilization; they were smaller in soils because of a large pretreatment memory effect, but we expect them to persist there for decades.The enzyme RuBisCo discriminates strongly against the heavy isotope 13C during photosynthesis, but this effect becomes less expressed as stomata close because of water stress. The supply of N may also affect the 13C () via effects on rates of photosynthesis, and the source of N may have an influence directly via non-RubisCo carboxylations, and indirectly via effects on water use efficiency. In a trial with Norway spruce, the effect of N fertilization on the 13C () of current needles was strongly correlated with production and weakly so with foliar biomass a dry year, but not a wet year. This suggested that these variations are primarily related to induced differences in the balance between supply and demand for water. Hence, studies of {au13}C abundance can disentangle the role of water as such from its effects on mineralization of N and flow of N.  相似文献   

16.
The15N abundance of plants usually closely reflects the15N abundance of their major immediate N source(s); plant-available soil N in the case of non-N2-fixing plants and atmospheric N2 in the case of N2 fixing plants. The15N abundance values of these sources are usually sufficiently different from each other that a significant and systematic difference in the15N abundance between the two kinds of plants can be detected. This difference provides the basis for the natural15N abundance method of estimating the relative contribution of atmospheric N2 to N2-fixing plants growing in natural and agricultural settings. The natural15N abundance method has certain advantages over more conventional methods, particularly in natural ecosystems, since disturbance of the system is not required and the measurements may be made on samples dried in the field. This method has been tested mainly with legumes in agricultural settings. The tests have demonstrated the validity of this method of arriving at semi-quantitative estimates of biological N2-fixation in these settings. More limited tests and applications have been made for legumes in natural ecosystems. An understanding of the limits and utility of this method in these systems is beginning to emerge. Examples of systematic measurements of differences in15N abundance between non-legume N2-fixing systems and neighbouring non-fixing systems are more unusual. In principle, application of the method to estimate N2-fixation by nodulated non-legumes, using the natural15N abundance method, is as feasible as estimating N2-fixation by legumes. Most of the studies involving N2-fixing non-legumes are with this type of system (e.g., Ceanothus, Chamabatia, Eleagnus, Alnus, Myrica, and so forth). Resuls of these studies are described. Applicability for associative N2-fixation is an empirical question, the answer to which probably depends upon the degree to which fixed N goes predominantly to the plant rather than to the soil N pool. The natural15N abundance method is probably not well suited to assessing the contribution of N2-fixation by free-living microorganisms in their natural habitat, particularly soil microorganisms.This work was supported in part by subcontracts under grants from the US National Science Foundation (DEB79-21971 and BSR821618)  相似文献   

17.
The effects of clearcut and partial harvesting of early-seral trembling aspen plots were compared to conventional clearcut harvesting in mid-seral mixedwood and late-seral conifer plots. Twice a year, for three consecutive years, we assessed mineral N and microbial dynamics in the forest floor of these plots to test three hypotheses related to the higher litter quality of aspen leaves and to the sustained inputs of available C on partially harvested plots: (1) the post-clearcutting mineral N flush and the net [(NO3): (NO3 + NH4+)] production ratio (RNI) are higher in aspen plots than in black spruce plots, with intermediate values occurring in mixedwood plots; (2) net N mineralization rates in aspen plots are higher in spring than in autumn; and (3) compared to clearcutting, partial harvesting reduces potential ammonification and nitrification rates. Initial NH4+ and NO3 concentrations respectively ranged between 1.7–4.4 and 0.2–1.5 g N kg–1 Ntotal, net ammonification and nitrification rates (30 d incubations) respectively ranged between 5.3–17.8 and 0.1–27.6 g N kg–1 Ntotal, basal respiration ranged between 20.9–38.9 mg CO2-C kg–1 h–1, and microbial biomass ranged between 6.1–8.7 g Cmic kg–1. Although clearcutting increased NO3 concentrations in aspen plots, the balance of our results did not support our first hypothesis, because NH4+ concentrations increased in conifer plots only, potential ammonification was unaffected by clearcutting, potential nitrification increased in mixedwood plots only, and RNI increased in all plots. In each seral stage, basal respiration, microbial biomass, and metabolic quotient either increased or were unaffected by clearcutting, suggesting that increases in RNI after disturbance were not related to lower microbial immobilisation of NO3 due to lower available C. Forest floors in mid-seral mixedwood plots exhibited a distinct combination of mineral N and microbial properties, suggesting that the functional richness of the forest is enhanced not only by the number of species, but also by the diversity of assemblages that are present. Results supported our second hypothesis and showed, furthermore, that net N mineralization in conifer stands is greater in autumn than in spring. Partial harvesting in aspen stands resulted in lower potential mineralization of N and lower RNI, compared to clearcutting. Further lysimetry studies are needed to confirm whether partial harvesting mitigates NO3 leaching following disturbance.  相似文献   

18.
Many mine spoils present at the surface of reclamation sites in the Lower Lusatian mining district are carboniferous substrates, i.e. contain geogenic organic matter. Depending on its susceptibility to microbial degradation, geogenic organic matter might influence the establishment of a carbon requiring microflora in mine spoils. As geogenic organic matter contains substantial amounts of organic nitrogen it is also a potential source for plant available N. The objective of the present study was to quantify C and N mineralisation and microbial biomass in geogenic organic matter present at reclamation sites in Lower Lusatia. We also studied, whether these properties can be influenced by raising the originally low pH to near neutral conditions. In laboratory incubation studies, the rates of CO2 evolution and net N mineralisation were determined in geogenic organic matter and carboniferous mine spoil with and without addition of lime. At the same time, microbial biomass carbon was estimated. As a reference, soil organic matter originating from the humus layer of a 60-year-old Pinus sylvestris stand was used. As indicated by the initial rates of C mineralisation, geogenic carbon was microbially available but to a lower extent than soil organic carbon. During incubation, C mineralisation remained constant or tended to increase with time, depending on the origin of the sample, while it decreased in soil organic matter. Unlike in soil organic matter, in geogenic organic matter and carboniferous mine spoil, C mineralisation was not consistently promoted by lime addition. Prior to incubation, microbial biomass in geogenic organic matter and carboniferous mine spoil was about 10-fold lower than in soil organic matter and tended to increase with incubation time while it decreased in soil organic matter. Similar to C mineralisation, microbial biomass in geogenic organic matter increased after liming, while it declined in carboniferous mine spoil immediately after lime addition. Rates of net N mineralisation were very low in geogenic organic matter and carboniferous mine spoil regardless of the length of incubation and could not be enhanced by raising the pH. It was concluded, that in mine spoils where accumulation of soil organic matter has not yet occurred, geogenic organic matter can be favourable for the establishment of a heterotrophic microflora. However, in the short term, geogenic matter is no source for plant available N in mine spoils. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Climate warming could increase rates of soil organic matter turnover and nutrient mineralization, particularly in northern high‐latitude ecosystems. However, the effects of increasing nutrient availability on microbial processes in these ecosystems are poorly understood. To determine how soil microbes respond to nutrient enrichment, we measured microbial biomass, extracellular enzyme activities, soil respiration, and the community composition of active fungi in nitrogen (N) fertilized soils of a boreal forest in central Alaska. We predicted that N addition would suppress fungal activity relative to bacteria, but stimulate carbon (C)‐degrading enzyme activities and soil respiration. Instead, we found no evidence for a suppression of fungal activity, although fungal sporocarp production declined significantly, and the relative abundance of two fungal taxa changed dramatically with N fertilization. Microbial biomass as measured by chloroform fumigation did not respond to fertilization, nor did the ratio of fungi : bacteria as measured by quantitative polymerase chain reaction. However, microbial biomass C : N ratios narrowed significantly from 16.0 ± 1.4 to 5.2 ± 0.3 with fertilization. N fertilization significantly increased the activity of a cellulose‐degrading enzyme and suppressed the activities of protein‐ and chitin‐degrading enzymes but had no effect on soil respiration rates or 14C signatures. These results indicate that N fertilization alters microbial community composition and allocation to extracellular enzyme production without affecting soil respiration. Thus, our results do not provide evidence for strong microbial feedbacks to the boreal C cycle under climate warming or N addition. However, organic N cycling may decline due to a reduction in the activity of enzymes that target nitrogenous compounds.  相似文献   

20.
An experiment was conducted at EMBRAPA/CNPAF, Goiânia, Goias, Brazil, on a typic haplustox soil to evaluate growth and N2 fixation-related parameters of Phaseolus vulgaris L. Bean lines, which had been selected for N2 fixation at CNPAF, including production cultivars, germplasm bank entries, and parents and progenies of a cross made to improve this characteristic. Wheat (Triticum aestivum L.) and dwarf sorghum (Sorghum bicolor (L.) Moench) were evaluated as non-N2-fixing reference crops for difference method (DM) and 15N isotope dilution technique (IDT) estimates of N2 fixation. IDT estimates ranges from 4 to 18 kg N2 fixed ha-1. High variability associated with low levels of N2 fixation precluded definitive identification of the best N2 fixing bean lines. Due to differences in growth cycle and in patterns and amounts of soil N uptake during the season, neither of the reference crops tested appears to be an adequate control for either DM or IDT estimates of N2 fixation. However, ranking of lines for effectiveness in N2 fixation could be performed without the use of any reference crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号