首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
L Marrot  M Leng 《Biochemistry》1989,28(4):1454-1461
The purpose of this work was to analyze at the nucleotide level the distortions induced by the binding of cis-diamminedichloroplatinum(II) (cis-DDP) to DNA by means of chemical probes. In order to test the chemical probes, experiments were first carried out on two platinated oligonucleotides. It has been verified by circular dichroism and gel electrophoresis that the binding of cis-DDP to an AG or to a GTG site within a double-stranded oligonucleotide distorts the double helix. The anomalously slow electrophoretic mobility of the multimers of the platinated and ligated oligomers strongly suggests that the platinated oligonucleotides are bent. The reactivity of the oligonucleotide platinated at the GTG site with chloroacetaldehyde, diethyl pyrocarbonate, and osmium tetraoxide, respectively, suggests a local denaturation of the double helix. The 5'G residue and the T residue within the adduct are no longer paired, while the 3'G residue is paired. The double helix is more distorted (but not denatured) at the 5' side of the adduct than at the 3' side. In the case of the oligonucleotide platinated at the AG site, the double helix is also more distorted at the 5' side of the adduct than at the 3' side. The G residue within the adduct is paired. The reactivities of the chemical probes with six platinated DNA restriction fragments show that even at a relatively high level of platination only a few base pairs are unpaired but the double helix is largely distorted. No local denaturation has been detected at the GG sites separated from the nearest GG or AG sites by at least three bases pairs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The solution structure of an 11-mer DNA duplex, d(CGGTCA*CGAGG) x d(CCTCGTGACCG), containing a 10R adduct at dA* that corresponds to the cis addition of the N(6)-amino group of dA(6) to (+)-(9S,10R)-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene was studied by 2D NMR methods. The NOESY cross-peak patterns indicate that the hydrocarbon is intercalated on the 5'-side of the modified base. This observation is the same as that observed for other oligonucleotides containing (10R)-dA adducts but opposite to that observed for the corresponding (10S)-dA adducts which are intercalated on the 3'-side of the modified base. The hydrocarbon is intercalated from the major groove without significant disruption of either the anti glycosidic torsion angle of the modified residue or the base pairing of the modified residue with the complementary residue on the opposite strand. The ensemble of 10 structures determined exhibits relatively small variations (6-15 degrees) in the characteristic hydrocarbon-base dihedral angles (alpha' and beta') as well as the glycosidic torsion angle chi. These angles are similar to those in a previously determined cis-opened benzo[a]pyrene diol epoxide-(10R)-dA adduct structure. Comparison of the present structure with the cis-opened diol epoxide adduct suggests that the absence of the 7- and 8-hydroxyl groups results in more efficient stacking of the aromatic moiety with the flanking base pairs and deeper insertion of the hydrocarbon into the helix. Relative to normal B-DNA, the duplex containing the present tetrahydroepoxide adduct is unwound at the lesion site, whereas the diol epoxide adduct structure is more tightly wound than normal B-DNA. Buckling of the adducted base pair as well as the C(5)-G(18) base pair that lies immediately above the hydrocarbon is much less severe in the present adducted structure than its cis-opened diol epoxide counterpart.  相似文献   

3.
A Schwartz  L Marrot  M Leng 《Biochemistry》1989,28(20):7975-7979
The purpose of this work was the comparison of the conformational changes induced in the double helix by the adducts formed at d(GG) and d(AG) sites in the reaction between the antitumor drug cis-diamminedichloroplatinum(II) (cis-DDP) and DNA. Two duplexes (20-mer) containing either a single d(A*G*) or a single d(G*G) adduct were studied by means of gel electrophoresis and artificial nuclease and chemical probes. It is shown that the d(G*G*) and the d(A*G*) adducts bend DNA similarly, but at the nucleotide level they distort differently the double helix. We suggest that the weaker interactions between platinated A residues and the other nucleotides, as compared to the interactions between platinated G residues and the other nucleotides, are largely responsible for the differences in the distortions induced in DNA by the d(A*G) and d(G*G*) adducts. This suggestion is supported by the study of the distortions induced in duplexes by the d(G*G*) adducts, one of the platinated G residues being paired with a T residue.  相似文献   

4.
Asymmetric bulge loop motifs are widely dispersed in all types of functional RNAs. They are frequently occurring structural motifs in folded RNA structures and appear commonly in pre-microRNA and ribosomes, where they are involved in specific RNA–RNA and RNA–protein interactions. It is therefore necessary to understand such motifs from a structural point of view. We analyzed all available RNA structures and identified quite a few fragments of double helices that contain bulges. We found that these discontinuities often introduce kinks into the double helices, which also affects the stacking overlap between the base pairs across the irregularity. In order to understand the influence of these bulges on stability and flexibility, we carried out molecular dynamics simulations of three different single-residue bulge-containing RNA helices using the CHARMM36 force field. The structural variability at the junctions of RNA bulges is expected to differ from that in continuous double-helical stretches. The structural features of the junction region were observed to vary noticeably depending on the orientation of the bulge residue. When the base of the bulge residue is looped out, the RNA stretch behaves like a standard long A-form RNA double helix, whereas the entire RNA behaves differently when the base of the bulge residue is intercalated between base pairs inside the RNA stem. Such single-base intercalation was found to introduce a permanent kink into the composite double helix, which could be a recognition element for Dicer during the maturation of miRNA.  相似文献   

5.
Popenda L  Adamiak RW  Gdaniec Z 《Biochemistry》2008,47(18):5059-5067
The RNA single bulge motif is an unpaired residue within a strand of several complementary base pairs. To gain insight into structural changes induced by the presence of the adenosine bulge on RNA duplex, the solution structures of RNA duplex containing a single adenine bulge (5'-GCAGAAGAGCG-3'/5'-CGCUCUCUGC-3') and a reference duplex with all Watson-Crick base pairs (5'-GCAGAGAGCG-3'/5'-CGCUCUCUGC-3') have been determined by NMR spectroscopy. The reference duplex structure is a regular right-handed helix with all of the attributes of an A-type helix. In the bulged duplex, single adenine bulge stacks into the helix, and the bulge region forms a well-defined structure. Both structures were analyzed by the use of calculated helical parameters. Distortions induced by the accommodation of unpaired residue into the helical structure propagate over the entire structure and are manifested as the reduced base pairs inclination and x-displacement. Intrahelical position of bulged adenine A5 is stabilized by efficient stacking with 5'-neighboring residues G4.  相似文献   

6.
M Sip  A Schwartz  F Vovelle  M Ptak  M Leng 《Biochemistry》1992,31(9):2508-2513
A 22 base pair double-stranded oligonucleotide containing a unique interstrand adduct resulting from chelation of the two guanine residues within the central sequence d(TGCT/AGCA) by a cis-platinum residue has been studied by means of gel electrophoresis, chemical probes, and molecular mechanics. The anomalously slow electrophoretic mobility of the multimers of the platinated and ligated oligomers suggests that the platinated oligonucleotide is bent. The two cytosine residues (complementary to the platinated guanines) are hyperreactive to hydroxylamine, indicating a large exposure of the two bases to the solvent. The adduct does not induce a local denaturation within the flanking sequences since the adenine residues are not reactive with diethyl pyrocarbonate. This is confirmed by the nonreactivity of the complementary T residues with osmium tetraoxide. These results and the molecular mechanics modeling suggest that the interstrand adduct bends the double helix by approximately 55 degrees toward the major groove, that the double helix conserves its average twist angle, and that the distortion induced by the adduct is localized at the platinated sequence d(GC/CG).  相似文献   

7.
The bending flexibility of six tetramers was studied in an assumption that they were extended in the both directions by regular double helices. The bends of B-DNA in different directions were considered. The stiffness of the B-DNA double helix when bent into the both grooves proved to be less pronounced than in the perpendicular direction by the order of magnitude. Such an anisotropy is a feature of the sugar-phosphate backbone structure. The calculated fluctuations of the DNA bending along the dyad axis, 5-7 degrees, are in agreement with the experimental value of DNA persistence length. Anisotropy of the double helix is sequence-dependent: most easily bent into the minor groove are the tetramers with purine-pyrimidine dimer (RY) in the middle. In contrast, YR dinucleotides prefer bending into the major groove, moreover, they have an equilibrium bend of 6-12 degrees into this groove. The above inequality is caused by the stacking interaction of the bases. The bend in the central dimers is distributed to some extent between the adjacent links, though the main fraction of the bend remains within the central link. Variation of the sugar-phosphate geometry in the bent helix is unessential, so that DNA remains within the limits of the B-family of forms: namely, when the helical axis is bent by 20 degrees the backbone dihedral angles vary by no more than 15 degrees. The obtained results are in accord with the X-ray structure of B-DNA dodecamer; they further substantiate our earlier model of DNA wrapping in the nucleosome by means of "mini-kinks" separated by a half-pitch of the double helix, i.e. by 5-6 b. p. Sequence-dependent anisotropy of DNA presumably dictates the three-dimensional structure of DNA in solution as well. We have found that nonrandom allocation of YR dimers leads to the systematic bends in the equilibrium structure of certain DNA fragments. To the four "Calladine rules" two more can be added: the minor-groove steric clash of purines in the YR sequences are avoided by: (1) bending of the helix into the major groove; (2) increasing the distance between the base pairs (stretching the double helix).  相似文献   

8.
In this paper, we have constructed double stranded helices (60-mers) containing a single N-2-acetylaminofluorene (-AAF) adduct covalently bound to one of the three guanine residues of the Narl site (G1G2CG3CC). This sequence was identified as a strong frameshift mutation hot spot for many carcinogens that bind to the C8 position of guanine. Using DNase I as a probe for DNA conformation we show i) that the average size of the helix deformation extends over 3 to 5 base pairs in both directions from the adduct site, and ii) that there is a strong polymorphism in the adduct induced DNA conformation. The present study supports the idea that adducts induce specific sequence dependent local conformational changes in DNA that are differentially recognized and processed by the enzymatic machineries that lead to repair or mutagenesis.  相似文献   

9.
Abstract

Bending in double-helical B-DNA apparently occurs only by rolling adjacent base pairs over one another along their long axes. The lifting apart of ends that would be required by tilt or wedge angle contributions is too costly in free energy and does not occur. Roll angles at base steps can be positive (compression of major groove) or negative (compression of minor groove); with the former somewhat easier.

Individual steps may advance or oppose the overall direction of bend, or make lateral excursions, but the result of this series of “random roll” steps is the production of a net bending in the helix axis. Because the natural roll points for bending in a given plane occur every 5 base pairs, one would expect that double-helical DNA wrapped around a nucleosome core would exhibit bends with the same periodicity. Alternate bends might be particularly acute where the major groove faced the nucleosome core and was compressed against it.

The “annealed kinking” model proposed by Fratini et al. (J. Biol. Chem. 257, 14686 (1982) was suggested from the observation that a major bend at a natural roll point is flanked by decreasing roll angles at the steps to either side, as though local strain was being minimized by somewhat blurring the bend out rather than keeping it localized. The random walk model suggested in this paper would describe this as a decreased roll angle as the helix step rotates toward a direction perpendicular to the overall bend. Bending of DNA is seen to be a more stochastic process than had been suspected. Detailed analysis of every helix step reveals both side excursions and backward or retrograde motion, as in any random walk situation. Yet these isolated steps counteract one another, to leave behind a residuum of overall bending in a specific direction.  相似文献   

10.
11.
Solution structural studies have been undertaken on the aminopyrene-C(8)-dG ([AP]dG) adduct in the d(C5-[AP]G6-C7). d(G16-A17-G18) sequence context in an 11-mer duplex with dA opposite [AP]dG, using proton-proton distance and intensity restraints derived from NMR data in combination with distance-restrained molecular mechanics and intensity-restrained relaxation matrix refinement calculations. The exchangeable and nonexchangeable protons of the aminopyrene and the nucleic acid were assigned following analysis of two-dimensional NMR data sets on the [AP]dG.dA 11-mer duplex in H2O and D2O solution. The broadening of several resonances within the d(G16-A17-G18) segment positioned opposite the [AP]dG6 lesion site resulted in weaker NOEs, involving these protons in the adduct duplex. Both proton and carbon NMR data are consistent with a syn glycosidic torsion angle for the [AP]dG6 residue in the adduct duplex. The aminopyrene ring of [AP]dG6 is intercalated into the DNA helix between intact Watson-Crick dC5.dG18 and dC7.dG16 base pairs and is in contact with dC5, dC7, dG16, dA17, and dG18 residues that form a hydrophobic pocket around it. The intercalated AP ring of [AP]dG6 stacks over the purine ring of dG16 and, to a lesser extent dG18, while the looped out deoxyguanosine ring of [AP]dG6 stacks over dC5 in the solution structure of the adduct duplex. The dA17 base opposite the adduct site is not looped out of the helix but rather participates in an in-plane platform with adjacent dG18 in some of the refined structures of the adduct duplex. The solution structures are quite different for the [AP]dG.dA 11-mer duplex containing the larger aminopyrene ring (reported in this study) relative to the previously published [AF]dG.dA 11-mer duplex containing the smaller aminofluorene ring (Norman et al., Biochemistry 28, 7462-7476, 1989) in the same sequence context. Both the modified syn guanine and the dA positioned opposite it are stacked into the helix with the aminofluorene chromophore displaced into the minor groove in the latter adduct duplex. By contrast, the aminopyrenyl ring participates in an intercalated base-displaced structure in the present study of the [AP]dG.dA 11-mer duplex and in a previously published study of the [AP]dG.dC 11-mer duplex (Mao et al., Biochemistry 35, 12659-12670, 1996). Such intercalated base-displaced structures without hydrogen bonding between the [AP]dG adduct and dC or mismatched dA residues positioned opposite it, if present at a replication fork, may cause polymerase stalling and formation of a slipped intermediate that could produce frameshift mutations, the most dominant mutagenic consequence of the [AP]dG lesion.  相似文献   

12.
Crystal and molecular structure of a DNA fragment: d(CGTGAATTCACG)   总被引:5,自引:0,他引:5  
The crystal structure of the dodecanucleotide d(CGTGAATTCACG) has been determined to a resolution of 2.7 A and refined to an R factor of 17.0% for 1532 reflections. The sequence crystallizes as a B-form double helix, with Watson-Crick base pairing. This sequence contains the EcoRI restriction endonuclease recognition site, GAATTC, and is flanked by CGT on the 5'-end and ACG on the 3'-end, in contrast to the CGC on the 5'-end and GCG on the 3'-end in the parent dodecamer d(CGCGAATTCGCG). A comparison with the isomorphous parent compound shows that any changes in the structure induced by the change in the sequence in the flanking region are highly localized. The global conformation of the duplex is conserved. The overall bend in the helix is 10 degrees. The average helical twist values for the present and the parent structures are 36.5 degrees and 36.4 degrees, respectively, corresponding to 10 base pairs per turn. The buckle at the substituted sites are significantly different from those seen at the corresponding positions in the parent dodecamer. Step 2 (GpT) is underwound with respect to the parent structure (27 degrees vs 36 degrees) and step 3 (TpG) is overwound (34 degrees vs 27 degrees). There is a spine of hydration in the narrow minor groove. The N3 atom of adenine on the substituted A10 and A22 bases are involved in the formation of hydrogen bonds with other duplexes or with water; the N3 atom of guanine on G10 and G22 bases in the parent structure does not form hydrogen bonds.  相似文献   

13.
Properties and three-dimensional structure of the tandem DNA duplex pTGGAGCTG.(pCAGC+(PhnL)pTCCA) in aqueous solution, where L is an amino linker and Phn is an N-(2-hydroxyethyl)phenazinium residue, were studied spectrophotometrically and by two-dimensional 1H NMR spectroscopy (COSY and NOESY). When a tandem complex involving a Phn residue-bearing oligonucleotide is formed, the dye aromatic system intercalates into the double helix at the nick site and takes part in two stacking interactions: a strong one (3.5-4 A) with the T5-A12 base pair of its own duplex moiety and a weak one (4-5 A) with the C4-G13 pair of the adjoining duplex (mainly with the C4 base). This arrangement of the dye residue, providing a cross-interaction of the phenazinium moiety with the base pairs of the adjacent duplex structures, results in the stabilization of the whole tandem complex.  相似文献   

14.
The major sequence class of Crithidia fasciculata minicircles is shown to have a single region of bent helical DNA widely separated from the two replication origins located 180 degrees apart on the minicircle map. The position of the bend in the DNA has been mapped both by gel electrophoretic methods and by direct electron microscopic observation of the DNA. This sequence directed bending is apparently the result of homopolymeric dA X dT tracts 4-6 base pairs long repeated in phase with the helix screw. The region of the bend contains nineteen such homopolymeric tracts in a region of about 200 base pairs with sixteen of the tracts oriented in the same direction.  相似文献   

15.
Sequence-dependent bending of DNA and phasing of nucleosomes   总被引:5,自引:0,他引:5  
Conformational analysis has revealed anisotropic flexibility of the B-DNA double helix: it bends most easily into the grooves, being the most rigid when bent in a perpendicular direction. This result implies that DNA in a nucleosome is curved by means of relatively sharp bends ("mini-kinks") which are directed into the major and minor grooves alternatively and separated by 5-6 base pairs. The "mini-kink" model proved to be in keeping with the x-ray structure of the B-DNA dodecamer resolved later, which exhibits two "annealed kinks", also directed into the grooves. The anisotropy of B DNA is sequence-dependent: the pyrimidine-purine dimers (YR) favor bending into the minor groove, and the purine-pyrimidine dinucleotides (RY), into the minor one. The RR and YY dimers appear to be the most rigid dinucleotides. Thus, a DNA fragment consisting of the interchanging oligopurine and oligopyrimidine blocks 5-6 base pairs long should manifest a spectacular curvature in solution. Similarly, a nucleotide sequence containing the RY and YR dimers separated by a half-pitch of the double helix is the most suitable for wrapping around the nucleosomal core. Analysis of the numerous examples demonstrating the specific alignment of nucleosomes on DNA confirms this concept. So, the sequence-dependent "mechanical" properties of the double helix influence the spatial arrangement of DNA in chromatin.  相似文献   

16.
A H Wang  G Ughetto  G J Quigley  A Rich 《Biochemistry》1987,26(4):1152-1163
The crystal structure of a daunomycin-d(CGTACG) complex has been solved by X-ray diffraction analysis and refined to a final R factor of 0.175 at 1.2-A resolution. The crystals are in a tetragonal crystal system with space group P4(1)2(1)2 and cell dimensions of a = b = 27.86 A and c = 52.72 A. The self-complementary DNA forms a six base pair right-handed double helix with two daunomycin molecules intercalated in the d(CpG) sequences at either end of the helix. Daunomycin in the complex has a conformation different from that of daunomycin alone. The daunomycin aglycon chromophore is oriented at right angles to the long dimension of the DNA base pairs, and the cyclohexene ring A rests in the minor groove of the double helix. Substituents on this ring have hydrogen-bonding interactions to the base pairs above and below the intercalation site. O9 hydroxyl group of the daunomycin forms two hydrogen bonds with N3 and N2 of an adjacent guanine base. Two bridging water molecules between the drug and DNA stabilize the complex in the minor groove. In the major groove, a hydrated sodium ion is coordinated to N7 of the terminal guanine and the O4 and O5 of daunomycin with a distorted octahedral geometry. The amino sugar lies in the minor groove without bonding to the DNA. The DNA double helix is distorted with an asymmetrical rearrangement of the backbone conformation surrounding the intercalator drug. The sugar puckers are C1,C2'-endo, G2,C1'-endo, C11,C1'-endo, and G12,C3'-exo. Only the C1 residue has a normal anti-glycosyl torsion angle (chi = -154 degrees), while the other three residues are all in the high anti range (average chi = -86 degrees). This structure allows us to identify three principal functional components of anthracycline antibiotics: the intercalator (rings B-D), the anchoring functions associated with ring A, and the amino sugar. The structure-function relationships of daunomycin binding to DNA as well as other related anticancer drugs are discussed.  相似文献   

17.
The structure of a 62 base nuclease resistant fragment of E. coli 5S RNA (bases 1-11, 69-87, 89-120) has been examined by small angle x-ray scattering. The results obtained are indistinguishable from those expected if this oligonucleotide complex were a perfect RNA double helix of about 30 base pairs. These results indicate that this portion of 5S RNA is in a configuration which is approximately double helical, even though proper base pairing is possible over only half its length.  相似文献   

18.
The non-steroidal anti-estrogen tamoxifen [TAM] has been in clinical use over the last two decades as a potent adjunct chemotherapeutic agent for treatment of breast cancer. It has also been given prophylactically to women with a strong family history of breast cancer. However, tamoxifen treatment has also been associated with increased endometrial cancer, possibly resulting from the reaction of metabolically activated tamoxifen derivatives with cellular DNA. Such DNA adducts can be mutagenic and the activities of isomeric adducts may be conformation-dependent. We therefore investigated the high resolution NMR solution conformation of one covalent adduct (cis-isomer, S-epimer of [TAM]G) formed from the reaction of tamoxifen [TAM] to N(2)-of guanine in the d(C-[TAM]G-C).d(G-C-G) sequence context at the 11-mer oligonucleotide duplex level. Our NMR results establish that the S-cis [TAM]G lesion is accomodated within a widened minor groove without disruption of the Watson-Crick [TAM]G. C and flanking Watson-Crick G.C base-pairs. The helix axis of the bound DNA oligomer is bent by about 30 degrees and is directed away from the minor groove adduct site. The presence of such a bulky [TAM]G adduct with components of the TAM residue on both the 5'- and the 3'-side of the modified base could compromise the fidelity of the minor groove polymerase scanning machinery.  相似文献   

19.
The Cu(II) ion interaction with calf-thymus DNA was studied by means of differential pulse polarography and sweep voltammetry as well as chromatography and viscosimetry. Most of the complexes formed at high ionic strength (0.2 M) and lower Cu(II) concentrations are of a nondenaturing nature. Their formation has but a minor effect on unwinding process of the DNA double helix. The excess of Cu(II) (P = 5) leads, however, to distinct denaturation of the DNA structure. Metal ions have little effect on the denaturation induced by the polarographic reduction of DNA on the mercury electrode. This conclusion is consistent with the character of the polarographic process and with the fact that Cu(II) ions are not very effective in the interaction with AT pairs. Cupric ions have no renaturing ability towards thermally denatured DNA at 0.2 M ionic strength but distinct renaturation was observed at low ionic strength (0.05 M).  相似文献   

20.
Abstract

Conformational analysis has revealed anisotropic flexibility of the B-DNA double helix: it bends most easily into the grooves, being the most rigid when bent in a perpendicular direction. This result implies that DNA in a nucleosome is curved by means of relatively sharp bends (“mini-kinks”) which are directed into the major and minor grooves alternatively and separated by 5–6 base pairs. The “mini-kink” model proved to be in keeping with the x-ray structure of the B-DNA dodecamer resolved later, which exhibits two “annealed kinks”, also directed into the grooves.

The anisotropy of B DNA is sequence-dependent: the pyrimidine-purine dimers (YR) favor bending into the minor groove, and the purine-pyrimidine dinucleotides (RY), into the minor one. The RR and YY dimers appear to be the most rigid dinucleotides. Thus, a DNA fragment consisting of the interchanging oligopurine and oligopyrmidine blocks 5–6 base pairs long should manifest a spectacular curvature in solution.

Similarly, a nucleotide sequence containing the RY and YR dimers separated by a half-pitch of the double helix is the most suitable for wrapping around the nucleosomal core. Analysis of the numerous examples demonstrating the specific alignment of nucleosomes on DNA confirms this concept. So, the sequence-dependent “mechanical” properties of the double helix influence the spatial arrangement of DNA in chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号