首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Growth hormone, prolactin and somatostatinlike immunoreactivities were demonstrated in the brains of larval, young adult (parasitic) and upstream migrant adult sea lampreys, Petromyzon marinus, by means of immunoperoxidase techniques. Growth hormone (GH) and prolactin (PRL) were observed within separate perikarya in the nucleus praeopticus, within fibers in the commissura praeinfundibularis, and in nerve endings within the neurohypophysis of larval and adult-stage lampreys. Cell bodies demonstrating immunoreactive growth hormone were more numerous than those reactive for prolactin. Unlike in the upstream migrant adult lamprey, no GH or PRL was demonstrated in the adenohypophysis of larval or parasitic lamprey.Somatostatin (SRIF)-like immunoreactive neurons were demonstrated in the nucleus commissurae praeinfundibularis, anterior and posterior pars ventralis hypothalami, pars dorsalis thalami, and the tegmentum motorium rhombencephali of larval, parasitic and upstream migrant adult lampreys. Many of the SRIF containing neurons within the hypothalamus were cerebrospinal fluid (CSF)-contacting cells. SRIF fibers were found throughout most of the brain predominating within the nucleus praeopticus, pars ventralis hypothalami, and the nucleus interpeduncularis. No SRIF immunoreactivity was found within the neurophyophysis. The possible functions of these peptides within the brain of the lamprey are discussed.  相似文献   

2.
This study examined olfactory sensory neuron morphology and physiological responsiveness in newly hatched sea lamprey, Petromyzon marinus L. These prolarvae hatch shortly after neural tube formation, and stay within nests for approximately 18 days, before moving downstream to silty areas where they burrow, feed and pass to the larval stage. To explore the possibility that the olfactory system is functioning during this prolarval stage, morphological and physiological development of olfactory sensory neurons was examined. The nasal cavity contained an olfactory epithelium with ciliated olfactory sensory neurons. Axons formed aggregates in the basal portion of the olfactory epithelium and spanned the narrow distance between the olfactory epithelium and the brain. The presence of asymmetric synapses with agranular vesicles within fibers in the brain, adjacent to the olfactory epithelium suggests that there was synaptic connectivity between olfactory sensory axons and the brain. Neural recordings from the surface of the olfactory epithelium showed responses following the application of L-arginine, taurocholic acid, petromyzonol sulfate (a lamprey migratory pheromone), and water conditioned by conspecifics. These results suggest that lampreys may respond to olfactory sensory input during the prolarval stage.  相似文献   

3.
Summary The role of substance P in the regulation of secretion from sustentacular cells, Bowman's glands and deep glands in the amphibian olfactory mucosa was investigated using immunohistochemical, electrophysiological, and pharmacological methods. Substance P-like immunoreactive varicose fibers extended through the olfactory epithelium, terminating at or near the surface. In addition, immunoreactive varicose fibers innervated Bowman's glands, deep glands, and blood vessels in the lamina propria. Innervation of Bowman's gland was sparse, with fibers terminating on basal acinar cell membranes; deep gland innervation was abundant, with fibers often extending between acinar cells almost to the lumen. Stimulation of the ophthalmic branch of the trigeminal nerve resulted in slow potentials recorded at the surface of the olfactory epithelium. When the olfactory mucosae from trigeminal-stimulated animals were examined histologically, morphological signs of secretory activity were observed, suggesting that substance P was released from the trigeminal nerve terminals. Topical application of 10-5 to 10-3 mol substance P resulted in morphological signs of secretion that were very similar to those seen as a result of trigeminal stimulation. Thus, substance P released from trigeminal fibers may modulate secretory activity within the olfactory mucosa.  相似文献   

4.
In larval sea lampreys (Petromyzon marinus), a small, relatively inconspicuous olfactory organ sac contains small, densely packed olfactory receptor neurons and sustentacular cells. During metamorphosis, the larval organ transforms into a prominent lamellar structure with large distinct olfactory epithelial cells that is characteristic of the adult lamprey. In the present study, scanning electron microscopy and light microscopy are used to examine changes during the seven stages (1–7) of metamorphosis. The magnitude of growth over the course of metamorphosis is evident from the doubling of the relative weight of the nasal sac. During early metamorphosis (stages 1 and 2), the larval olfactory organ enlarges, and by stage 3 specific adult structures begin to form, namely a nasal valve between the nasal tube and the organ, lamellar folds, and diverticuli of the accessory olfactory organ. Subsequent development involves widening of the cells lining the lamellar folds to the form characteristic of postmetamorphic lampreys. Although the cells in the troughs initially retain numerical density values that are significantly higher than those on the lamellar surfaces, by stage 7 values decline both in troughs and along lamellar surfaces to those observed in adults. These results show that although expansion of the olfactory organ is ongoing throughout metamorphosis, remodeling occurs early (by stage 3). This timing provides space for extensive olfactory receptor neuron neurogenesis and differentiation and correlates with the transformation of some organs that were previously examined. This is the first report in any species of olfactory receptor neuron zonation based on morphometric characteristics. J. Morphol. 231:41–52, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Little is known regarding how alkali metal ions are transported in the olfactory nerve following their intranasal administration. In this study, we show that an alkali metal ion, thallium is transported in the olfactory nerve fibers to the olfactory bulb in mice. The olfactory nerve fibers of mice were transected on both sides of the body under anesthesia. A double tracer solution (thallium-201, (201)Tl; manganese-54, (54)Mn) was administered into the nasal cavity the following day. Radioactivity in the olfactory bulb and nasal turbinate was analyzed with gamma spectrometry. Auto radiographic images were obtained from coronal slices of frozen heads of mice administered with (201)Tl or (54)Mn. The transection of the olfactory nerve fibers was confirmed with a neuronal tracer. The transport of intranasal administered (201)Tl/(54)Mn to the olfactory bulb was significantly reduced by the transection of olfactory nerve fibers. The olfactory nerve transection also significantly inhibited the accumulation of fluoro-ruby in the olfactory bulb. Findings indicate that thallium is transported by the olfactory nerve fibers to the olfactory bulb in mice. The assessment of thallium transport following head injury may provide a new diagnostic method for the evaluation of olfactory nerve injury.  相似文献   

6.
The ultrastructure of the trunk lateral line nerve of larval and adult lampreys was studied with transmission electron microscopy. We confirmed that lampreys' lateral line nerve lacks myelin. Nevertheless, all axons were wrapped by Schwann cell processes. In the larval nerve, gaps between Schwann cells were observed, where the axolemma was covered only by a basal lamina, indicating an earlier developmental stage. In the adult nerve, glial (Schwann cell) ensheathment was mostly complete. Additionally, we observed variable ratios of axons to Schwann cells in larval and adult preparations. In the larval nerve, smaller axons were wrapped by one Schwann cell. Occasionally, a single Schwann cell surrounded two axons. Larger axons were associated with two to five Schwann cells. In the adult nerve, smaller axons were surrounded by one, but larger axons by three to eight Schwann cells. The larval epineurium contained large adipose cells, separated from each other by single fibroblast processes. This layer of adipose tissue was reduced in adult preparation. The larval perineurium was thin, and the fibroblasts, containing large amounts of glycogen granules, were arranged loosely. The adult perineurium was thicker, consisting of at least three layers of fibroblasts separated by collagen fibrils. The larval and adult endoneurium contained collagen fibrils oriented orthogonally to each other. Both larval and adult lateral line nerves possessed a number of putative fascicles weakly defined by a thin layer of perineurial fibroblasts. These results indicate that after a prolonged larval stage, the lamprey lateral line nerve is subjected to additional maturation processes during metamorphosis. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Two immunoreactive forms of gonadotropinreleasing hormone (GnRH), lamprey GnRH-I and lamprey GnRH-III, were found in neurons in larval sea lampreys (Petromyzon marinus). Using antisera preferentially directed against either lamprey GnRH-I or-III, dense reaction product was seen in cell bodies in the rostral hypothalamus and preoptic area. Reaction product was also dense in fibers to and within the neurohypophysis, in addition to numerous fibers which projected caudally, beyond the neurohypophysis through the mesencephalon. The majority of immunoreactive GnRH was lamprey GnRH-III, and when lamprey GnRH-I was seen, it was in cells that appeared to contain both forms of GnRH. A small number of cells found in the caudal hypothalamus contained only immunoreactive lamprey GnRH-III, and these may constitute a functional subgroup within the population of GnRH neurons. In animals undergoing metamorphosis there was a large increase in reaction product in all GnRH-containing cells and fibers. A striking change within the distribution of GnRH cells was localized to a distinct group of GnRH-immunoreactive cells (GnRH-I and-III) in the ventral anterior hypothalamic area. These cells were minimally detectable in larvae, but during metamorphosis became densely filled with immunoreactive product in perikarya and distal processes. The results are consistent with the hypothesis that lamprey GnRH-III is an important form of GnRH during the maturation of GnRH cells and fibers, and further indicates that these cells have attained their normal positions in the preoptic area and hypothalamus before metamorphosis.  相似文献   

8.
The distribution of corticotropin-releasing factor (CRF)-like immunoreactivity and its colocalization with neuropeptide Y (NPY)-like substances were investigated in the optic lobe and peduncle complex of the octopus (Octopus vulgaris) using immunohistochemical techniques. In the optic lobe cortex, CRF-immunoreactive (CRF-IR) and NPY-immunonegative varicose fibers were observed in the plexiform layer. In the medulla, CRF-IR somata were seen in the cell islands, and CRF-IR varicose fibers were observed in the neuropil. About half of the CRF-IR structures in the medulla showed NPY-like immunoreactivity. In the peduncle lobe, no CRF-IR somata but abundant CRF-IR varicose fibers were observed, and about half of them showed NPY-like immunoreactivity. In the olfactory lobe, CRF-IR somata and abundant CRF-IR varicose fibers were observed. Almost all the CRF-IR somata located in the posterior olfactory lobule showed NPY-like immunoreactivity, whereas those seen in the median olfactory lobule were immunonegative for NPY. About half of the CRF-IR fibers in the anterior lobule neuropil were immunopositive for NPY, but those in the median and posterior lobule neuropils were immunonegative for NPY. In the optic gland, almost all the CRF-IR varicose fibers were immunoreactive for NPY. Western blot analysis of the optic lobe and peduncle complex indicated that anti-CRF antiserum labeled approximate 16.4- and 14.6-kDa bands and that anti-NPY antiserum labeled an approximate 16.2-kDa band. CRF-IR and NPY-immunoreactive neurons in the optic lobe may participate in the modulation of visual information and those in the optic gland may be involved in the regulation of endocrine function.  相似文献   

9.
Axonal transport of glycoconjugates was studied in the motoneurons of rat sciatic nerve following injection of [3H]glucosamine into the lumbosacral spinal cord. After varying time intervals, the sciatic nerve was exposed, and two ligatures were tied for collection of materials undergoing anterograde and retrograde transport. Gangliosides and glycoproteins were found to undergo fast anterograde transport, estimated at 284-446 mm/day. Both classes underwent retrograde transport as well, with labeled glycoproteins returning slightly ahead of labeled gangliosides. Only minor quantities of labeled proteoglycans were detected. Purified gangliosides extracted from nerve segments were fractionated according to sialic acid number on diethylaminoethyl-Sephadex; the distributional pattern tended to resemble that of brain gangliosides. The similarity between anterograde and retrograde patterns suggested absence of metabolic changes in gangliosides entering and leaving the axon-nerve terminal structures.  相似文献   

10.
Studies in lampreys have revealed interesting aspects of the evolution of the trigeminal system and the jaw. In the present study, we found a marker that distinguishes subpopulations of trigeminal motoneurons innervating two different kinds of oropharyngeal muscles. Immunofluorescence with an antibody against doublecortin (DCX; a neuron-specific phosphoprotein) enabled identification of the trigeminal motoneurons that innervate the velar musculature of larval and recently transformed sea lampreys. DCX-immunoreactive (-ir) motoneurons were observed in the rostro-lateral part of the trigeminal motor nucleus of these animals, but not in lampreys 1 month or more after metamorphosis. Combined double DCX/tubulin and serotonin/tubulin immunofluorescence and tract-tracing experiments with neurobiotin (NB) were also performed in larvae for further characterization of this system. Rich innervation by DCX-ir fibers was observed on the muscle fibers of the velum but not on the upper lip or lower lip muscles, which were innervated by tubulin-ir/DCX-negative fibers. No double-labelled DCX-ir motoneurons were observed in experiments in which the tracer NB was applied to the upper lip. Innervation of velar muscles by serotonergic fibers is also reported. The present results indicate that development of the trigeminal motoneurons innervating the velum differs from that of the trigeminal motoneurons innervating the lips, which is probably related to the dramatic regression of the velum during metamorphosis. The absence of data on a similar subsystem in the trigeminal motor nucleus of gnathostomes suggests that they may be lamprey-specific motoneurons. These results provide support for the "heterotopic theory" of jaw evolution and are inconsistent with the theories of a velar origin for the gnathostome jaw.  相似文献   

11.
Summary In cichlid, poecilid and centrarchid fishes luteinizing hormone releasing hormone (LHRH)-immunoreactive neurons are found in a cell group (nucleus olfactoretinalis) located at the transition between the ventral telencephalon and olfactory bulb. Processes of these neurons project to the contralateral retina, traveling along the border between the internal plexiform and internal nuclear layer, and probably terminating on amacrine or bipolar cells. Horseradish peroxidase (HRP) injected into the eye or optic nerve is transported retrogradely in the optic nerve to the contralateral nucleus olfactoretinalis where neuronal perikarya are labeled. Labeled processes leave this nucleus in a rostral direction and terminate in the olfactory bulb. The nucleus olfactoretinalis is present only in fishes, such as cichlids, poecilids and centrarchids, in which the olfactory bulbs border directly the telencephalic hemispheres. In cyprinid, silurid and notopterid fishes, in which the olfactory bulbs lie beneath the olfactory epithelium and are connected to the telencephalon via olfactory stalks, the nucleus olfactoretinalis or a comparable arrangement of LHRH-immunoreactive neurons is lacking. After retrograde transport of HRP in the optic nerve of these fishes no labeling of neurons in the telencephalon occurred. It is proposed that the nucleus olfactoretinalis anatomically and functionally interconnects and integrates parts of the olfactory and optic systems.  相似文献   

12.
A pleuronectiform fish, the barfin flounder Verasper moseri, has three molecular forms of gonadotropin-releasing hormone (GnRH) in the brain, salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II) and seabream GnRH (sbGnRH). To elucidate the ontogenic origin of the neurons that produce these GnRH molecules, the development of three GnRH systems was examined by in situ hybridization and immunocytochemistry. Neuronal somata that express sGnRH mRNA were detected first in the vicinity of the olfactory epithelium 21 days after hatching (Day 21), and then in the transitional area between the olfactory nerve and olfactory bulb and the terminal nerve ganglion on Day 28. cGnRH-II mRNA-expressing neuronal somata were first identified in the midbrain tegmentum near the ventricle on Day 7. cGnRH-II-immunoreactive (ir) fibers were first found in the brain on Day 7. sbGnRH mRNA-expressing neuronal somata were first detected in the preoptic area on Day 42. sbGnRH-ir fibers were localized in the preoptic area-hypothalamus, and formed a distinctive bundle of axons projecting to the pituitary on Day 70. These results indicate that three forms of GnRH neurons have separate embryonic origins in the barfin flounder as in other perciform fish such as tilapia Oreochromis niloticus and red seabream Pagrus major: sGnRH, cGnRH-II and sbGnRH neurons derive from the olfactory placode, the midbrain tegmentum near the ventricle and the preoptic area, respectively.  相似文献   

13.
Between 15 days and 3 months in age, the ‘elastica externa’ of the notochord sheath of larval lampreys develops from patches of moderately dense and amorphous material into a thick, continuous and electron-dense layer. In both lampreys and hagfish, this layer stains strongly with Verhoeff's elastic stain and aldehyde fuchsin and is penetrated by collagen fibrils on both its outer and inner boundaries. Peroxidase labelling using an antibody raised against human elastin specifically labels both the notochord ‘elastica externa’ and the elastic fibre system of lampreys. The diameters of the microfibrils (10–13 nm) of the oxytalan, elaunin and elastic fibres of lampreys and hagfish are the same as those of higher vertebrates. The connective tissue immediately dorsal and ventral to the notochord of lampreys contains mainly oxytalan fibres in very young ammocoetes, a combination of oxytalan, elaunin and elastic fibres in older ammocoetes, and predominantly elastic fibres in adult lampreys. While the region of the endomeninx at the base of the spinal cord contains almost exclusively oxytalan fibres in young ammocoetes, it also possesses numerous elastic fibres in adult lampreys. These findings indicate that, as in higher vertebrates, the elastic fibres of lampreys develop from oxytalan fibres via elaunin fibres.  相似文献   

14.
In serial electively stained transversal sections of the vagus nerve trunk taken at the levels beginning from its exit out of the brain, up to terminal branches in the abdominal cavity (10 corpses of mature persons) myelin fibers of three classes have been counted. Along the course of the nerve trunk in the craniocaudal direction the total number of the myelin fibers decreases. Only about 10% of the initial amount of the myelin conductors revealed at the level of the intracranial part of the vagus nerve get into the abdominal cavity. Simultaneously, the ratio of the myelin fibers belonging to different classes changes: the part of the fine conductors increases, and that of the fibers having middle and large diameters decreases. The most important in the dynamics of the whole amount of myelin fibers and in the number of the conductors belonging to different classes at all the levels of the nerve trunk is the getting off the organs' branches with various functional specialization.  相似文献   

15.
Recently evidence was presented that, following transection, spinal cords of larval lampreys could regenerate functional connections. The demonstration in isolated spinal cord-notochord preparations consisted of fictive swimming coordinated across the lesion site. In the study reported here curare was added to the bath to eliminate the possible contribution from reflexes mediated by contractions from any remaining muscle fibers attached to the notochord. Coordination remained in the presence of curare, adding further evidence that indeed the regenerated fibers formed functionally appropriate connections.  相似文献   

16.
To confirm the discrete character of projections of telencephalic olfactory and non-olfactory structures to the amygdaloid complex (AC) in the terrestrial turtle Testudo horsfieldi, a study was performed by the method of anterograde axonal transport of tracers (HRP, BDA). After a massive injection of the tracers into the main and accessory olfactory bulb, a dense accumulation of labeled fibers and terminals was found in ventral part of AC in the neuropil zones of nbam (J) and ncoam and very scanty—in nmam and ncam. After a massive injection of the tracers into non-olfactory telencephalic structures including dorsal cortex, pallidal enlargement, and ADVR, a very dense terminal field was observed in the dorsal AC part and a less dense one, with predominance of labeled fibers, in its ventral part. Local administration of the tracers separately into the dorsolateral (visual area) and the ventromedial (auditory-somatic area) parts of the ADVR allowed revealing discrete projections, respectively, to the laterocentral and mediocentral areas of the dorsal AC part with a relative overlapping in the central AC area. In all experiments, retrogradely labeled neurons in AC were also observed in zones of the corresponding bulbar and rostrotelencephalic projections. Thus, it has been shown that in the turtle AC there exist not only separation of direct olfactory and non-olfactory projections, but also discrete projections of different sensory areas of ADVR. Reciprocity of these connections is also confirmed. Organization of afferent olfactory and non-olfactory telencephalic connections in AC is similar in reptiles and in mammals.  相似文献   

17.
Summary Shared anatomical and physiological characters indicate that the low-frequency sensitive electrosensory system of lampreys is homologous with those of non-teleost fishes and amphibians. However, the ampullary electroreceptor organs which characterize all of these gnathostomes are not found in lampreys. Experimental anatomical and physiological studies reported here demonstrate that the epidermal end buds are the electroreceptors of adult lampreys.End buds, consisting of both sensory and supporting cells, are goblet-shaped with the top (25–60 m diameter) at the epidermal surface and the stem directed toward the dermis (Fig. 1A). Short lines or clusters of 2–8 end buds (Fig. 1B) are distributed over both trunk and head. Injections of horseradish peroxidase (HRP) into vitally-stained end buds labeled anterior lateral line afferents terminating in the ipsilateral dorsal nucleus (Fig. 2A) — the primary electrosensory nucleus of the lamprey medulla. Conversely, after HRP injection into the dorsal nucleus HRP-filled fibers and terminals were present on ipsilateral end buds (Fig. 2B).End buds are usually not visible without staining. However, in adult sea lampreys the presence of end buds was histologically confirmed in skin patches containing the receptive fields of electroreceptor fibers recorded in the anterior lateral line nerve. Additionally, in the rare instance of two silver lampreys in which end buds were visible without staining, electrosensory activity indistinguishable from that of the primary electroreceptor afferents was recorded from the end bud surface (Figs. 3, 4).End buds were initially characterized as chemoreceptors (Johnston 1902) but were later correctly advanced as lateralis receptors based on the presence of presynaptic dense bodies in the receptor cells (Whitear and Lane 1981). Unlike all other low-frequency electroreceptors, end buds lack canals. The receptor cells contact the epidermal surface and possess apical microvilli rather than the kinocilium of most gnathostomes with homologous electrosensory systems of the primitive (non-teleost) type.Larval lampreys and newly transformed adults lack end buds although at least the latter are electroreceptive. End buds, therefore, may be the form taken by electroreceptors only in the final portion of a lamprey's life.  相似文献   

18.
Summary Subsequent to the injection of horseradish peroxidase into the parietal eye of adult Lacerta sicula, the course of the parietal nerve and its projections were determined.The parietal nerve enters the left habenular ganglion where it branches into a medial and a lateral route. Some nerve fibers decussate within the habenular commissure. Whereas this pathway exhibits a striking asymmetry at the level of the habenular ganglia, its projections to the dorsolateral nucleus of the thalamus, the periventricular hypothalamic area, the preoptic hypothalamic and telencephalic regions, and the pretectal area are arranged in a strictly symmetric manner. A possible innervation of tegmental areas could not be proven due to the presence of endogenous peroxidase within these regions. No parietal nerve fibers were observed in the optic tectum.In a few animals investigated, scattered labeled perikarya were located in the periventricular hypothalamic gray indicating a parietopetal innervation in Lacerta sicula. The injection of horseradish peroxidase into one of the lateral eyes revealed terminal areas of the optic nerve within the preoptic region, and the thalamic and pretectal nuclei, displaying partial overlapping with the projections of the parietal nerve to these areas.From the present investigation further evidence is obtained that the pineal complex of lower vertebrates is a component of the photoneuroendocrine system. Particular emphasis is placed upon the nervous connections between the parietal eye and the hypothalamus, described for the first time in the present study.Supported by the Deutsche Forschungsgemeinschaft (Grant Ko 758/1)In partial fulfillment of the requirements of the degree of Dr. med., Faculty of Medicine, Justus Liebig University of Giessen  相似文献   

19.
Summary We examined the parietal eye visual system of the iguanid lizard Uta stansburiana for the presence of substance P-like immunoreactivity by use of both immunofluorescence and peroxidase-antiperoxidase techniques. In the parietal eye no substance P-containing somata were found; however, its plexiform layer contained small (ca. 1 m diam) immunoreactive fibers. These fibers apparently originate outside the parietal eye. Immunoreactive fibers also were found in the parietal nerve, the dorsal sac, and the leptomeninx of the pineal gland. No labeled somata were observed in any of these regions in either normal or colchicine treated animals. Previously we demonstrated that a system of centrifugal fibers to the parietal eye originates from neurons in the dorsal sac (Engbretson et al. 1981). The apparent absence of substance P-containing neurons in the dorsal sac suggests that the substance P-containing fibers in the parietal eye are not the previously observed centrifugal fibers. The source of the substance P-containing fibers in the parietal eye is unknown. The pars dorsolateralis of the left medial habenular nucleus receives a dense substance P-positive projection. No such projection was seen in the right habenula. Simultaneous visualization of the terminals of ganglion cells of the parietal eye (labeled with orthograde intraaxonally transported horseradish peroxidase) and substance P-like immunofluorescence showed that the locus of habenular immunoreactivity is distinct from the projection field of the parietal eye. Thus the substance P-positive terminals in the habenula do not originate in the parietal eye. Transection of the parietal nerve confirmed this conclusion.  相似文献   

20.
Using immunohistochemistry and optical densitometry, somatostatin (SOM), calcitonin gene-related peptide (CGRP), and gamma-aminobutyric acid (GABA) were investigated in the lumbosacral spinal cord of the frog Rana catesbeiana after sciatic nerve transection. In control animals, the densest network of the SOM-, CGRP- and GABA-like immunoreactive fibers was located in the dorsal part of the lateral funiculus. SOM and GABA-like fibers were found in the dorsal terminal field and in the mediolateral band. The latter region showed CGRP and SOM-like immunoreactive cell bodies. SOM- and GABA-like immunoreactive neurons also occurred around the cavity of the central canal, and other GABA-like fibers were found in the ventral terminal field. While the ventral horn showed scarce somatostatin-like fibers, the putative motoneurons were immunoreactive for the two peptides investigated and GABA, but only a few SOM- and GABA-like fibers occurred in the ventral funiculus. After axotomy, GABA-like immunoreactivity decreased in the dorsal part of the lateral funiculus on the same side of the lesion. The other regions remained labeled. These changes were observed at 3 days following axonal injury and persisted at 5, 8 and 15 days. There was no significant difference in the pattern of CGRP- and SOM- immunoreactivity between the axotomized and the control sides. These results are discussed in relation to the effects of the peripheral axotomy on GABA, SOM, and CGRP expression in vertebrates, emphasizing the use of frogs as a model to study the effects of peripheral nerve injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号