首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study provides the first survey of the parasitoid fauna reared in flower heads of Asteraceae in the Brazilian cerrado. We investigated the relative importance of herbivore richness and plant species commonness to differences in parasitoid species richness among the plant species. A total of 15,372 specimens from 192 morphospecies belonging to 103 genera of Hymenoptera were reared from the flower heads of 74 Asteraceae species. Chalcidoidea and Ichneumonoidea were the most common superfamilies, with Eulophidae and Braconidae as the main families of parasitoid wasps. Singletons and doubletons accounted for 45% of total parasitoid species richness. The number of parasitoid species per plant species ranged from 1 to 67, and the variation in parasitoid species richness among plants was mainly explained by the number of sites in which the plants were recorded. This study shows that there is a highly diversified fauna of Hymenoptera parasitoids associated with flower heads of Asteraceae in the Brazilian cerrado. Our findings suggest that the accumulation of parasitoid species on plants is mainly determined by the regional commonness of plant species rather than the number of herbivore species associated with the plants.  相似文献   

2.
The recently introduced term ‘integrative taxonomy’ refers to taxonomy that integrates all available data sources to frame species limits. We survey current taxonomic methods available to delimit species that integrate a variety of data, including molecular and morphological characters. A literature review of empirical studies using the term ‘integrative taxonomy’ assessed the kinds of data being used to frame species limits, and methods of integration. Almost all studies are qualitative and comparative – we are a long way from a repeatable, quantitative method of truly ‘integrative taxonomy’. The usual methods for integrating data in phylogenetic and population genetic paradigms are not appropriate for integrative taxonomy, either because of the diverse range of data used or because of the special challenges that arise when working at the species/population boundary. We identify two challenges that, if met, will facilitate the development of a more complete toolkit and a more robust research programme in integrative taxonomy using species tree approaches. We propose the term ‘iterative taxonomy’ for current practice that treats species boundaries as hypotheses to be tested with new evidence. A search for biological or evolutionary explanations for discordant evidence can be used to distinguish between competing species boundary hypotheses. We identify two recent empirical examples that use the process of iterative taxonomy.  相似文献   

3.
4.
Host specificity and host selection by insect parasitoids are hypothesized to be correlated with suitability of the hosts for parasitoid development. The present study investigates the correlation between host suitability and earlier studied host-finding behaviour of two closely related braconid larval parasitoid species, the generalist Cotesia glomerata (L.) and the specialist C. rubecula (Marshall) (Hymenoptera: Braconidae). We compared the capability of both parasitoid species to parasitize and develop in three Pieris host species, i.e. P. brassicae (L.), P. rapae (L.) and P. napi (L.) (Lepidoptera: Pieridae). In laboratory experiments, we measured the effect of host species on fitness parameters such as survival, development, sex ratio and size of parasitoid progeny. The results show that C. glomerata is capable of developing in the three host species, with significant differences in parasitoid survival, clutch size and adult weight among Pieris species. The host range for development was more restricted for C. rubecula. Although C. rubecula is physiologically able to develop in P. brassicae larvae, parasitoid fitness is negatively affected by this host species, compared to its most regular host, P. rapae. A comparison of the present data on host suitability with earlier studies on host-searching behaviour suggests that the host-foraging behaviour of both parasitoid species not only leads to selection of the most suitable host species for parasitoid development, but also plays a significant role in shaping parasitoid host range.  相似文献   

5.
Integrative taxonomy is a recently developed approach that uses multiple lines of evidence such as molecular, morphological, ecological and geographical data to test species limits, and it stands as one of the most promising approaches to species delimitation in taxonomically difficult groups. The Pnigalio soemius complex (Hymenoptera: Eulophidae) represents an interesting taxonomical and ecological study case, as it is characterized by a lack of informative morphological characters, deep mitochondrial divergence, and is susceptible to infection by parthenogenesis‐inducing Rickettsia. We tested the effectiveness of an integrative taxonomy approach in delimiting species within the P. soemius complex. We analysed two molecular markers (COI and ITS2) using different methods, performed multivariate analysis on morphometric data and exploited ecological data such as host–plant system associations, geographical separation, and the prevalence, type and effects of endosymbiont infection. The challenge of resolving different levels of resolution in the data was met by setting up a formal procedure of data integration within and between conflicting independent lines of evidence. An iterative corroboration process of multiple sources of data eventually indicated the existence of several cryptic species that can be treated as stable taxonomic hypotheses. Furthermore, the integrative approach confirmed a trend towards host specificity within the presumed polyphagous P. soemius and suggested that Rickettsia could have played a major role in the reproductive isolation and genetic diversification of at least two species.  相似文献   

6.
The parasitoid Hymenoptera are one of the most important groups of natural enemies of agriculture and forestry pests and have been used as biological control agents in IPM programs for a long time. The systematic research on parasitoids and their associations with hosts lays a solid base for biological control of pests. Here we summarize the taxonomic studies undertaken on the parasitoid wasps in China in the last eight decades. At present about 48 families in 12 superfamilies of parasitoid Hymenoptera are known in China, of which the majority of the families have been studied to some extent while a number of them are still poorly studied. Around 6000 species of 32 families which dealt with in this paper are known in China, and some of them have been successfully and widely used in the existing biological control while others are potentially useful in future biocontrol program. This overview provides the international audience a general idea about the current state of the systematic study of parasitoid Hymenoptera conducted in China, the known species of parasitoids and the native and introduced species used in biocontrol in China.  相似文献   

7.
8.
9.
The ecology of parasitoids is strongly influenced by their host plant species. Parasitoid fitness can be affected by a variety of plant traits that could promote phenotypic differentiation among populations of parasitoids. Generalist parasitoids are expected to be more affected by plant traits (e.g., plant defensive traits) than specialist parasitoids. Data are presented on phenotypic differences of two braconid parasitoid wasps ovipositing on the same insect host species on two different host plant species. Adult mass, adult longevity, and percent parasitism are compared for the generalist parasitoid Cotesia marginiventris Cresson and the specialist parasitoid Aleiodes nolophanae Ashmead (both Hymenoptera: Braconidae) emerging from green cloverworms, Hypena scabra Fabricius (Lepidoptera: Noctuidae), feeding on two host plant species, alfalfa (Medicago sativa L.) and soybean (Glycine max L. Merr.) (both Fabaceae), at three locations. Specialist wasps that parasitized the green cloverworm on alfalfa had a significantly larger mass than the ones that parasitized the green cloverworm on soybean at the three study sites. Generalist wasps that parasitized green cloverworms on alfalfa had a larger mass than wasps parasitizing green cloverworms on soybean only at one of the study sites (i.e., Prince George's County, MD, USA). Similarly, both specialist and generalist wasps lived longer when parasitizing green cloverworms on alfalfa than when parasitizing them on soybean at only one of the study sites (i.e., Prince George's County). In Prince George's County, percent parasitism on alfalfa by the specialist parasitoid was higher than on soybean for three consecutive years and percent parasitism by the generalist parasitoid was the same on alfalfa and soybean every year. Thus, phenotypic differences among populations associated with different host plant species vary geographically (i.e., parasitoid phenotype associated with different host plant species differ at some sites while it is the same at other sites). The implications of geographic variation for biological control are discussed.  相似文献   

10.
Acquiring sufficient nutrients is particularly important for insects that are unable to synthesize certain nutrient types de novo, as is the case for numerous parasitoid species that do not synthesize lipids. The lipid reserves of parasitoids are acquired from a single host during larval development. This imposes constraints on the quantity and quality of available lipids. In the present study, the lipid dynamics throughout the trophic cascade are investigated by measuring lipogenic ability, modifications in fatty acid composition and host exploitation efficiency in species at different trophic positions within the community of parasitoids associated with the gall wasp Diplolepis rosae L. (Hymenoptera: Cynipidae). The results obtained show that lipid levels remain stable or decline after feeding in all species, indicating that none of the wasps synthesize lipids. Fatty acid composition is highly similar between the gall wasp, parasitoid and hyperparasitoid species, with the exception of the parasitoid Orthopelma mediator Thunberg (Hymenoptera: Ichneumonidae). The divergence of fatty acid composition in O. mediator suggests that this species is able to modify its fatty acid composition after the consumption of host lipids. The efficiency of exploitation of host resource, in terms of dry body mass acquired, varies among the species (41–70%), although it is high overall compared with the efficiencies reported in other animals. Hence, for parasitoid wasps that lack lipid synthesis capabilities, the efficiency of host exploitation is high and fatty acids are consumed directly from the host without modification, leading to stable fatty acid compositions throughout the trophic cascade.  相似文献   

11.
Previously, host-parasitoid links have been unveiled almost exclusively by time-intensive rearing, while molecular methods were used only in simple agricultural host-parasitoid systems in the form of species-specific primers. Here, we present a general method for the molecular detection of these links applied to a complex caterpillar-parasitoid food web from tropical rainforest of Papua New Guinea. We DNA barcoded hosts, parasitoids and their tissue remnants and matched the sequences to our extensive library of local species. We were thus able to match 87% of host sequences and 36% of parasitoid sequences to species and infer subfamily or family in almost all cases. Our analysis affirmed 93 hitherto unknown trophic links between 37 host species from a wide range of Lepidoptera families and 46 parasitoid species from Hymenoptera and Diptera by identifying DNA sequences for both the host and the parasitoid involved in the interaction. Molecular detection proved especially useful in cases where distinguishing host species in caterpillar stage was difficult morphologically, or when the caterpillar died during rearing. We have even detected a case of extreme parasitoid specialization in a pair of Choreutis species that do not differ in caterpillar morphology and ecology. Using the molecular approach outlined here leads to better understanding of parasitoid host specificity, opens new possibilities for rapid surveys of food web structure and allows inference of species associations not already anticipated.  相似文献   

12.
13.
14.
中国兽类(即哺乳动物)种类繁多,对维持生态平衡发挥着重要的作用。自John R.Reeves于1829—1834年在我国广东开展兽类调查以来,近200年我国兽类分类及系统学研究取得了令世人瞩目的进步和发展。目前中国已知的兽类物种数已达686种,约占全世界兽类种数的10%,是世界上兽类物种多样性最丰富的国家之一。随着我国对生态环境保护的重视,生态环境日益改善,但全球气候变化、生境破碎化、人类活动增加及人兽共患重大疫情涌现等问题仍十分突出,兽类多样性调查及分类学研究的必要性越发明显。同时,兽类分类学这门古老而传统的学科也在不断引入各种新方法与技术,如整合分类学、标本数字化、模式标本测序、便携式测序技术及基于深度学习技术的物种识别鉴定等,分类学研究的成果及应用在近年得到了飞速发展。动物分类学作为传统的基础学科,是遗传学、生理学、生态学、医学、药学等现代生物学的基石。然而,由于学科特征和差异等原因,该学科近年来没有得到足够的重视,导致出现了学科萎缩和分类学人才后继无人的危机。因此,从国家层面对分类学、形态学等基础学科的人才培养、课题设置和资金投入等,予以特殊的政策支持,十分必要,也亟待解决。  相似文献   

15.
《Biological Control》2010,55(3):300-306
The European grapevine moth, Lobesia botrana (Denis & Schiffermüller, 1775) (Lepidoptera: Tortricidae) is a major pest of grapevines responsible for great economic losses and frequent insecticide applications. Nevertheless, the use of parasitoids as potential biological control agents has received very little attention. In this study, we present results from a survey on parasitoid species collected from French and Swiss vineyards over a period of 2 years. Over 2000 larvae of L. botrana were collected from six grape cultivars out of which a total of 118 parasitoids emerged. Ten species were identified. Exochus notatus (Holmgren, 1858) (Hymenoptera: Ichneumonidae) was the most abundant species and has a wide geographical distribution. Another parasitoid species, Agrypon anxium (Wesmael, 1849) (Hymenoptera: Ichneumonidae), had never been described on L. botrana before and two others remain unidentified Goniozus sp. (Förster, 1851) (Hymenoptera: Bethylidae) and Apanteles sp. (Hymenoptera: Braconidae). Other species include Phytomyptera nigrina (Meigen, 1824) (Diptera: Tachinidae) as well as Campoplex capitator (Aubert, 1960), Diadegma fenestralis (Holmgren, 1860), Dicaelotus inflexus (Thomson, 1891) Itoplectis maculator (Fabricius, 1775) and Triclistus meridiator Aubert, 1984 (all Hymenoptera: Ichneumonidae). We observed substantial regional variation in species richness and also found that abundance and diversity of several parasitoid species varied as a function of geographical location and grape cultivar. The parasitism rate by E. notatus was for example affected by grape cultivar suggesting that biological control may be affected by the cultivar of the host plant. These results are discussed in the context of tritrophic interactions and focus especially on the role of grape cultivar on parasitoid richness. We also suggest potential development of native parasitoid species in the implementation of biological control programs against L. botrana.  相似文献   

16.
Abstract  After several reports of late-maturing maize in Murrumbidgee valley, southern New South Wales, Australia, being severely damaged by armyworm, five crops were surveyed for the presence of larvae in April 2003. Mythimna convecta Walker (Lepidoptera: Noctuidae) was the only species successfully reared from armyworm larvae collected in the field. Ninety-six per cent of armyworm larvae collected were parasitised. Five parasitoid species, Cuphocera sp. nr pilosa (Malloch), Ceromya horma (Malloch), Tritaxys scutellate (Macquart), Chaetophthalmus sp. (Diptera: Tachinidae) and Netelia sp. (Hymenoptera: Ichneumonidae) were reared from M. convecta larvae. Cuphocera sp. nr pilosa was the most frequently encountered parasitoid being reared from 83% of M. convecta larvae collected. Examination of maize plants at each collection site showed high numbers of tachinid puparia adhering to plants. Cuphocera sp. nr pilosa was the only species reared from these puparia. Of the Cu . sp. nr pilosa puparia collected, 23–83% were parasitised by five parasitoid wasps: Trichomalopsis sp. Crawford (Hymenoptera: Pteromalidae), Brachymeria sp. Westwood, Eupelmus sp. Dalman (Hymenoptera: Chalcididae), Perilampus sp. Latreille (Hymenoptera: Perilampidae) and a species belonging to the family Diapriidae.  相似文献   

17.
The use of planktonic foraminifera in paleoceanography requires taxonomic consistency and precise assessment of the species biogeography. Yet, ribosomal small subunit (SSUr) DNA analyses have revealed that most of the modern morpho-species of planktonic foraminifera are composed of a complex of several distinct genetic types that may correspond to cryptic or pseudo-cryptic species. These genetic types are usually delimitated using partial sequences located at the 3′end of the SSUrDNA, but typically based on empirical delimitation. Here, we first use patristic genetic distances calculated within and among genetic types of the most common morpho-species to show that intra-type and inter-type genetic distances within morpho-species may significantly overlap, suggesting that genetic types have been sometimes inconsistently defined. We further apply two quantitative and independent methods, ABGD (Automatic Barcode Gap Detection) and GMYC (General Mixed Yule Coalescent) to a dataset of published and newly obtained partial SSU rDNA for a more objective assessment of the species status of these genetic types. Results of these complementary approaches are highly congruent and lead to a molecular taxonomy that ranks 49 genetic types of planktonic foraminifera as genuine (pseudo)cryptic species. Our results advocate for a standardized sequencing procedure allowing homogenous delimitations of (pseudo)cryptic species. On the ground of this revised taxonomic framework, we finally provide an integrative taxonomy synthesizing geographic, ecological and morphological differentiations that can occur among the genuine (pseudo)cryptic species. Due to molecular, environmental or morphological data scarcities, many aspects of our proposed integrative taxonomy are not yet fully resolved. On the other hand, our study opens up the potential for a correct interpretation of environmental sequence datasets.  相似文献   

18.
19.
Several studies underline the importance of ecological barriers and differential selection in driving sympatric speciation. Host‐associated differentiation (HAD) has been proposed as one of the mechanisms leading to sympatric speciation. However, it is still unclear how common HAD is or which are the factors that could promote it. In particular, not much is known about HAD in predators and parasitoids of herbivorous insects. One of the characteristics postulated to pre‐dispose insects to HAD is parthenogenesis as it may favour adaptive responses to particular environments, amplifying selected gene complexes. In this study, we used amplified fragment length polymorphism (AFLP) markers to determine whether HAD is present in two parthenogenetic egg parasitoids attacking the same herbivore species – the pine processionary moth, Thaumetopoea pityocampa (Denis & Schiffermüller) (Lepidoptera: Notodontidae) – on two host Pinus species. A total of 100 loci for 59 individuals sampled in four populations of Baryscapus servadeii (Domenichini) (Hymenoptera: Eulophidae), a specialist parasitoid, and 106 loci for 117 individuals sampled in six populations of Ooencyrtus pityocampae Mercet (Hymenoptera: Encyrtidae), a generalist parasitoid, were analysed. Levels of genetic differentiation were also assessed with an outlier analysis, checking for alleles associated to host plants. No evidence of HAD was detected in any of the two parasitoid species. We hypothesize that both the lack of strict parthenogenetic reproduction and the ectophagous nature of the insect host could explain the absence of HAD. The genetic variation observed in the generalist parasitoid responded to a pattern of local adaptation, whereas no relationship with either host or geography was found in the specialist parasitoid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号