首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerebral malaria (CM) is associated with excessive inflammatory responses and endothelial activation. Sphingosine 1-phosphate (S1P) is a signaling sphingolipid implicated in regulating vascular integrity, inflammation and T-cell migration. We hypothesized that altered S1P signaling during malaria contributes to endothelial activation and inflammation, and show that plasma S1P levels were decreased in Ugandan children with CM compared with children with uncomplicated malaria. Using the Plasmodium berghei ANKA (PbA) model of experimental CM (ECM), we demonstrate that humanized S1P lyase (hS1PL)(-/-) mice with reduced S1P lyase activity (resulting in increased bio-available S1P) had improved survival compared with wild-type littermates. Prophylactic and therapeutic treatment of infected mice with compounds that modulate the S1P pathway and are in human trials for other conditions (FTY720 or LX2931) significantly improved survival in ECM. FTY720 treatment improved vascular integrity as indicated by reduced levels of soluble intercellular adhesion molecule (sICAM), increased angiopoietin 1 (Ang1) (regulator of endothelial quiescence) levels, and decreased Evans blue dye leakage into brain parenchyma. Furthermore, treatment with FTY720 decreased IFNγ levels in plasma as well as CD4(+) and CD8(+) T-cell infiltration into the brain. Finally, when administered during infection in combination with artesunate, FTY720 treatment resulted in increased survival to ECM. These findings implicate dysregulation of the S1P pathway in the pathogenesis of human and murine CM and suggest a novel therapeutic strategy to improve clinical outcome in severe malaria.  相似文献   

2.
Macrophages uptake oxidized low-density lipoprotein (LDL) via a scavenger receptor such as CD36 from plasma, and then become foam cells. We examined the association of CD36 gene single nucleotide polymorphisms (SNPs) with certain metabolic characteristics in a young male Japanese population (n?=?494). The G allele in a SNP located at +30215 on the 3’-untranslated region (UTR) was significantly correlated with the plasma LDL-cholesterol concentrations (r?=?0.13, p?<0.01). The difference in LDL-cholesterol concentrations was 10?mg dl?1 between GG- and AA-genotype carriers (p?<0.05). The CD36 gene SNP is a novel maker of the variation in the LDL-cholesterol levels in young Japanese men.  相似文献   

3.
Adhesion molecules on endothelial cells are known to be important ligands for malaria infected red blood cells (PRBC) [Mol Biochem Parasitol, 76, (1996) 1], and may be involved in the pathogenic process of cerebral malaria (CM) which is the most serious complication of falciparum malaria, through enhancing micro embolism or sequestration in the capillaries of the brain. PECAM-1/CD31 is one of these candidate ligands and is coded by a polymorphic gene. Two hundred and ten Thai malaria patients (43 cerebral, 89 severe and 78 uncomplicated) were analyzed for their genetic polymorphism of CD31 to examine the clinical relationship between the disease and specific genotypes. Four alleles were defined 125 valine (V)-563 asparagine (N); 125V-563 serine (S); 125 leucine (L)-563N; and 125L-563S. We found that the frequency of the 125 V/V 563 N/N genotype was significantly high in CM patients as compared with severe cases without CM (P<0.01, OR=2.92), suggesting that this genotype is one of the risk factors for CM.  相似文献   

4.

Background

Surrogate markers of protective immunity to malaria in humans are needed to rationalize malaria vaccine discovery and development. In an effort to identify such markers, and thereby provide a clue to the complex equation malaria vaccine development is facing, we investigated the relationship between protection acquired through exposure in the field with naturally occurring immune responses (i.e., induced by the parasite) to molecules that are considered as valuable vaccine candidates.

Methods and Findings

We analyzed, under comparative conditions, the antibody responses of each of six isotypes to five leading malaria vaccine candidates in relation to protection acquired by exposure to natural challenges in 217 of the 247 inhabitants of the African village of Dielmo, Senegal (96 children and 121 older adolescents and adults). The status of susceptibility or resistance to malaria was determined by active case detection performed daily by medical doctors over 6 y from a unique follow-up study of this village. Of the 30 immune responses measured, only one, antibodies of the IgG3 isotype directed to merozoite surface protein 3 (MSP3), was strongly associated with clinical protection against malaria in all age groups, i.e., independently of age. This immunological parameter had a higher statistical significance than the sickle cell trait, the strongest factor of protection known against Plasmodium falciparum. A single determination of antibody was significantly associated with the clinical outcome over six consecutive years in children submitted to massive natural parasite challenges by mosquitoes (over three parasite inoculations per week). Finally, the target epitopes of these antibodies were found to be fully conserved.

Conclusions

Since anti-MSP3 IgG3 antibodies can naturally develop along with protection against P. falciparum infection in young children, our results provide the encouraging indication that these antibodies should be possible to elicit by vaccination early in life. Since these antibodies have been found to achieve parasite killing under in vitro and in vivo conditions, and since they can be readily elicited by immunisation in naïve volunteers, our immunoepidemiological findings support the further development of MSP3-based vaccine formulations.  相似文献   

5.
The CD45 antigen is essential for normal antigen receptor-mediated signalling in lymphocytes, and different patterns of splicing of CD45 are associated with distinct functions in lymphocytes. Abnormal CD45 splicing has been recognized in humans, caused by a C77G transversion in the gene encoding CD45 (PTPRC). Recently the C77G polymorphism has been associated with multiple sclerosis and increased susceptibility to HIV-1 infection. These studies suggest that the regulation of CD45 splicing may be critical for the proper function of the immune system. Because of these data we examined the frequency of the C77G allele in African and Asian populations from countries with high or low prevalence of HIV infection. Here we report that the variant CD45 C77G allele is absent in African populations. We further show that populations living in the Pamir mountains of Central Asia have a very high prevalence of the C77G variant.  相似文献   

6.
Erythrocyte high activity binding peptides (HABPs) have been identified for the Plasmodium falciparum serine repeat antigen (SERA). HABP 6746, located in this protein's 50 kDa fragment had its critical binding residues replaced by amino acids having similar mass but different charge to change their immunologic properties. This peptide analogues were used to immunize Aotus monkeys that were challenged later on with a virulent P. falciparum strain to determine their protective efficacy. A shortening in alpha helix structure was found in the immunogenic and protective ones when their secondary structure was analyzed by NMR, to correlate their structure with their immunologic properties. These data, together with results from previous studies, suggest that this shortening in HABP helical configuration may lead to better fitting with immune system molecules, rendering them immunogenic and protective and therefore making them excellent candidates for consideration as components of a subunit based multicomponent synthetic vaccine against malaria.  相似文献   

7.

Background

Malaria kills almost 1 million people every year, but the mechanisms behind protective immunity against the disease are still largely unknown.

Methodology/Principal Findings

In this study, surface plasmon resonance technology was used to evaluate the affinity (measured as kd) of naturally acquired antibodies to the Plasmodium falciparum antigens MSP2 and AMA1. Antibodies in serum samples from residents in endemic areas bound with higher affinities to AMA1 than to MSP2, and with higher affinities to the 3D7 allele of MSP2-3D7 than to the FC27 allele. The affinities against AMA1 and MSP2-3D7 increased with age, and were usually within similar range as the affinities for the monoclonal antibodies also examined in this study. The finding of MSP2-3D7 type parasites in the blood was associated with a tendency for higher affinity antibodies to both forms of MSP2 and AMA1, but this was significant only when analyzing antibodies against MSP2-FC27, and individuals infected with both allelic forms of MSP2 at the same time showed the highest affinities. Individuals with the highest antibody affinities for MSP2-3D7 at baseline had a prolonged time to clinical malaria during 40 weeks of follow-up, and among individuals who were parasite positive at baseline higher antibody affinities to all antigens were seen in the individuals that did not experience febrile malaria during follow up.

Conclusions/Significance

This study contributes important information for understanding how immunity against malaria arises. The findings suggest that antibody affinity plays an important role in protection against disease, and differs between antigens. In light of this information, antibody affinity measurements would be a key assessment in future evaluation of malaria vaccine formulations.  相似文献   

8.
Systems ensuring protection of human cells against endogenous and exogenous mutagenic factors are considered in terms of genetic polymorphism. Some protection mechanisms are described, including those connected with capturing free radicals, biotransformation of xenobiotics, excision repair of DNA damage (excision of nitrous bases, nucleotides, mismatch repair). A special section is devoted to some issues of using antimutagens in context of genetic polymorphism. The problem of adaptive response is discussed, providing evidence for independence (in some cases) of DNA repair systems and the formation of adaptive response. Some results of the author obtained many years ago but still relevant are presented.__________Translated from Genetika, Vol. 41, No. 4, 2005, pp. 520–535.Original Russian Text Copyright © 2005 by Zasukhina.  相似文献   

9.
Zasukhina GD 《Genetika》2005,41(4):520-535
Systems ensuring protection of human cells against endogenous and exogenous mutagenic factors are considered in terms of genetic polymorphism. Some protection mechanisms are described, including those connected with capturing free radicals, biotransformation of xenobiotics, excision repair of DNA damage (excision of nitrous bases, nucleotides, mismatch repair). A special section is devoted to some issues of using antimutagens in context of genetic polymorphism. The problem of adaptive response is discussed, providing evidence for independence (in some cases) of DNA repair systems and the formation of adaptive response. Some results of the author obtained many years ago but still relevant are presented.  相似文献   

10.

Background

Cardiopulmonary exercise testing (CPET) has become an important modality for the evaluation and management of patients with a diverse array of medical problems. However, interpreting these tests is often difficult and time consuming, requiring significant expertise.

Methods

We created a computer software program (XINT) that assists in CPET interpretation. The program uses an integrative approach as recommended in the Official Statement of the American Thoracic Society/American College of Chest Physicians (ATS/ACCP) on Cardiopulmonary Exercise Testing. In this paper we discuss the principles behind the software. We also provide the detailed logic in an accompanying file (Additional File 1). The actual program and the open source code are also available free over the Internet at http://www.xint.org. For convenience, the required download files can also be accessed from this article.

Results

To test the clinical usefulness of XINT, we present the computer generated interpretations of the case studies discussed in the ATS/ACCP document in another accompanying file (Additional File 2). We believe the interpretations are consistent with the document's criteria and the interpretations given by the expert panel.

Conclusion

Computers have become an integral part of modern life. Peer-reviewed scientific journals are now able to present not just medical concepts and experimental studies, but actual functioning medical interpretive software. This has enormous potential to improve medical diagnoses and patient care. We believe XINT is such a program that will give clinically useful interpretations when used by the medical community at large.  相似文献   

11.
Collaborative studies have identified some genetic factors contributing to the development of severe forms of malaria and schistosomiasis. In Thailand, the TNF-alpha 5'-flanking region shows biallelic polymorphic sites at nucleotides -238, -308, -857, -863, and -1031, and seven alleles have been identified in patients from Myanmar. We found that the TNF promoter (TNFP)-D allele was significantly associated with cerebral malaria in populations from Karen (P < 0.0001, OR = 124.86) and ethnic Burma (P < 0.0001, OR = 34.50). In China, we have identified two major genes related to the severity of liver fibrosis, one an HLA class II gene, and the other the IL-13 gene. The frequency of the HLA-DRB5*0101 allele and that of the IL-13 promoter A/A (IL-13P- A/A) genotype were elevated in fibrotic patients, although the two genes are located on different chromosomes, chromosomes 6p and 5q, respectively. Subjects with both genotypes had odds ratios (OR = 24.5) much higher than the sum of the ratios for each individual genotype (OR = 5.1, 95% Confidence Interval 1.3-24.7 for HLA-DRB5*0101, OR = 3.1 95% CI 1.5 - 6.5 for IL-13P- A/A). That the effects of the two susceptibility markers are synergistic rather than additive, strongly suggests that the pathogenic Th2 response directly influences the prognosis of post-schistosomal liver fibrosis.  相似文献   

12.
Cerebral malaria (CM) is a fatal complication of Plasmodium falciparum infection. Using a well defined murine model, we observed the effect on disease outcome of temporarily reducing parasite burden by anti-malarial drug treatment. The anti-malarial treatment regime chosen decreased parasitaemia but did not cure the mice, allowing recrudescence of parasites. These mice were protected against CM, despite their parasitaemia having increased, following treatment cessation, to levels surpassing that associated with CM in mice not treated with the drug. The protection was associated with reduced levels of cytokines, chemokines, CD8+ T cells and parasites in the brain. The results suggest that the development of the immunopathological response that causes CM depends on a continuous stimulus provided by parasitised red blood cells, either circulating or sequestered in small vessels.  相似文献   

13.
By analysing data on the age distribution of cerebral malaria among sites of different transmission intensities, we conclude that the most plausible explanation for the epidemiological patterns seen is that (i) cerebral malaria is caused by a distinct set of Plasmodium falciparum antigenic types; (ii) these antigenic types or 'CM strains' are very common and induce strong strain-specific immunity; and (iii) the postnatal period of protection against cerebral malaria is much longer than the period of protection against other forms of severe disease. The alternative hypothesis that cerebral malaria may be caused by any 'strain' of P. falciparum is compatible with the data only if a single exposure is sufficient to protect against further episodes. This is not consistent with observations on the history of exposure of patients with cerebral malaria. Finally, it is clear that although the delayed peak in incidence of cerebral malaria (with age) can be generated by assuming that subsequent exposures carry a higher risk of disease, such an explanation is not compatible with the observation that severe disease rates are low among infants and young children in areas of high transmissibility.  相似文献   

14.
Inter-individual heterogeneity in the response to human T-lymphotropic virus 1 (HTLV-1) infection has been partially attributed to host genetic background. The antiviral activity of the inflammasome cytoplasmic complex recognises viral molecular patterns and regulates immune responses via the activation of interleukin (IL)-1 family (IL-1, IL-18 and IL-33) members. The association between polymorphisms in the inflammasome receptors NLRP1 and NLRP3 and HTLV-1 infection was evaluated in a northeastern Brazilian population (84 HTLV-1 carriers and 155 healthy controls). NLRP3 rs10754558 G/G was associated with protection against HTLV-1 infection (p = 0.012; odds ratio = 0.37). rs10754558 affects NLRP3 mRNA stability; therefore, our results suggest that higher NLRP3 expression may augment first-line defences, leading to the effective protection against HTLV-1 infection.  相似文献   

15.
16.
Cerebral malaria is an infrequent but serious complication of Plasmodium falciparum infection in humans. Co-infection with different Plasmodium species is common in endemic areas and the existence of benign malaria parasites, such as Plasmodium vivax, during P. falciparum infection has been considered to reduce the risk of developing pathogenesis. However, it is still unknown how disease severity is reduced in the host during co-infection. In the present study, we investigated the influence of co-infection with non-lethal malaria parasites, Plasmodium berghei (Pb) XAT strain, on the outcome of Pb ANKA strain infection which causes experimental cerebral malaria (ECM) in mice. The co-infection with non-lethal Pb XAT suppressed ECM caused by Pb ANKA infection and prolonged survival of mice. The production of TNF-α and IFN-γ, which had been shown to be involved in development of ECM, was suppressed in co-infected mice early in infection. The suppression of ECM by co-infection with Pb XAT was abrogated in IL-10-deficient mice. IL-10 plays a crucial role in the suppression of ECM by co-infection with non-lethal malaria parasites, probably due to its suppressive effect on the induction of TNF-α and IFN-γ. Co-infection with Pb XAT and Pb ANKA is a useful model for understanding how ECM is suppressed.  相似文献   

17.

Background

Immunity to malaria develops naturally in endemic regions, but the protective immune mechanisms are poorly understood. Many vaccination strategies aim to induce T cells against diverse pre-erythrocytic antigens, but correlates of protection in the field have been limited. The objective of this study was to investigate cell-mediated immune correlates of protection in natural malaria. Memory T cells reactive against thrombospondin-related adhesive protein (TRAP) and circumsporozoite (CS) protein, major vaccine candidate antigens, were measured, as were frequencies of CD4+ CD25high T cells, which may suppress immunity, and CD56+ NK cells and γδ T cells, which may be effectors or may modulate immunity.

Methodology and Principal Findings

112 healthy volunteers living in rural Kenya were entered in the study. Memory T cells reactive against TRAP and CS were measured using a cultured IFNγ ELISPOT approach, whilst CD4+ CD25high T cells, CD56+ NK cells, and γδ T cells were measured by flow cytometry. We found that T cell responses against TRAP were established early in life (<5 years) in contrast to CS, and cultured ELISPOT memory T cell responses did not correlate with ex-vivo IFNγ ELISPOT effector responses. Data was examined for associations with risk of clinical malaria for a period of 300 days. Multivariate logistic analysis incorporating age and CS response showed that cultured memory T cell responses against TRAP were associated with a significantly reduced incidence of malaria (p = 0.028). This was not seen for CS responses. Higher numbers of CD4+ CD25high T cells, potentially regulatory T cells, were associated with a significantly increased risk of clinical malaria (p = 0.039).

Conclusions

These data demonstrate a role for central memory T cells in natural malarial immunity and support current vaccination strategies aimed at inducing durable protective T cell responses against the TRAP antigen. They also suggest that CD4+ CD25high T cells may negatively affect naturally acquired malarial immunity.  相似文献   

18.
Parasite burden predicts disease severity in malaria and risk of death in cerebral malaria patients. In murine experimental cerebral malaria (ECM), parasite burden and CD8(+) T cells promote disease by mechanisms that are not fully understood. We found that the majority of brain-recruited CD8(+) T cells expressed granzyme B (GzmB). Furthermore, gzmB(-/-) mice harbored reduced parasite numbers in the brain as a consequence of enhanced antiparasitic CD4(+) T cell responses and were protected from ECM. We showed in these ECM-resistant mice that adoptively transferred, Ag-specific CD8(+) T cells migrated to the brain, but did not induce ECM until a critical Ag threshold was reached. ECM induction was exquisitely dependent on Ag-specific CD8(+) T cell-derived perforin and GzmB, but not IFN-γ. In wild-type mice, full activation of brain-recruited CD8(+) T cells also depended on a critical number of parasites in this tissue, which in turn, was sustained by these tissue-recruited cells. Thus, an interdependent relationship between parasite burden and CD8(+) T cells dictates the onset of perforin/GzmB-mediated ECM.  相似文献   

19.
Human FcgammaRIIA and FcgammaRIIIB exhibit genetic polymorphisms, FcgammaRIIA-131H/R and FcgammaRIIIB-NA1/NA2, coding for different capacities for IgG binding and phagocytosis. Recently, FcgammaRIIA-131R was reported to be associated with protection against high-density Plasmodium falciparum infection in Kenya. Furthermore, FcgammaRIIIB-NA1/NA2 polymorphism was shown to influence FcgammaRIIA function in an allele-specific manner. In this study, we examined a possible association of FcgammaRIIA-131H/R and FcgammaRIIIB-NA1/NA2 polymorphisms with malaria severity in 107 cerebral malaria patients, 157 non-cerebral severe malaria patients, and 202 mild malaria controls living in northwest Thailand. This study reveals that, with the FcgammaRIIIB-NA2 allele, the FcgammaRIIA-131H/H genotype is associated with susceptibility to cerebral malaria (OR 1.85, 95% CI 1.14-3.01; P=0.012), although these polymorphisms are not individually involved in the disease severity. Our results suggest that FcgammaRIIA-131H/R and FcgammaRIIIB-NA1/NA2 polymorphisms have an interactive effect on host defense against malaria infection.  相似文献   

20.
Colour polymorphisms have played a major role in enhancing current understanding of how selection and demography can impact phenotypes. Because different morphs often display alternative strategies and exploit alternative ecological niches, colour polymorphism can be expected to promote adaptability to environmental changes. However, whether and how it could influence populations' and species' response to global changes remains debated. To address this question, we built an up‐to‐date and complete database on avian colour polymorphism based on the examination of available data from all 10,394 extant bird species. We distinguished between true polymorphism (where different genetically determined morphs co‐occur in sympatry within the same population) and geographic variation (parapatric or allopatric colour variation), because these two patterns of variation are expected to have different consequences on populations' persistence. Using the IUCN red list, we then showed that polymorphic bird species are at lesser risk of extinction than nonpolymorphic ones, after controlling for a range of factors such as geographic range size, habitat breadth, life history, and phylogeny. This appears consistent with the idea that high genetic diversity and/or the existence of alternative strategies in polymorphic species promotes the ability to adaptively respond to changing environmental conditions. In contrast, polymorphic species were not less vulnerable than nonpolymorphic ones to specific drivers of extinction such as habitat alteration, direct exploitation, climate change, and invasive species. Thus, our results suggest that colour polymorphism acts as a buffer against environmental changes, although further studies are now needed to understand the underlying mechanisms. Developing accurate quantitative indices of sensitivity to specific threats is likely a key step towards a better understanding of species response to environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号