首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Although numerous investigations have compared gene expression microarray platforms, preprocessing methods and batch correction algorithms using constructed spike-in or dilution datasets, there remains a paucity of studies examining the properties of microarray data using diverse biological samples. Most microarray experiments seek to identify subtle differences between samples with variable background noise, a scenario poorly represented by constructed datasets. Thus, microarray users lack important information regarding the complexities introduced in real-world experimental settings. The recent development of a multiplexed, digital technology for nucleic acid measurement enables counting of individual RNA molecules without amplification and, for the first time, permits such a study.

Results

Using a set of human leukocyte subset RNA samples, we compared previously acquired microarray expression values with RNA molecule counts determined by the nCounter Analysis System (NanoString Technologies) in selected genes. We found that gene measurements across samples correlated well between the two platforms, particularly for high-variance genes, while genes deemed unexpressed by the nCounter generally had both low expression and low variance on the microarray. Confirming previous findings from spike-in and dilution datasets, this “gold-standard” comparison demonstrated signal compression that varied dramatically by expression level and, to a lesser extent, by dataset. Most importantly, examination of three different cell types revealed that noise levels differed across tissues.

Conclusions

Microarray measurements generally correlate with relative RNA molecule counts within optimal ranges but suffer from expression-dependent accuracy bias and precision that varies across datasets. We urge microarray users to consider expression-level effects in signal interpretation and to evaluate noise properties in each dataset independently.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-649) contains supplementary material, which is available to authorized users.  相似文献   

3.
With the advent of the microarray technology, the field of life science has been greatly revolutionized, since this technique allows the simultaneous monitoring of the expression levels of thousands of genes in a particular organism. However, the statistical analysis of expression data has its own challenges, primarily because of the huge amount of data that is to be dealt with, and also because of the presence of noise, which is almost an inherent characteristic of microarray data. Clustering is one tool used to mine meaningful patterns from microarray data. In this paper, we present a novel method of clustering yeast microarray data, which is robust and yet simple to implement. It identifies the best clusters from a given dataset on the basis of the population of the clusters as well as the variance of the feature values of the members from the cluster-center. It has been found to yield satisfactory results even in the presence of noisy data.  相似文献   

4.
DNA microarray experiments: biological and technological aspects   总被引:8,自引:0,他引:8  
Nguyen DV  Arpat AB  Wang N  Carroll RJ 《Biometrics》2002,58(4):701-717
DNA microarray technologies, such as cDNA and oligonucleotide microarrays, promise to revolutionize biological research and further our understanding of biological processes. Due to the complex nature and sheer amount of data produced from microarray experiments, biologists have sought the collaboration of experts in the analytical sciences, including statisticians, among others. However, the biological and technical intricacies of microarray experiments are not easily accessible to analytical experts. One aim for this review is to provide a bridge to some of the relevant biological and technical aspects involved in microarray experiments. While there is already a large literature on the broad applications of the technology, basic research on the technology itself and studies to understand process variation remain in their infancy. We emphasize the importance of basic research in DNA array technologies to improve the reliability of future experiments.  相似文献   

5.
Ho SY  Hsieh CH  Chen HM  Huang HL 《Bio Systems》2006,85(3):165-176
An accurate classifier with linguistic interpretability using a small number of relevant genes is beneficial to microarray data analysis and development of inexpensive diagnostic tests. Several frequently used techniques for designing classifiers of microarray data, such as support vector machine, neural networks, k-nearest neighbor, and logistic regression model, suffer from low interpretabilities. This paper proposes an interpretable gene expression classifier (named iGEC) with an accurate and compact fuzzy rule base for microarray data analysis. The design of iGEC has three objectives to be simultaneously optimized: maximal classification accuracy, minimal number of rules, and minimal number of used genes. An "intelligent" genetic algorithm IGA is used to efficiently solve the design problem with a large number of tuning parameters. The performance of iGEC is evaluated using eight commonly-used data sets. It is shown that iGEC has an accurate, concise, and interpretable rule base (1.1 rules per class) on average in terms of test classification accuracy (87.9%), rule number (3.9), and used gene number (5.0). Moreover, iGEC not only has better performance than the existing fuzzy rule-based classifier in terms of the above-mentioned objectives, but also is more accurate than some existing non-rule-based classifiers.  相似文献   

6.
The usual aim in metabolomic studies is to quantify the entire metabolome of each of a series of biological samples. To do this for complex biological matrices, e.g., plant tissues, efficient and reproducible extraction protocols must be developed. However, derivatization protocols must also be developed if GC/MS (one of the mostly widely used analytical methods for metabolomics) is involved. The aim of this study was to investigate how different chemical and physical factors (extraction solvent, derivatization reagents, and temperature) affect the extraction and derivatization of the metabolome from leaves of the plant Arabidopsis thaliana. Using design of experiment procedures, variation was systematically introduced, and the effects of this variation were analyzed using regression models. The results show that this approach allows a reliable protocol for metabolomic analysis of Arabidopsis to be determined with a relatively limited number of experiments. Following two different investigations an extraction and derivatization protocol was chosen. Further, the reproducibility of the analysis of 66 endogenous compounds was investigated, and it was shown that both hydrophilic and lipophilic compounds were detected with high reproducibility.  相似文献   

7.
Biclustering is an important tool in microarray analysis when only a subset of genes co-regulates in a subset of conditions. Different from standard clustering analyses, biclustering performs simultaneous classification in both gene and condition directions in a microarray data matrix. However, the biclustering problem is inherently intractable and computationally complex. In this paper, we present a new biclustering algorithm based on the geometrical viewpoint of coherent gene expression profiles. In this method, we perform pattern identification based on the Hough transform in a column-pair space. The algorithm is especially suitable for the biclustering analysis of large-scale microarray data. Our studies show that the approach can discover significant biclusters with respect to the increased noise level and regulatory complexity. Furthermore, we also test the ability of our method to locate biologically verifiable biclusters within an annotated set of genes.  相似文献   

8.
The G-protein-coupled receptor (GPCR) family mediates a host of cell–cell communications upon activation by diverse ligands. Numerous GPCRs have been shown to display anatomically selective patterns of gene expression, however, our understanding of the complexity of GPCR signaling within human tissues remains unclear. In an effort to characterize global patterns of GPCR signaling in the human body, microarray analysis was performed on a large panel of tissues to monitor the gene expression levels of the receptors as well as related signaling and regulatory molecules. Analysis of the data revealed complex signaling networks in many tissue types, with tissue-specific patterns of gene expression observed for the majority of the receptors and a number of components and regulators of GPCR signaling.  相似文献   

9.
A novel gadolinium complex, derived from Gd-DTPA (DTPA: diethylenetriaminepentaacetic acid) and sulfaphenazole, intended to be a potential MRI contrast agent and to interact with human serum albumin (HSA), was synthesized and characterized. Its relaxometric properties were evaluated in water, and its binding to HSA was investigated by three techniques: proton relaxation rate analysis, NMR diffusometry, and electrospray mass spectrometry. The complex has a higher relaxivity than the parent compound (r(1)=7.8s(-1)mM(-1) at 310K and 0.47T and 7.7s(-1)mM(-1) at 310K and 1.41T), a fast water exchange, and a very good stability versus zinc(II) transmetallation. All techniques agree with a high affinity of the complex for HSA, and competition experiments indicate that this contrast agent competes with ibuprofen for HSA.  相似文献   

10.
11.
Cattle are often fed high concentrate (HC) diets to increase productivity, although HC diets cause changes in ruminal environment such as pH reduction. Despite those well-documented changes in cattle fed HC diets, there is currently a paucity of data describing the molecular events regulating the ruminal environment. Our objective was to gain an understanding of which genes are differentially expressed in ruminal tissue from Holstein cows fed a HC comparing to low concentrate (LC) diet using microarray analysis using a bovine 24 k microarray. A total of 5,200 differentially expressed genes (DEG) were detected for cows fed HC relative to LC. The DEG were firstly annotated with gene ontology (GO) and Kyoto encyclopedia of Genes and Genomes (KEGG), indicating that the DEG were associated with catalytic activity and MAPK pathway, respectively. Further characterization using GeneCodis identified patterns of interrelated annotations for the DEG to elucidate the relationships among annotation groups revealed that a cAMP-dependent protein kinase A catalytic subunit beta (PRKACB), may be associated with ruminal tissue maintenance. The results contributed to understanding of the regulatory mechanisms at the mRNA level for Holstein cows fed at different concentrate ratio diets.  相似文献   

12.
13.
Microarray technology has become a standard tool for generation of gene expression profiles to explore human disease processes. Being able to start from minute amounts of RNA extends the fields of application to core needle biopsies, laser capture microdissected cells, and flow-sorted cells. Several RNA amplification methods have been developed, but no extensive comparability and concordance studies of gene expression profiles are available. Different amplification methods may produce differences in gene expression patterns. Therefore, we compared profiles processed by a standard microarray protocol with three different types of RNA amplification: (i) two rounds of linear target amplification, (ii) random amplification, and (iii) amplification based on a template switching mechanism. The latter two methods accomplish target amplification in a nonlinear way using PCR technology. Starting from as little as 50 ng of total RNA, the yield of labeled cRNA was sufficient for hybridization to Affymetrix HG-U133A GeneChip array using the respective methods. Replicate experiments were highly reproducible for each method. In comparison with the standard protocol, all three approaches are less sensitive and introduced a minor but clearly detectable bias of the detection call. In conclusion, the three amplification protocols used are applicable for GeneChip analysis of small tissue samples.  相似文献   

14.
15.
Cancer cachexia remains a challenging clinical problem with complex pathophysiology and unreliable diagnostic tools. A blood test to detect this metabolic derangement would aid in early treatment of these patients. A 1H NMR-based metabolomics approach was used to determine the unique metabolic fingerprint of cachexia and to search for biomarkers in serum samples taken from an established murine model of cancer cachexia. Male CD2F1 mice received a subcutaneous flank injection of C26 adenocarcinoma cells to induce experimental cancer-related cachexia. Two molecular markers of muscle atrophy, upregulation of the E3 ubiquitin ligase Muscle Ring Finger 1 (MuRF1) and aberrant glycosylation of β-dystroglycan (β-DG), were used to confirm muscle wasting in the tumor-bearing mice. Serum samples were collected for metabolomic analysis during the development of the cachexia: at baseline, when the tumor was palpable, and when the mice demonstrated cachexia. The unsupervised statistical analysis demonstrated a distinct metabolic profile with the onset of cachexia. The critical metabolic changes associated with cachexia included increased levels of very low density lipoprotein (VLDL) and low density lipoprotein (LDL), with decreased serum glucose levels. Regression analysis demonstrated a very high correlation of the presence of aberrant glycosylation of β-DG with the unique metabolic profile of cachexia. This study demonstrates for the first time that metabolomics has potential as a diagnostic tool in cancer cachexia, and in further elucidating simultaneous metabolic pathway alterations due to this syndrome. In addition, variations in VLDL and LDL deserve more investigation as surrogate serum biomarkers for cancer cachexia.  相似文献   

16.
Peak bone density is an important determining factor of future osteoporosis risk. We previously identified a quantitative trait locus (QTL) that contributes significantly to high bone density on mouse chromosome 1 from a cross between C57BL/6J (B6) and CAST/EiJ (CAST) mouse strains. We then generated a congenic strain, B6.CAST-1T, in which the chromosomal fragment containing this QTL had been transferred from CAST to the B6 background. The congenic mice have a significantly higher bone density than the B6 mice. In this study we performed cDNA microarray analysis to evaluate the gene expression profile that might yield insights into the mechanisms controlling the high bone density by this QTL. This study led to several interesting observations. First, approximately 60% of 8,734 gene accessions on GEM I chips were expressed in the femur of B6 mice. The expression and function of two-thirds of these expressed genes and ESTs have not been documented previously. Second, expression levels of genes related to bone formation were lower in congenic than in B6 mice. These data are consistent with a low bone formation in the congenic mice, a possibility that is confirmed by reduced skeletal alkaline phosphatase activity in serum compared with B6 mice. Third, expression levels of genes that might have negative regulatory action on bone resorption were higher in congenic than in B6 mice. Together these findings suggest that the congenic mice might have a lower bone turnover rate than B6 mice and raise the possibility that the high bone density in the congenic mice could be due to reduced bone resorption rather than increased bone formation. Electronic Publication  相似文献   

17.
18.
19.
A new microarray system has been developed for gene expression analysis using cationic gold nanoparticles with diameters of 250 nm as a target detection reagent. The approach utilizes nonlabeled target molecules hybridizing with complementary probes on the array, followed by incubation in a colloidal gold solution. The hybridization signal results from the precipitation of nanogold particles on the hybridized spots due to the electrostatic attraction of the cationic gold particles and the anionic phosphate groups in the target DNA backbone. In contrast to conventional fluorescent detection, this nanoparticle-based detection system eliminates the target labeling procedure. The visualization of hybridization signals can be accomplished with a flatbed scanner instead of a confocal laser scanner, which greatly simplifies the process and reduces the cost. The sensitivity is estimated to be less than 2 pg of DNA molecules captured on the array surface. The signal from hybridized spots quantitatively represents the amount of captured target DNA and therefore permits quantitative gene expression analysis. Cross-array reproducibility is adequate for detecting twofold or less signal changes across two microarray experiments.  相似文献   

20.
In this investigation, a gas chromatography/mass spectrometry (GC/MS)-based metabolomic protocol for adherent cell cultures was developed using statistical design of experiments. Cell disruption, metabolite extraction, and the GC/MS settings were optimized aiming at a gentle, unbiased, sensitive, and high-throughput metabolomic protocol. Due to the heterogeneity of the metabolome and the inherent selectivity of all analytical techniques, development of unbiased protocols is highly complex. Changing one parameter of the protocol may change the response of many groups of metabolites. In this investigation, statistical design of experiments and multivariate analysis also allowed such interaction effects to be taken into account. The protocol was validated with respect to linear range, precision, and limit of detection in a clonal rat insulinoma cell line (INS-1 832/13). The protocol allowed high-throughput profiling of metabolites covering the major metabolic pathways. The majority of metabolites displayed a linear range from a single well in a 96-well plate up to a 10 cm culture dish. The method allowed a total of 47 analyses to be performed in 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号