首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dimeric rabbit muscle isozyme of creatine kinase (MM) is modified by iodoacetamide to produce the inactive dimer (M'M') and then hybridized with native dimeric brain isozyme (BB). The hybrid enzyme (M'B), as isolated by PAGE, has the same Km for both ATP and creatine but half the specific activity of the brain isozyme (BB). Likewise, the hybrid of the modified brain with the native muscle isozyme (MB') has half the activity of the native muscle enzyme. The M'B, MB' and MB hybrid dimers all have essentially the same electrophoretic properties, and their intrinsic fluorescence and CD spectra in the far-ultraviolet region are very similar to those of the homodimers MM and BB. Similar results were obtained for the hybrid (M"B) containing the muscle enzyme subunit modified at both the thiol group with iodoacetamide and the Trp residue with dimethyl(2-hydroxy-5-nitrobenzyl)sulfonium bromide and the native brain enzyme submit. The above results suggest strongly the independent catalytic function of the subunit of creatine kinase.  相似文献   

2.
The dimeric enzyme creatine kinase from rabbit muscle was treated with three derivatives of iodoacetamide that are capable of introducing fluorescent groups into the enzyme. All the three reagents (4-iodoacetamidosalicylate (IAS), 5-[N-(iodoacetamidoethyl)amino]-naphthalene-1-sulphonate (IAEDANS) and 6-(4-iodoacetamidophenyl)aminonaphthalene-2-sulphonate (IAANS)) were shown to react at the same single thiol group on each enzyme subunit, leading to complete inactivation of the enzyme. The reaction with IAS was extremely rapid by comparison with the reaction with iodoacetamide or iodoacetate, but various lines of evidence suggest that IAS is not a true affinity label. However, kinetic and binding studies indicate that salicylate itself probably binds at the nucleotide-binding site on the enzyme. As the size of the modifying reagent increased, the first thiol group reacted more rapidly than the second; this trend was more pronounced at 0 degree C than at 25 degree C. With the largest modifying reagent used (IAANS), the pronounced biphasic nature of the modification reaction permitted the preparation of a hybrid enzyme in which only one subunit was modified, but a study of the thiol-group reactivity showed that this hybrid enzyme preparation underwent subunit rearrangement.  相似文献   

3.
Fatty acid synthase from the uropygial gland was inactivated by treatment with pyrenebutyl methanephosphonofluoridate by specific modification of the "active serine" at the thioesterase domain. Treatment of fatty acid synthase with 3-(4-maleimidylphenyl)-7-diethylamino-4-methylcoumarin resulted in the loss of the condensation activity and overall synthase activity. Acetyl-CoA and malenyl-CoA protected the enzyme from inactivation by this reagent suggesting that the pantetheine thiol was modified. In support of this conclusion was the finding that modification of the primer-binding thiol with iodoacetamide prior to the modification with the coumarin derivative resulted in no change in the binding of the coumarin to the enzyme. Furthermore, the presumptive active site peptide isolated after proteolysis released its attached coumarin upon treatment with alkali under beta-elimination reaction conditions. Graphical analysis of the binding data suggested that binding of one coumarin derivative/subunit of the synthase would result in complete loss of the synthase activity. When the synthase was modified with the coumarin and pyrene derivatives, fluorescence resonance energy transfer occurred from the pyrene at the thioesterase site to the coumarin attached to the pantetheine thiol. Dissociation of the enzyme to monomers did not decrease the efficiency of transfer, but limited trypsin treatment, which released the thioesterase domain, abolished the fluorescence resonance energy transfer. These results suggested that the energy transfer occurred between intrasubunit sites. The distance between the pyrene at the thioesterase active site and the coumarin attached to pantetheine thiol on the same subunit of fatty acid synthase was estimated from the efficiency of energy transfer to be 37 A.  相似文献   

4.
Z X Wang  B Preiss  C L Tsou 《Biochemistry》1988,27(14):5095-5100
Kinetics of inactivation and modification of the reactive thiol groups of creatine kinase by 5,5'-dithiobis(2-nitrobenzoic acid) or iodoacetamide have been compared, the former by following the substrate reaction in presence of the inactivator [Wang, Z.-X., & Tsou, C.-L. (1987) J. Theor. Biol. 127, 253]. The microscopic constants for the reaction of the inactivators with the free enzyme and with the enzyme-substrate complexes were determined. From the results obtained it appears that with respect to ATP both inactivators are noncompetitive whereas for creatine iodoacetamide is competitive but DTNB is not. The formation of the ternary complex protects against the inactivation by both DTNB and iodoacetamide. The inactivation kinetics is monophasic with both inactivators, but under similar conditions, the modification reactions in the presence of the transition-state analogue of creatine-ADP-Mg2+-nitrate show biphasic kinetics as also reported by Price and Hunter [Price, N.C., & Hunter, M.G. (1976) Biochim. Biophys. Acta 445, 364]. If the reactive ternary complex and the enzyme complexed with the transition-state analogue react in the same way with these reagents, the modification of one fast-reacting thiol group for each enzyme molecule leads to complete inactivation, indicating that the enzyme has to be in the dimeric state to be active.  相似文献   

5.
The sulfhydryl groups of soluble and membrane-bound F1 adenosine triphosphatase of Escherichia coli were modified by reaction with the fluorescent thiol reagents 5-iodoacetamidofluorescein, 2-[(4'-iodoacetamido)anilino]naphthalene-6-sulfonic acid 4-[N-(iodoacetoxy)ethyl-N-methyl]amino-7-nitrobenzo-2-oxa-1,3-d iaz ole and 2-[(4'-maleimidyl)anilino]naphthalene-6-sulfonic acid. Whereas gamma and delta subunits were always labeled by these reagents, the beta subunit reacted preferentially in the soluble enzyme, and the alpha subunit in the membrane-bound enzyme. This suggests that the soluble enzyme undergoes a conformational change on binding to the membrane. The three beta subunits of the soluble ATPase did not react with chemical reagents in a similar manner. One beta subunit was cross-linked to the epsilon subunit on treatment of the ATPase with 1-ethyl-3-[3-(dimethyl-amino)propyl]carbodiimide, as observed previously by L?tscher et al. [Biochemistry (1984) 23, 4134-4140]. A second beta subunit, which did not cross-link to the epsilon subunit, was modified preferentially by the fluorescent thiol reagents and by 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole. The third beta subunit was less chemically reactive than the others. Both alpha and beta subunits of the soluble 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole-modified enzyme were labeled by the fluorescent thiol reagents. Thus, the modified enzyme, which is inactive, probably has a different conformation from the native soluble ATPase.  相似文献   

6.
Biodegradative L-threonine dehydrase of Escherichia coli (radio labeled with [3H]pyridoxine) was immobilized on CNBr-activated Cl-Sepharose. The specific catalytic activity and S0.5 values of the matrix-bound dehydrase in the presence of AMP were similar to those of the soluble oligomeric enzyme in the presence of AMP (matrix-bound, associated dehydrase). When the bound dehydrase was washed with AMP-free buffer, about 50% of the bound dehydrase was removed and about 50% remained attached, as measured by radioactivity. The resulting matrix-bound, dissociated dehydrase possessed activity in the absence of AMP as is characteristic of soluble, unactivated dehydrase. The bound, dissociated dehydrase was capable of binding nearly an equal amount of soluble dehydrase in the presence of AMP; this treatment raised the specific enzyme activity of the bound dehydrase to 83% of that of the original matrix-bound, associated dehydrase. These observations correlate with the effects of AMP on the activity and quaternary structure of soluble dehydrase. When AMP was added to the matrix-bound, dissociated dehydrase, the activation observed was only a small fraction of that obtained with soluble dehydrase plus AMP. The failure of AMP to activate the major fraction of immobilized dehydrase monomer strongly suggests that dimerization is required in the activation by AMP.  相似文献   

7.
Immobilization of pigeon breast muscle alpha-ketoglutarate dehydrogenase on CNBr-activated Sepharose 4B was carried out. Conditions for dissociation of the dimeric enzyme bound to the carrier via a single subunit were determined. Immobilized enzyme monomers with a specific activity higher than that of the dimer were obtained. The immobilized subunits are capable of reassociating with the soluble ones; this is accompanied by the restoration of the initial amount of the matrix-bound protein and the reconstitution of the activity typical of the immobilized enzyme original preparations.  相似文献   

8.
Fatty acid synthase from the uropygial gland of goose was inactivated by iodoacetamide with a second-order rate constant of 1.3 M-1 S-1 at pH 6.0 and 25 degrees C. Of the seven component activities of the synthase, only the condensation activity was significantly inhibited by iodoacetamide modification. Since preincubation of the enzyme with acetyl-CoA, but not with malonyl-CoA, protected the enzyme from inactivation by iodoacetamide, it is suggested that iodoacetamide probably modified the primer-binding thiol group at the condensation active site. Determination of the stoichiometry of modification was done using [1-14C]iodoacetamide that was purified by high-performance liquid chromatography. Graphical analysis of the data showed that binding of 1.2 carboxamidomethyl groups per subunit of fatty acid synthase would result in complete inhibition of the enzyme activity, suggesting that there is one condensation domain per subunit of fatty acid synthase. Analysis of the tryptic peptide map of the enzyme that was modified with [1-14C]iodoacetamide in the presence and absence of acetyl-CoA revealed that acetyl-CoA prevented the labeling of a major radioactive peptide and a minor radioactive peptide. These two peptides were purified by high-performance liquid chromatography. Amino acid analysis of these two peptides revealed that the major radioactive peptide contained S-carboxymethylcysteine while the minor radioactive peptide did not. However, the latter peptide contained beta-alanine, suggesting that this peptide was from the acyl carrier protein segment of fatty acid synthase and that the iodoacetamide treatment resulted in modification of the pantetheine thiol, although to a lower extent than the primer-binding thiol. The sequence of the primer-binding active site peptide from the condensation domain was H2N-Gly-Pro-Ser-Leu-Ser-Ile-Asp- Thr-Ala-Cys(carboxamidomethyl)-X-Ser-Ser-Leu-Met-Ala-Leu-Glu-Asn-A la-Tyr-Lys- COOH, the first reported sequence of the condensation active site from a vertebrate fatty acid synthase. The acyl carrier protein segment showed extensive sequence homology with the acyl carrier protein of Escherichia coli, particularly in the vicinity of the phosphopantetheine attachment, and the sequence was H2N-Asp-Val-Ser-Ser-Leu- Asn-Ala-Asp-Ser-Thr-Leu-Ala-Asp-Leu-Gly-Leu-Asp-Ser(4'-phosphopanteth ein e) -Leu-Met-Gly-Val-Glu-Val-Arg-COOH.  相似文献   

9.
Escherichia coli alkaline phosphatase has been reversibly immobilized on Sepharose CL-4B through two different methods, both based on a disulfide linkage, under conditions selected to favour the coupling of the enzyme to the solid support through one covalent linkage. The quaternary structure of the reversibly immobilized subunit, produced by dissociation of the matrix-bound dimer, was examined by cross-linking with the bifunctional reagent dimethyl suberimidate. Following release from the solid support, the protein was analysed by sodium dodecyl sulfate gel electrophoresis demonstrating the presence of a sufficient amount of dimeric structures in the immobilized subunit preparation to account for all the enzyme activity observed in this sample. These results suggest that the subunit of alkaline phosphatase may be catalytically inactive. This approach to studying the quaternary structure of immobilized subunit derivatives offers the opportunity to directly determine the homogeneity and structure of matrix-bound 'monomer' preparations and is particularly useful in determining if low levels of catalytic activity observed in some immobilized subunit populations are due to the presence of contaminating oligomeric structures.  相似文献   

10.
The properties of two carnitine acyltransferases (CPT) purified from bovine liver are compared to confirm that they are different proteins. The soluble CPT and the inner CPT from mitochondria differ in subunit Mr, native Mr, pI and reactivity with thiol reagents. All eight free thiol groups in soluble CPT react with 5,5'-dithiobis-(2-nitrobenzoate) in the absence of any unfolding reagent, and activity is gradually lost. The inner CPT activity is completely stable in the presence of 5,5'-dithiobis-(2-nitrobenzoate), and only one thiol group per molecule of subunit is modified in the native enzyme. Antisera to each enzyme inhibit that enzyme, but do not cross-react. CPT activity in subcellular fractions can now be identified by titration with these antibodies. The soluble CPT from bovine liver is probably peroxisomal in origin, but, although antigenically similar, it differs from the peroxisomal carnitine octanoyltransferase found in rat and mouse liver in its specificity for the longer-chain acyl-CoA substrates.  相似文献   

11.
Deoxycytidylate (dCMP) hydroxymethylase from Escherichia coli infected with a T-4 bacteriophage amber mutant has been purified to homogeneity. It is a dimer with a subunit molecular weight of 28,000. Chemical modification of the homogeneous enzyme with N-ethylmaleimide (NEM) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) leads to complete loss of enzyme activity. dCMP can protect the enzyme against NEM inactivation, but the dihydrofolate analogues methotrexate and aminopterin alone do not afford similar protection. Compared to dCMP alone, dCMP plus either methotrexate or aminopterin greatly enhances protection against NEM inactivation. DTNB inactivation is reversed by dithiothreitol. For both reagents, inactivation kinetics obey second-order kinetics. NEM inactivation is pH dependent with a pKa for a required thiol group of 9.15 +/- 0.11. Complete enzyme inactivation by both reagents involves the modification of one thiol group per mole of dimeric enzyme. There are two thiol groups in the totally denatured enzyme modified by either NEM or DTNB. Kinetic analysis of NEM inactivation cannot distinguish between these two groups; however, with DTNB kinetic analysis of 2-nitro-5-thiobenzoate release shows that enzyme inactivation is due to the modification of one fast-reacting thiol followed by the modification of a second group that reacts about 5-6-fold more slowly. In the presence of methotrexate, the stoichiometry of dCMP binding to the dimeric enzyme is 1:1 and depends upon a reduced thiol group. It appears that the two equally sized subunits are arranged asymmetrically, resulting in one thiol-containing active site per mole of dimeric enzyme.  相似文献   

12.
The interaction of bifunctional ATP derivatives, Appp5'[NH-(CH2) n-NH]ppp5'A (n = 0 or 2-8) with tyrosyl-, valyl-, lysyl-, tryptophanyl-tRNA synthetases and creatine kinase was investigated. ATP derivatives don't inhibit the tRNA aminoacylation catalyzed by tyrosyl-tRNA synthetase. These derivatives behave as mixed-type inhibitors with respect to ATP in the case of valyl- and lysyl-tRNA-synthetases. In the case of the other enzymes all analogs of ATP manifest competitive inhibition towards ATP. The affinity of all ATP derivatives to tryptophanyl-tRNA synthetase does not differ significantly (Ki = 0.2 divided by 0.6 mM). The Ki values for these derivatives in the case of creatine kinase are also very similar with the exception of A5'ppp-NH-(CH2)3-NH-ppp5'A. The Ki value for this derivative is one order of magnitude lower than for other ones. The affinity reagents received by periodate oxidation of bifunctional ATP analogs derivatives of di-, tetra- and heptamethylenediamine modify non-identical subunits of creatine kinase with different velocities, but modification of M- and M'-subunits proceeds independently. An analogues derivative of trimethylenediamine interacts simultaneously with two centers of the dimeric form of kinase forming non-equivalent complexes. The covalent attachment of the reagent to one subunit of creatine kinase does not except the complex formation and covalent binding of bifunctional ATP analogs with the other subunit of the dimer, but results in a one order of magnitude decrease in affinity of the ATP derivative to the nonmodified centre of the enzyme. These data permit to evaluate the distance between ATP binding sites of creatine kinase in its dimeric form as 5-6 A approximately. Such a distance between active sites may be the reason for the higher activity of the M- and M'-creatine kinase subunits taken separately as compared to the enzyme dimeric form.  相似文献   

13.
B M Dunn  I M Chaiken 《Biochemistry》1975,14(11):2343-2349
The elution of staphylococcal nuclease on thymidine 3'-(p-Sepharose-aminophenyl phosphate) 5'-phosphate (nucleotide ligand of nuclease covalently bound to Sepharose 4B) was studied in the presence of a variety of soluble nucleotide ligands. The elution volumes of nuclease vary proportionally with matrix-bound ligand concentration (at constant soluble ligand concentration), inversely with soluble ligand concentration (at constant matrix-bound ligand concentration), and inversely with dissociation constant of soluble ligand (at constant concentrations of soluble and matrix-bound ligand). The variation of elution volume was related to an expression which described the competition of soluble and matrix-bound ligand for nuclease binding. Using this expression, values for dissociation constants were derived for nucleotide ligands in both the soluble and bound form. The values for soluble ligand were found to correspond closely to those obtained by either equilibrium dialysis or kinetics of inhibition of nuclease activity. Furthermore, a close correspondence was found between the values of dissocation constants for matrix-bound and soluble thymidine 3'-(p-aminophenyl phosphate) 5'-phosphate, thus defining the interaction of nuclease with the matrix-bound ligand as a process quite similar to that occurring in solution.  相似文献   

14.
The native dimeric form of enolase from pig muscle was immobilized on Sepharose 4B activated with cyanogen bromide. The amount of matrix-bound enolase, its specific activity and kinetic properties depend on the extent of gel activation with CNBr. Only on the Sepharose activated with small quantities of CNBr the amount of protein which remained after treatment with Gdn.HCl was about 50% of the initially bound enolase, indicating that the enzyme was bound covalently to the matrix through a single subunit. The matrix-bound monomers obtained in this way were inactive and were unable to reassociate to dimers on addition of free subunits. The matrix-bound monomers obtained after KBr treatment were inactive but retained the ability to reassociate into active dimers after addition of free subunits. The results indicate that single matrix-bound subunits of pig muscle enolase are enzymatically inactive and dimeric structure is essential for catalytic activity.  相似文献   

15.
The reactivity of thiol groups and the subunit structure of aldolase   总被引:7,自引:6,他引:1  
1. Seven unique carboxymethylcysteine-containing peptides have been isolated from tryptic digests of rabbit muscle aldolase carboxymethylated with iodo[2-(14)C]acetic acid in 8m-urea. These peptides have been characterized by amino acid and end-group analysis and their location within the cyanogen bromide cleavage fragments of the enzyme has been determined. 2. Reaction of native aldolase with 5,5'-dithiobis-(2-nitrobenzoic acid), iodoacetamide and N-ethylmaleimide showed that a total of three cysteine residues per subunit of mol.wt. 40000 were reactive towards these reagents, and that the modification of these residues was accompanied by loss in enzymic activity. Chemical analysis of the modified enzymes demonstrated that the same three thiol groups are involved in the reaction with all these reagents but that the observed reactivity of a given thiol group varies with the reagent used. 3. One reactive thiol group per subunit could be protected when the modification of the enzyme was carried out in the presence of substrate, fructose 1,6-diphosphate, under which conditions enzymic activity was retained. This thiol group has been identified chemically and is possibly at or near the active site. Limiting the exposure of the native enzyme to iodoacetamide also served to restrict alkylation to two thiol groups and left the enzymic activity unimpaired. The thiol group left unmodified is the same as that protected by substrate during more rigorous alkylation, although it is now more reactive towards 5,5'-dithiobis-(2-nitrobenzoic acid) than in the native enzyme. 4. Conversely, prolonged incubation of the enzyme with fructose 1,6-diphosphate, which was subsequently removed by dialysis, caused an irreversible fall in enzymic activity and in thiol group reactivity measured with 5,5'-dithiobis-(2-nitrobenzoic acid). 5. It is concluded that the aldolase tetramer contains at least 28 cysteine residues. Each subunit appears to be identical with respect to number, location and reactivity of thiol groups.  相似文献   

16.
Biliverdin reductase (molecular form 1, EC 1.3.1.24, bilirubin:NAD(P)+ oxidoreductase) carries three thiol residues. Only one of them could be alkylated when a ratio N-ethylmaleimide (NEM)/mol enzyme's SH = 90 was used. The alkylation of this thiol group inhibited the conversion of molecular form 1 to its dimer, molecular form 3; however, it did not inhibit the enzymatic activity. At a ratio of NEM/enzyme's SH = 300, two thiol residues were alkylated and the activity of the enzyme was totally inhibited. The third thiol group could not be alkylated either by NEM or by iodoacetamide. Biliverdin as well as the co-substrate NADPH protected the thiol residue essential for the enzymatic activity from alkylation. Spectroscopic evidence was obtained that this thiol group binds covalently to the C-10 of biliverdin to form a rubinoid adduct. The presence of a lysine residue, which is also essential for the enzymatic activity, could be inferred from the fact that by reduction of the Schiff base formed by the enzyme with pyridoxal phosphate the catalytic activity was irreversibly abolished. The location of a lysine residue in the vicinity of the thiol group involved in the catalytic activity was evident when the enzyme was treated with o-phthalaldehyde. The inactivation of the enzymatic activity was coincident with the formation of the fluorescent isoindole derivative which originates when the thiol and epsilon-NH2 groups are located about 3 A apart. The presence of a positively charged ammonium ion in the vicinity of the NADPH binding site was inferred from the shifts in the UVmax of NADPH from 340 nm to 327 nm and of 3-acetyl NADPH from 360 nm to 348 nm when the pyridine nucleotides bind to the reductase. The involvement of arginine residues in the enzymatic activity was established by inhibition of the latter after reaction with butanedione. This inhibition was totally protected by NADPH but not by biliverdin. The similarity of the structural features of biliverdin reductase with those of several dehydrogenases is discussed.  相似文献   

17.
Succinate dehydrogenase is composed of two subunits, one of molecular weight 70,000, containing FAD in covalent linkage to a histidyl residue of the polypeptide chain, the other subunit of molecular weight 30,000. The fact that substrate, substrate analogs, and oxalacetate prevent inactivation of the enzyme by thiol-specific agents indicates that a thiol group must be present in close proximity to the flavin. Comparison of the incorporation of radioactivity into each subunit in the presence and absence of succinate or malonate shows that both substrate and competitive inhibitors protect a sulfhydryl group of the 70,000-molecular weight subunit. This indicates that a thiol group of the flavoprotein subunit is part of the active site. Similar investigations using oxalacetate as a protecting agent indicate that the tight binding of oxalacetate to the deactivated enzyme also occurs in the flavoprotein subunit, and may involve the same thiol group which is protected by succinate from alkylation by N-ethylmaleimide. It is clear, therefore, that not only the flavin site but also an essential thiol residue are located in the 70,000-molecular weight subunit. A second thiol group, located in the 30,000-molecular weight subunit, also binds N-ethylmaleimide covalently under similar conditions, without being part of the active site. Succinate, malonate, and oxalacetate do not influence the binding of this inhibitor to the thiol group of the lower molecular weight subunit. Using maleimide derivatives of nitroxide-type spin labels, it has been possible to demonstrate the presence of two types of thiol groups in the enzyme which form covalent derivatives with the spin probe. When the enzyme is treated with an equimolar quantity of the spin probe, a largely isotropic electron spin resonance spectrum is obtained, indicating a high probe mobility. When this site is first blocked by treating the enzyme with an equimolar quantity of N-ethylmaleimide, followed by an equimolar amount of spin label, the label is strongly immobilized with a splitting of 64 gauss. It is suggested that the sulfhydryl group which is involved in the immobilized species is at the active site.  相似文献   

18.
Several thiol blocking agents inhibit basal guanylate cyclase activity of 100 000 X g hepatic supernatant fractions and the stimulation of enzyme activity by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), NaN3, NaNO2 and nitroprusside. The relative potency of the thiol blockers as inhibitors was CdCl2 greater than p-hydroxymercuribenzoate greater than N-ethylmaleimide greater than arsenite greater than iodoacetamide. Inhibition of basal and MNNG-responsive soluble guanylate cyclase activities by arsenite was markedly potentiated by an equimolar concentration of 2,3-dimercaprol, but not by mercaptoethanol. Inhibition of soluble guanylate cyclase by either arsenite or CdCl2 was completely reversed by excess 2,3-dimercaprol. Qualitatively similar effects were observed with DE-52 cellulose purified soluble hepatic guanylate cyclase, and suggested an involvement of closely juxtaposed thiol groups in the regulation of enzyme activity. For several reasons inhibition by thiol blockers appeared to be mediated through multiple mechanisms and/or sites of interaction: (1) Concentrations of the thiol inhibitors which had no effect on basal activity strikingly inhibited the responsiveness of the enzyme to a submaximal concentration of MNNG. (2) CdCl2 abolished the action of excess MnCl2 to stimulate purified guanylate cyclase, but was a relatively ineffective inhibitor when MnCl2 and GTP were present in equimolar concentrations. By contrast, arsenite-2,3-dimercaprol was uniformly effective in inhibiting guanylate cyclase activity in the presence or absence of excess MnCl2. (3) Arsenite-2,3-dimercaprol increased the Km for MnGTP (control, 0.13 +/- 0.02 mM; 0.2 mM arsenite-2,3-dimercaprol, 0.31 +/- 0.03 mM), whereas CdCl2 had no effect on this parameter. (4) Hepatic particulate guanylate cyclase activity was significantly inhibited by arsenite 2,3-dimercaprol but not by CdCl2. Thus, the data not only indicate that vicinal dithiol groups are required for expression of basal guanylate cyclase activity and enzyme responses to agonists, but strongly suggest the involvement of more than one interacting site containing free thiol residues.  相似文献   

19.
Chicken liver fatty acid synthase is inhibited by the thiol-modifying reagents 5,5'-dithiobis-(2-nitrobenzoic acid) and iodoacetamide. Total inactivation of the activity for fatty acid synthesis requires the modification of about 8 of the nearly 50 freely accessible thiol groups per molecule. The differential binding of iodo[14C]acetamide to phenylmethylsulphonyl fluoride-modified enzyme in the absence and in the presence of excess acetyl-CoA shows complete modification of one cysteine-SH site of the condensing enzyme and partial modification of the pantetheine-SH site for a total of approx. 1.4 mol of iodoacetamide bound per mol of enzyme. The reaction of the enzyme with 5,5'-dithiobis-(2-nitrobenzoic acid) generates disulphide cross-links for each molecule of the reagent added, but 95% of these cross-links are intrasubunit. Both the iodoacetamide- and 5,5'-dithiobis-(2-nitrobenzoic acid)-modified species catalyse all the component partial reactions of fatty acid synthesis except the condensation reaction. The results obtained with iodoacetamide show that in the dimeric fatty acid synthase modification of one cysteine-SH condensing site and/or one pantetheine-SH site per dimer is sufficient to affect inhibition of condensing activity and the activity for fatty acid synthesis, and are in accord with a recently proposed model for the mechanism of action of animal fatty acid synthases [Kumar (1982) J. Theor. Biol. 95, 263-283].  相似文献   

20.
Reversible dissociation of the dimeric structure of brain pyridoxal kinase into subunits was attained by addition of guanidinium HCl (2 M). The molecular mass of the subunits (40 kDa) was determined by HPLC chromatography. Separation of the processes of refolding and association of the monomeric species was achieved by attaching the protein subunits to a rigid matrix (Affi-gel 15). The matrix-bound monomer is catalytically competent. The reaction of the crosslinking reagent 4,4'-dimaleimidestilbene 2,2'-disulfonate (DMDS), a derivatized stilbene, with the dimeric structure of pyridoxal kinase resulted in the formation of an oligomeric species of 80 kDa detectable by SDS-PAGE. The crosslinked subunits exhibit the same catalytic parameters as the native enzyme. The presence of two nucleotide-binding sites per dimer was determined by fluorimetric titrations using pyridoxyl-ATP, a strong competitive inhibitor with respect to ATP. The ATP analog binds with a Kd = 5 microM to each nucleotide site of the dimeric enzyme. The mode of binding pyridoxyl-ATP to the kinase is discussed in reference to a model which assumes the presence of two binding domains per subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号