首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indoleamine 2,3-dioxygenase (IDO) is one of the initial and rate-limiting enzymes involved in the catabolism of the essential amino acid tryptophan. In cultured cells, the induction of IDO leads to depletion of tryptophan and tryptophan starvation. Recent studies suggest that modulation of tryptophan concentration via IDO plays a fundamental role in innate immune responses. Induction of IDO by interferon-γ in macrophages and dendritic cells results in tryptophan depletion and suppresses the immune-mediated activation of fibroblasts and T, B, and natural killer cells. To assess the role of IDO in collagen-induced arthritis (CIA), a model of rheumatoid arthritis characterized by a primarily Th1-like immune response, activity of IDO was inhibited by 1-methyl-tryptophan (1-MT) in vivo. The results showed significantly increased incidence and severity of CIA in mice treated with 1-MT. Activity of IDO, as determined by measuring the levels of kynurenine/tryptophan ratio in the sera, was increased in the acute phase of arthritis and was higher in collagen-immunized mice that did not develop arthritis. Treatment with 1-MT resulted in an enhanced cellular and humoral immune response and a more dominant polarization to Th1 in mice with arthritis compared with vehicle-treated arthritic mice. The results demonstrated that development of CIA was associated with increased IDO activity and enhanced tryptophan catabolism in mice. Blocking IDO with 1-MT aggravated the severity of arthritis and enhanced the immune responses. These findings suggest that IDO may play an important and novel role in the negative feedback of CIA and possibly in the pathogenesis of rheumatoid arthritis.  相似文献   

2.
A hallmark of T cell-mediated autoimmunity is the persistence of autoreactive T cells. However, it remains to elucidate the manner in which synovial T cells are sustained in patients with rheumatoid arthritis (RA). We found that dendritic cells (DC) and tissues from the synovial joints of RA patients expressed higher levels of IDO than DC from healthy donors. Interestingly, T cells derived from the joint synovial fluid (SF) of RA patients proliferated in response to either autologous or allogeneic IDO-positive DC, an outcome that was not affected by the addition of IDO inhibitor 1-methyl-D-tryptophan (1-MT). In contrast, addition of 1-MT to the culture stimulated with allogeneic or autologous IDO-positive DC significantly enhanced the proliferation of T cells derived from peripheral blood of healthy donors or from peripheral blood of RA patients. Furthermore, we found that functionally active tryptophanyl-tRNA-synthetase (TTS) was significantly elevated in T cells derived from the SF of RA patients, leading to enhanced storage of tryptophan in T cells and to subsequent resistance to IDO-mediated deprivation of tryptophan. The RA SF enhancement of TTS expression in T cells was blocked by mAb to IFN-gamma and TNF-alpha. These results suggest that the resistance of T cells to IDO-mediated deprivation of tryptophan represents a mechanism by which autoreactive T cells are sustained in vivo in RA patients. Specifically, blocking of the up-regulation of TTS expression in T cells presents an avenue for development of a novel therapeutic approach to treatment of RA.  相似文献   

3.
4.
The interactions between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) play significant roles in the homeostasis of the blood vessel during vascular remodeling. Cell adhesion and spreading are an essential process for VSMC migration, survival and proliferation in the events of vascular physiology and pathophysiology. However, effects of ECs on adhesion and spreading of VSMCs have not been characterized yet. Here, the interaction of ECs and VSMCs on adhesion and spreading of VSMCs were investigated by using a coculture system. The results showed that VSMCs cocultured with ECs exhibited a significant increase in the number of adherent and spreading cells, and much more mRNA (twofold, P<0.01) and protein (threefold, P<0.05) expression of beta(1)-integrin comparing to the control, i.e., VSMCs cultured alone. Furthermore, the enhanced functional activity of beta(1)-integrin expression was confirmed by FACS. A beta(1)-integrin blocking antibody (P5D2) could inhibit the EC-induced VSMC adhesion and spreading. It was demonstrated that in correspondence with enhanced cell adhesion, ECs also prompted focal adhesion complex assembly and stress fiber formation of VSMCs. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway was more pronouncedly activated in response to VSMC attachment. Our results for the first time show that coculture with ECs enhances VSMC adhesion and spreading by up-regulating beta(1)-integrin expression and activating the PI3K/Akt pathway, suggesting that the interaction between ECs and VSMCs serves an important role in vascular homeostasis and remodeling.  相似文献   

5.
6.
Dendritic cell-derived indoleamine 2,3-dioxygenase (IDO) suppresses naive T cell proliferation and induces their apoptosis by catalyzing tryptophan, and hence is essential for the maintenance of peripheral tolerance. However, it is not known whether memory T cells are subject to the regulation by IDO-mediated tryptophan catabolism, as memory T cells respond more rapidly and vigorously than their naive counterparts and are resistant to conventional costimulatory blockade. In this study, we present the evidence that memory CD8+ T cells are susceptible to tryptophan catabolism mediated by IDO. We found that overexpression of IDO in vivo attenuated the generation of both central memory CD8+ T cells (T(CM)) and effector memory CD8+ T cells (T(EM)) while suppressing IDO activity promoted their generation. Moreover, IDO overexpression suppressed the effector function of T(CM) cells or T(CM) cell-mediated allograft rejection as well as their proliferation in vivo. Interestingly, T(CM) cells were resistant to apoptosis induced by tryptophan catabolism. However, IDO overexpression did not suppress the effector function of T(EM) cells or T(EM) cell-mediated allograft rejection, suggesting that T(EM) cells, unlike T(CM) cells, do not require tryptophan for their effector function once they are generated. This study provides insight into the mechanisms underlying the differential regulation of memory T cell responsiveness and has clinical implications for vaccination or tolerance induction.  相似文献   

7.
8.
IDO2 is a newly discovered enzyme with 43?% similarity to classical IDO (IDO1) protein and shares the same critical catalytic residues. IDO1 catalyzes the initial and rate-limiting step in the degradation of tryptophan and is a key enzyme in mediating tumor immune tolerance via arrest of T cell proliferation. The role of IDO2 in human T cell immunity remains controversial. Here, we demonstrate that similar to IDO1, IDO2 also degrades tryptophan into kynurenine and is inhibited more efficiently by Levo-1-methyl tryptophan (L-1MT), an IDO1 competitive inhibitor, than by dextro-methyl tryptophan (D-1MT). Although IDO2 enzyme activity is weaker than IDO1, it is less sensitive to 1-MT inhibition than IDO1. Moreover, our results indicate that human CD4+ and CD8+ T cell proliferation was inhibited by IDO2, but both L-1MT and D-1MT could not reverse IDO2-mediated arrest of cell proliferation, even at high concentrations. These data indicate that IDO2 is an inhibitory mechanism in human T cell proliferation and support efforts to develop more effective IDO1 and IDO2 inhibitors in order to overcome IDO-mediated immune tolerance.  相似文献   

9.
Experimental autoimmune encephalomyelitis (EAE) is a Th1 and Th17 cell-mediated autoimmune disease of the CNS. IDO and tryptophan metabolites have inhibitory effects on Th1 cells in EAE. For Th17 cells, IDO-mediated tryptophan deprivation and small molecule halofuginone-induced amino acid starvation response were shown to activate general control nonrepressed 2 (GCN2) kinase that directly or indirectly inhibits Th17 cell differentiation. However, it remains unclear whether IDO and tryptophan metabolites impact the Th17 cell response by mechanisms other than the GCN2 kinase pathway. In this article, we show that IDO-deficient mice develop exacerbated EAE with enhanced encephalitogenic Th1 and Th17 cell responses and reduced regulatory T cell (Treg) responses. Administration of the downstream tryptophan metabolite 3-hydroxyanthranillic acid (3-HAA) enhanced the percentage of Tregs, inhibited Th1 and Th17 cells, and ameliorated EAE. We further demonstrate that Th17 cells are less sensitive to direct suppression by 3-HAA than are Th1 cells. 3-HAA treatment in vitro reduced IL-6 production by activated spleen cells and increased expression of TGF-β in dendritic cells (DCs), which correlated with enhanced levels of Tregs, suggesting that 3-HAA-induced Tregs contribute to inhibition of Th17 cells. By using a DC-T cell coculture, we found that 3-HAA-treated DCs expressed higher levels of TGF-β and had properties to induce generation of Tregs from anti-CD3/anti-CD28-stimulated naive CD4(+) T cells. Thus, our data support the hypothesis that IDO induces the generation of Tregs via tryptophan metabolites, such as 3-HAA, which enhances TGF-β expression from DCs and promotes Treg differentiation.  相似文献   

10.
Alloimmunity to human endothelial cells derived from cord blood progenitors   总被引:1,自引:0,他引:1  
There is considerable interest in exploiting circulating endothelial progenitor cells (EPCs) for therapeutic organ repair. Such cells may be differentiated into endothelial cells (ECs) in vitro and then expanded for use in tissue engineering. Vessel-derived ECs are variably immunogenic, depending upon tissue source, and it is unknown whether ECs derived from cord blood EPCs are able to initiate an allogeneic response. In this study, we compare the phenotype and alloantigenicity of human cord blood progenitor cell-derived ECs with HUVECs isolated from the same donors. Human cord blood progenitor cell-derived ECs are very similar to HUVECs in the expression of proteins relevant for alloimmunity, including MHC molecules, costimulators, adhesion molecules, cytokines, chemokines, and IDO, and in their ability to initiate allogeneic CD4(+) and CD8(+) memory T cell responses in vitro and in vivo. These findings have significant implications for the use of cord blood EPCs in regenerative medicine or tissue engineering.  相似文献   

11.
Indoleamine 2,3-dioxygenase (IDO) has been identified as an important antimicrobial and immunoregulatory effector molecule essential for the establishment of tolerance by regulating local tryptophan (Trp) concentrations. On the other hand, the immunosuppressive capacity of IDO can have detrimental effects for the host as it can lead to deleterious alterations of the immune response by promoting tolerance to some types of tumors. To suppress this disadvantageous IDO effect, the competitive inhibitor 1-Methyl-Tryptophan (1-MT) is being tested in clinical trials. However, it remains inconclusive which stereoisomer of 1-MT is the more effective inhibitor of IDO-mediated immunosuppression. While IDO enzyme activity is more efficiently inhibited by 1-L-MT in cell-free or in vitro settings, 1-D-MT is superior to 1-L-MT in the enhancement of anti-tumor responses in vivo.Here, we present new data showing that commercially available 1-L-MT lots contain tryptophan in amounts sufficient to compensate for the IDO-mediated tryptophan depletion in vitro. The addition of 1-L-MT abrogated IDO-mediated antimicrobial effects and permitted the growth of the tryptophan-auxotroph microorganisms Staphylococcus aureus and Toxoplasma gondii. Consistent with this, the tryptophan within 1-L-MT lots was sufficient to antagonize IDO-mediated inhibition of T cell responses. Mass spectrometry (MS) analysis revealed not only tryptophan within 1-L-MT, but also the incorporation of this tryptophan in bacterial and human proteins that were generated in the presence of 1-L-MT in otherwise tryptophan-free conditions. In summary, these data reveal that tryptophan within 1-L-MT can affect the results of in vitro studies in an L-stereospecific and IDO-independent way.  相似文献   

12.
Infected CD4+ T cells are the primary sites of human immunodeficiency virus type 1 (HIV-1) replication in vivo. However, signals from professional antigen-presenting cells (APCs), such as dendritic cells and macrophages, greatly enhance HIV-1 replication in T cells. Here, we report that in cocultures, vascular endothelial cells (ECs), which in humans can also serve as APCs, can enhance HIV-1 production of both CCR5- and CXCR4-utilizing strains approximately 50,000-fold. The observed HIV-1 replication enhancement conferred by ECs occurred only in memory CD4+ T cells, required expression of major histocompatibility complex class II (MHC-II) molecules by the ECs, and could not be conferred by fixed ECs, all of which are consistent with a requirement for EC-mediated T-cell activation via T-cell receptor (TCR) signaling. Deletion of nef (Nef-) decreased HIV-1 production by approximately 100-fold in T cells cocultured with ECs but had no effect on virus production in T cells cocultured with professional APCs or fibroblasts induced to express MHC-II. Human ECs do not express B7 costimulators, but Nef- replication in CD4(+)-T-cell and EC cocultures could not be rescued by anti-CD28 antibody. ECs act in trans to enhance wild-type but not Nef- replication and facilitate enhanced wild-type replication in naive T cells when added to T-cell or B-lymphoblastoid cell cocultures, suggesting that ECs also provide a TCR-independent signal to infected T cells. Consistent with these in vitro observations, wild-type HIV-1 replicated 30- to 50-fold more than Nef- in human T cells infiltrating allogeneic human skin grafts on human huPBL-SCID/bg mice, an in vivo model of T-cell activation by ECs. Our studies suggest that ECs, which line the entire cardiovascular system and are, per force, in frequent contact with memory CD4+ T cells, provide signals to HIV-1-infected CD4+ T cells to greatly enhance HIV-1 production in a Nef-dependent manner, a mechanism that could contribute to the development of AIDS.  相似文献   

13.
The frequency of circulating alloreactive human memory T cells correlates with allograft rejection. Memory T cells may be divided into effector memory (T(EM)) and central memory (T(CM)) cell subsets, but their specific roles in allograft rejection are unknown. We report that CD4+ T(EM) (CD45RO+ CCR7- CD62L-) can be adoptively transferred readily into C.B-17 SCID/bg mice and mediate the destruction of human endothelial cells (EC) in vascularized human skin grafts allogeneic to the T cell donor. In contrast, CD4+ T(CM) (CD45RO+ CCR7+ CD62L+) are inefficiently transferred and do not mediate EC injury. In vitro, CD4+ T(EM) secrete more IFN-gamma within 48 h in response to allogeneic ECs than do T(CM). In contrast, T(EM) and T(CM) secrete comparable amounts of IFN-gamma in response to allogeneic monocytes (Mo). In the same cultures, both T(EM) and T(CM) produce IL-2 and proliferate in response to IFN-gamma-treated allogeneic human EC or Mo, but T(CM) respond more vigorously in both assays. Blockade of LFA-3 strongly inhibits both IL-2 and IFN-gamma secretion by CD4+ T(EM) cultured with allogeneic EC but only minimally inhibits responses to allogeneic Mo. Blockade of CD80 and CD86 strongly inhibits IL-2 but not IFN-gamma production by in response to allogeneic EC or Mo. Transduction of EC to express B7-2 enhances allogeneic T(EM) production of IL-2 but not IFN-gamma. We conclude that human CD4+ T(EM) directly recognize and respond to allogeneic EC in vitro by secreting IFN-gamma and that this response depends on CD2 but not CD28. Consistent with EC activation of effector functions, human CD4+ T(EM) can mediate allogeneic EC injury in vivo.  相似文献   

14.
Indoleamine 2,3-dioxygenase (IDO) is an enzyme that suppresses adaptive T-cell immunity by catabolizing tryptophan from the cellular microenvironment. Inhibition of IDO pathway might enhance the efficacy of immunotherapeutic strategies for cancer. We synthesized 1-alkyl-tryptophan targeted IDO inhibitors and compared their effects on IDO expression and activity in dendritic cells (DCs) with the common IDO inhibitor 1-methyl-dl-tryptophan (1-MT). The IDO gene expression was examined by RT-PCR and realtime PCR. The toxicity of these analogs on the proliferation of DCs was detected by MTT assay. All of these analogs inhibited IDO expression and activity induced by IFN-γ and showed no cytotoxicity to DCs at 100 μM. 1-MT intensively suppressed IDO1 expression and activity in DCs, and 1-propyl-tryptophan (1-PT) and 1-isopropyl-tryptophan (1-isoPT) moderately inhibited them. 1-Butyl-tryptophan (1-BT) and 1-ethyl-tryptophan (1-ET) mainly inhibited IDO2 expression. Our results suggest that those analogs differed in their inhibitory activity on IDO expression may give us a clue for developing active IDO inhibitors.  相似文献   

15.
16.
The effect of interferon-gamma (IFN-gamma) on endothelial cell (EC) and fibroblast (FB) class II major histocompatibility complex (MHC) gene product expression and antigen presenting ability was examined. Control FB did not express class II MHC gene products, whereas a small (less than 1%) population of passaged EC expressed class II gene products. IFN-gamma induced a comparable density of HLA-DR expression on nearly all EC and FB. IFN-gamma-treated EC and FB also expressed HLA-DP but at a lower density, whereas HLA-DQ expression was barely detectable on either cell type. Control FB were not able to stimulate allogeneic T4 cell DNA synthesis or function as antigen-presenting cells (APC). Control EC were also unable to stimulate allogeneic T4 cell DNA synthesis unless large numbers of stimulator cells were used. Small numbers of IFN-gamma-treated EC were able to stimulate allogeneic T4 cell DNA synthesis, whereas larger numbers were markedly more effective than control EC. In contrast, IFN-gamma-treated FB were ineffective stimulators of allogeneic T4 cell DNA synthesis. IFN-gamma-treated FB were able to present the exogenous antigen SKSD to autologous but not allogeneic T4 cells, but they were extremely inefficient APC. The inability of IFN-gamma-treated FB to function as APC could not be explained by FB-mediated immunosuppression, Ia density, or HLA-DQ expression. This limited capacity of IFN-gamma-treated FB to participate in Ia-restricted functional interactions with T4 cells correlated with a similar diminished capacity to support nonspecific mitogen-induced proliferation of T4 cells before IFN-gamma-induced Ia expression. This accessory cell function was not enhanced by IFN-gamma treatment. Monocytes syngeneic to the responding T4 cells but not interleukin 1 (IL 1) permitted IFN-gamma-treated FB but not control FB to stimulate allogeneic T4 cell DNA synthesis, but they remained markedly less effective stimulators than monocytes. Moreover, IFN-gamma-treated FB were effective stimulators of alloprimed T4 cells, in contrast to their inability to stimulate fresh T4 cells. Furthermore, monocytes and IFN-gamma-treated FB were comparably effective stimulators of alloreactive T cell lines. These data suggest that accessory cells perform functions unrelated to Ia and IL 1 that are necessary for mitogen-, alloantigen-, and antigen-induced proliferation of freshly isolated T cells. Monocytes and EC effectively perform this function, but FB do not. This accessory cell function does not seem to be as important for the activation of primed T cells.  相似文献   

17.
Human plasmacytoid dendritic cells (PDCs) can drive naive, allogeneic CD4(+)CD25(-) T cells to differentiate into CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs). However, the intracellular mechanism or mechanisms underlying PDC-induced Treg generation are unknown. In this study, we show that human PDCs express high levels of IDO, an intracellular enzyme that catabolizes tryptophan degradation. Triggering of TLR 9 with CpG oligodeoxynucleotides activates PDCs to up-regulate surface expression of B7 ligands and HLA-DR Ag, but also significantly increases the expression of IDO and results in the generation of inducible Tregs from CD4(+)CD25(-) T cells with potent suppressor cell function. Blocking IDO activity with the pharmacologic inhibitor 1-methyl-D-tryptophan significantly abrogates PDC-driven inducible Treg generation and suppressor cell function. Adding kynurenine, the immediate downstream metabolite of tryptophan, bypasses the 1-methyl-D-tryptophan effect and restores PDC-driven Treg generation. Our results demonstrate that the IDO pathway is essential for PDC-driven Treg generation from CD4(+)CD25(-) T cells and implicate the generation of kynurenine pathway metabolites as the critical mediator of this process.  相似文献   

18.
Cerebral autosomal‐dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a familial fatal progressive degenerative disorder. One of the pathological hallmarks of CADASIL is a dramatic reduction of vascular smooth muscle cells (VSMCs) in cerebral arteries. Using VSMCs from the vasculature of the human umbilical cord, placenta and cerebrum of CADASIL patients, we found that CADASIL VSMCs had a lower proliferation rate compared to control VSMCs. Exposure of control VSMCs and endothelial cells (ECs) to media derived from CADASIL VSMCs lowered the proliferation rate of all cells examined. By quantitative RT‐PCR analysis, we observed increased Transforming growth factor‐β (TGFβ) gene expression in CADASIL VSMCs. Adding TGFβ‐neutralizing antibody restored the proliferation rate of CADASIL VSMCs. We assessed proliferation differences in the presence or absence of TGFβ‐neutralizing antibody in ECs co‐cultured with VSMCs. ECs co‐cultured with CADASIL VSMCs exhibited a lower proliferation rate than those co‐cultured with control VSMCs, and neutralization of TGFβ normalized the proliferation rate of ECs co‐cultured with CADASIL VSMCs. We suggest that increased TGFβ expression in CADASIL VSMCs is involved in the reduced VSMC proliferation in CADASIL and may play a role in situ in altered proliferation of neighbouring cells in the vasculature.  相似文献   

19.
Vascular disease, such as atherosclerosis, is accompanied by changes in the mechanical properties of the vessel wall. Although altered mechanics is thought to contribute to disease progression, the molecular mechanisms whereby vessel wall stiffening could promote vascular occlusive disease remain unclear. It is well known that platelet‐derived growth factor (PDGF) is a major stimulus for the abnormal migration and proliferation of vascular smooth muscle cells (VSMCs) and contributes critically to vascular disease. Here we used engineered substrates with tunable mechanical properties to explore the effect of tissue stiffness on PDGF signaling in VSMCs as a potential mechanism whereby vessel wall stiffening could promote vascular disease. We found that substrate stiffness significantly enhanced PDGFR activity and VSMC proliferation. After ligand binding, PDGFR followed distinct routes of activation in cells cultured on stiff versus soft substrates, as demonstrated by differences in its intensity and duration of activation, sensitivity to cholesterol extracting agent, and plasma membrane localization. Our results suggest that stiffening of the vessel wall could actively promote pathogenesis of vascular disease by enhancing PDGFR signaling to drive VSMC growth and survival. J. Cell. Physiol. 225: 115–122, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Splenic CD8alpha+ dendritic cells reportedly tolerize T cell responses by inducing Fas ligand-mediated apoptosis, suppressing IL-2 expression, or catabolizing T cell tryptophan reserves through expression of IDO. We report in this study that CD8alpha+, but not CD8alpha-, dendritic cells purified from the spleens of normal mice can tolerize the Th2 responses of cells from asthma phenotype mice through more than one mechanism. This tolerance could largely be reversed in vitro by anti-IL-10 or anti-TGFbeta Ab treatment. However, loss of direct dendritic cell-T cell contact also reduced tolerance, although to a lesser extent, as did adding the IDO inhibitor 1-methyltryptophan or an excess of free tryptophan to the cultures. Within 3 wk of reconstituting asthma phenotype mice with 1 x 10(5) OVA-pulsed CD8alpha+, but not CD8alpha-, dendritic cells, the mice experienced a reversal of airway hyperresponsiveness, eosinophilic airway responses, and pulmonary Th2 cytokine expression. This data indicates that CD8alpha+ dendritic cells can simultaneously use multiple mechanisms for tolerization of T cells and that, in vivo, they are capable of tolerizing a well-established disease complex such as allergic lung disease/asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号