首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast C. parapsilosis CBS7157 is strictly dependent on oxidative metabolism for growth since it lacks a fermentative pathway. It is nevertheless able to grow on high glucose concentrations and also on a glycerol medium supplemented with antimycin A or drugs acting at the level of mitochondrial protein synthesis. Besides its normal respiratory chain C. parapsilosis develops a second electron transfer chain antimycin A-insensitive which allows the oxidation of cytoplasmic NAD(P)H resulting from glycolytic and hexose monophosphate pathways functioning through a route different from the NADH-coenzyme Q oxidoreductase described in S. cerevisiae or from the alternative pathways described in numerous plants and microorganisms. The second respiratory chain of C. parapsilosis involves 2 dehydrogenases specific for NADH and NADPH respectively, which are amytal and mersalyl sensitive and located on the outer face of the inner membrane. Since this antimycin A-insensitive pathway is fully inhibited by myxothiazol, it was hypothesized that electrons are transferred to a quinone pool that is different from the classical coenzyme Q-cytochrome b cycle. Two inhibitory sites were evidenced with myxothiazol, one related to the classical pathway, the other to the second pathway and thus, the second quinone pool could bind to a Q-binding protein at a specific site. Elimination of this second pool leads to a fully antimycin A-sensitive NADH oxidation, whereas its reincorporation in mitochondria allows recovery of an antimycin A-insensitive, myxothiazol sensitive NADH oxidation. The third step in this second respiratory chain involves a specific pool of cytochrome c which can deliver electrons either to a third phosphorylation site or to an alternative oxidase, cytochrome 590. This cytochrome is inhibited by high cyanide concentrations and salicylhydroxamates.  相似文献   

2.
Abstract Filaments of N2-grown Anabaena variabilis exhibit soluble NADPH- and membrane-bound NADH-oxidizing activities. The NADPH-specific enzyme has been identified as ferredoxin-NADP oxidoreductase (FNR; EC 1.18.1.2) by the thionicotinamide-NADP transhydrogenase test, a ferredoxin-dependent hydrogenase assay, and by diaphorase systems. The FNR is easily removed by washing of French-press-prepared membranes. Concurrently, a loss of NADPH-dependent respiration is apparent, which is not reconstitutable by addition of Anabaena cytochrome c -553. The NADH-oxidizing activity, however, is only slightly affected by the washing procedure, and is completely reconstituted by cytochrome c -553. NADPH-dependent oxygen uptake is strongly inhibited by NADP, whereas inhibition of NADH-dependent oxygen uptake by NAD is less pronounced. The data give evidence that NADH and NADPH oxidations linked to the respiratory chain are mediated by two different enzymes.  相似文献   

3.
The respiratory chain of mitochondria and bacteria is made up of a set of membrane‐associated enzyme complexes which catalyse sequential, stepwise transfer of reducing equivalents from substrates to oxygen and convert redox energy into a transmembrane protonmotive force (PMF) by proton translocation from a negative (N) to a positive (P) aqueous phase separated by the coupling membrane. There are three basic mechanisms by which a membrane‐associated redox enzyme can generate a PMF. These are membrane anisotropic arrangement of the primary redox catalysis with: (i) vectorial electron transfer by redox metal centres from the P to the N side of the membrane; (ii) hydrogen transfer by movement of quinones across the membrane, from a reduction site at the N side to an oxidation site at the P side; (iii) a different type of mechanism based on co‐operative allosteric linkage between electron transfer at the metal redox centres and transmembrane electrogenic proton translocation by apoproteins. The results of advanced experimental and theoretical analyses and in particular X‐ray crystallography show that these three mechanisms contribute differently to the protonmotive activity of cytochrome c oxidase, ubiquinone‐cytochrome c oxidoreductase and NADH‐ubiquinone oxidoreductase of the respiratory chain. This review considers the main features, recent experimental advances and still unresolved problems in the molecular/atomic mechanism of coupling between the transfer of reducing equivalents and proton translocation in these three protonmotive redox complexes.  相似文献   

4.
Addition of exogenous NADH to rotenone- and antimycin A-treated mitochondria, in 125 mM KCl, results in rates of oxygen uptake of 0.5-1 and 10-12 nanoatoms of oxygen X mg protein-1 X min-1 in the absence and presence of cytochrome c, respectively. During oxidation of exogenous NADH there is a fast and complete reduction of cytochrome b5 while endogenous or added exogenous cytochrome c become 10-15% and 100% reduced, respectively. The reoxidation of cytochrome b5, after exhaustion of NADH, precedes that of cytochrome c. NADH oxidation is blocked by mersalyl, an inhibitor of NADH-cytochrome b5 reductase. These observations support the view of an electron transfer from the outer to the inner membrane of intact mitochondria. Both the rate of exogenous NADH oxidation and the steady state level of cytochrome c reduction increase with the increase of ionic strength, while the rate of succinate oxidation undergoes a parallel depression. These observations suggest that the functions of cytochrome c as an electron carrier in the inner membrane and as an electron shuttle in the intermembrane space are alternative. It is concluded that aerobic oxidation of exogenous NADH involves the following pathway: NADH leads to NADH-cytochrome b5 reductase leads to cytochrome b5 leads to intermembrane cytochrome c leads to cytochrome oxidase leads to oxygen. It is suggested that the communication between the outer and inner membranes mediated by cytochrome c may affect the oxidation-reduction level of cytosolic NADH and the related oxidation-reduction reactions.  相似文献   

5.
Plasmalemma was isolated from the roots of 2-week-old cucumber plants ( Cucumis sativus L. cv. Rhensk druv) by utilizing an aqueous polymer two-phase system with 6.5%:6.5% (w/w) Dextran T500 and polyethylene glycol (PEG) 3350 at pH 7.8. The plasmalemma fraction comprised ca 6% of the membrane proteins contained in the microsomal fraction. The specific activity of the plasma membrane marker enzyme (K+, Mg2+-ATPase) was 14- to 17-times higher in the upper (PEG-rich) than in the lower (Dextran-rich) phase, and the reverse was true for marker enzymes (cytochrome c oxidase, EC 1.9.3.1, and antimycin A-resistant NADPH cytochrome c reductase) of intracellular membranes. The ATPase was highly stimulated by the addition of detergent (Triton X-100), so that the isolated plasmalemma vesicles appear tightly sealed and in a right-side-out orientation. Further characterization of the ATPase activities showed a pH optimum at 6.0 in the presence of Mg2+. This optimum was shifted to pH 5.8 after addition of K+. K+ stimulated the ATPase activity below pH 6 and inhibited above pH 6. The ATPase activity was specific for ATP and sensitive to N,N-dicyclohexylcarbodiimide and sodium vanadate, with K+ enhancing the vanadate inhibition. The enzyme was insensitive to sodium molybdate, NO3, azide and oligomycin. No Ca2+-ATPase was detected, and even as little as 0.05 m M Ca2+ inhibited the Mg2+-ATPase activity.  相似文献   

6.
A. Sauer  D. G. Robinson 《Planta》1985,166(2):227-233
Maize root mitochondrial have been subfractionated after osmotic rupture. A calcium-calmodulin-dependent NAD-kinase activity has been shown to be present in both inner and outer membrane fractions. Cytochrome c-reductase activities are also associated with outer and inner membrane fractions but whereas the former is entirely insensitive to 50 mol·1-1 antimycin A the latter is reduced by 60% in its presence. This residual antimycin A-insensitive cytochrome c-reductase activity cosediments with the major portion of NAD-kinase activity and equilibrates in sucrose gradients at densities around 1.146 g·cm-3. Rate zonal centrifugation with renografin allows an excellent separation of both cytochrome c-reductase and NAD-kinase activities. We have no evidence for allocating NAD-kinase activity to endo- or plasma membranes.Abbreviations CCO cytochrome c-oxidase - CCR cytochrome c-reductase - IDPase inosine diphosphatase - IMM inner mitochondrial membrane(s) - OMM outer mitochondrial membrane(s)  相似文献   

7.
Cells of the E3-24 mutant of the strain D273-10B of Saccharomyces cerevisiae, grown in a fermentable substrate not showing catabolite repression of respiration (2% galactose), are able to respire, in spite of their ubiquinone deficiency in mitochondrial membranes. Mitochondria isolated from these mutant cells oxidize exogenous NADH through a pathway insensitive to antimycin A but inhibited by cyanide. Addition of methanolic solutions of ubiquinone homologs stimulates the oxidation rate and restores antimycin A sensitivity in both isolated mitochondria and whole cells. Mersalyl preincubation of isolated mitochondria inhibits both NADH oxidation and NADH-cytochrome c oxido-reductase activity (assayed in the presence of cyanide) with the same pattern. Electrons resulting from the oxidation of exogenous NADH reduce both cytochrome b5 and endogenous cytochrome c. The increase in ionic strength stimulates NADH oxidation, which is also coupled to the ATP synthesis with an ATP/O ratio similar to that obtained with ascorbate plus N,N,N',N'-tetramethyl-p-phenylendiamine (TMPD) as substrate. The effect of cyanide on these activities and on NADH-induced endogenous cytochrome c reduction is also comparable. These results support the existence in vivo and in isolated mitochondria of a energy-conserving pathway for the oxidation of cytoplasmatic NADH not related to the dehydrogenases of the inner membrane, the ubiquinone, and the b-c1 complex, but involving a cytochrome c shuttle between the NADH-cytochrome c reductase of the outer membrane and cytochrome oxidase in the inner membrane.  相似文献   

8.
Mitochondrial repair is of fundamental importance for seed germination. When mature orthodox seeds are imbibed and germinated, they lose their desiccation tolerance in parallel. To gain a better understanding of this process, we studied the recovery of mitochondrial structure and function in pea (Pisum sativum cv. Jizhuang) seeds with different tolerance to desiccation. Mitochondria were isolated and purified from the embryo axes of control and imbibed-dehydrated pea seeds after (re-)imbibition for various times. Recovery of mitochondrial structure and function occurred both in control and imbibed-dehydrated seed embryo axes, but at different rates and to different maximum levels. The integrity of the outer mitochondrial membrane reached 96% in all treatments. However, only the seeds imbibed for 12 h and then dehydrated recovered the integrity of the inner mitochondrial membrane (IMM) and State 3 (respiratory state in which substrate and ADP are present) respiration (with NADH and succinate as substrate) to the control level after re-imbibition. With increasing imbibition time, the degree to which each parameter recovered decreased in parallel with the decrease in desiccation tolerance. The tolerance of imbibed seeds to desiccation increased and decreased when imbibed in CaCl(2) and methylviologen solution, respectively, and the recovery of the IMM integrity similarly improved and weakened in these two treatments, respectively. Survival of seeds after imbibition-dehydration linearly increased with the increase in ability to recover the integrity of IMM and State 3 respiration, which indicates that recovery of mitochondrial structure and function during germination has an important role in seed desiccation tolerance.  相似文献   

9.
1. Reduced ubiquinones-1, -2, -3, -4 and -6 were used as substrates for ubiquinol: cytochrome c oxidoreductase.2. The portion of antimycin-sensitive activity depends on the concentration of ubiquinol and on the pH. Only reduced ubiquinone-2 and reduced ubiquinone-3 show high activities the main part of which is sensitive to antimycin.3. The antimycin effect curve of ubiquinol: cytochrome c oxidoreductase is linear in shape with reduced ubiquinone-2 as substrate but sigmoidal with reduced ubiquinone-3 and succinate. Ubiquinol-3: cytochrome c oxidoreductase activity contains a portion scarcely affected by antimycin. About 300 pmoles of antimycin per mg protein, enough to inhibit succinate, NADH- and reduced ubiquinone-2:cytochrome c oxidoreductase almost totally, affect ubiquinol-3: cytochrome c oxidoreductase to only about 80% and another 300 pmoles of antimycin are needed for the next 10% of inhibition.4. The activities of succinate- and NADH: cytochrome c oxidoreductase are stimulated by ubiquinones-2 and -3. The shapes of the inhibition curves by antimycin of the stimulated activities are sigmoidal. About twice the amount of antimycin is necessary to inhibit stimulated activities to the same value as the unstimulated.5. The non-ionic detergent Lubrol WX is not effective in stimulating enzymatic activities. However, in the presence of 0.6 M sorbitol, it converts the linear antimycin effect curve with reduced ubiquinone-2 as substrate, into sigmoidal.6. NADH- and succinate: cytochrome c oxidoreductase activities and reduced ubiquinone-2 and reduced ubiquinone-3: cytochrome c oxidoreductase activities become deactivated with increasing concentrations of the non-ionic detergent Lubrol WX. The activity with reduced ubiquinone-2 as substrate is less resistant to the action of the detergent than with reduced ubiquinone-3. The b-cytochromes do not become CO-reactive by this treatment.7. Deoxycholate in low concentrations does not stimulate ubiquinol: cytochrome c oxidoreductase activity. It converts the inhibition curve by antimycin from sigmoidal to linear with increasing concentrations of the detergent with all substrates tested. The amount of antimycin needed for 90% inhibition of reduced ubiquinone activities is about the same under these conditions as with succinate, NADH or reduced ubiquinol in untreated particles.8. The results are discussed with respect to the theories of the electron transport mechanism and of the inhibition by antimycin of the electron flow through the bc1-segment of the respiratory chain in beef heart.  相似文献   

10.
The kinetics of NADH oxidation by the outer membrane electron transport system of intact beetroot (Beta vulgaris L.) mitochondria were investigated. Very different values for Vmax and the Km for NADH were obtained when either antimycin A-insensitive NADH-cytochrome c activity (Vmax= 31 ± 2.5 nmol cytochrome c (mg protein)?1 min?1; Km= 3.1 ± 0.8 μM) or antimycin A-insensitive NADH-ferricyanide activity (Vmax= 1.7 ± 0.7 μmol ferricyanide (mg protein)?1 min?1; Km= 83 ± 20 μM) were measured. As ferricyanide is believed to accept electrons closer to the NADH binding site than cytochrome c, it was concluded that 83 ± 20 μM NADH represented a more accurate estimate of the binding affinity of the outer membrane dehydrogenase for NADH. The low Km determined with NADH-cytochrome c activity may be due to a limitation in electron flow through the components of the outer membrane electron transport chain. The Km for NADH of the externally-facing inner membrane NADH dehydrogenase of pea leaf (Pisum sativum L. cv. Massey Gem) mitochondria was 26.7 ± 4.3 μM when oxygen was the electron acceptor. At an NADH concentration at which the inner membrane dehydrogenase should predominate, the Ca2+ chelator, ethyleneglycol-(β-aminoethylether)-N,N,-tetraacetic acid (EGTA), inhibited the oxidation of NADH through to oxygen and to the ubiquinone-10 analogues, duroquinone and ubiquinone-1, but had no effect on the antimycin A-insensitive ferricyanide reduction. It is concluded that the site of action of Ca2+ involves the interaction of the enzyme with ubiquinone and not with NADH.  相似文献   

11.
The reduction of duroquinone (DQ) and 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone (DB) by NADH and ethanol was investigated in intact yeast mitochondria with good respiratory control ratios. In these mitochondria, exogenous NADH is oxidized by the NADH dehydrogenase localized on the outer surface of the inner membrane, whereas the NADH produced by ethanol oxidation in the mitochondrial matrix is oxidized by the NADH dehydrogenase localized on the inner surface of the inner membrane. The reduction of DQ by ethanol was inhibited 86% by myxothiazol; however, the reduction of DQ by NADH was inhibited 18% by myxothiazol, suggesting that protein-protein interactions between the internal (but not the external) NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase (the cytochrome bc1 complex) are involved in the reduction of DQ by NADH. The reduction of DQ and DB by NADH and ethanol was also investigated in mutants of yeast lacking cytochrome b, the iron-sulfur protein, and ubiquinone. The reduction of both quinone analogues by exogenous NADH was reduced to levels that were 10 to 20% of those observed in wild-type mitochondria; however, the rate of their reduction by ethanol in the mutants was equal to or greater than that observed in the wild-type mitochondria. Furthermore, the reduction of DQ in the cytochrome b and iron-sulfur protein lacking mitochondria was myxothiazol sensitive, suggesting that neither of these proteins is an essential binding site for myxothiazol. The mitochondria from the three mutants also contained significant amounts of antimycin- and myxothiazol-insensitive NADH:cytochrome c reductase activity, but had no detectable succinate:cytochrome c reductase activity. These results suggest that the mutants lacking a functional cytochrome bc1 complex have adapted to oxidize NADH.  相似文献   

12.
We report the first lateral diffusion measurements of redox components in normal-sized, matrix-containing, intact mitoplasts (inner membrane-matrix particles). The diffusion measurements were obtained by submicron beam fluorescence recovery after photobleaching measurements of individual, intact, rat liver mitoplasts bathed in different osmolarity media to control the matrix density and the extent of inner membrane folding. The data reveal that neither the extent of mitochondrial matrix density nor the complexity of the inner membrane folding have a significant effect on the mobility of inner membrane redox components. Diffusion coefficients for Complex I (NADH:ubiquinone oxidoreductase), Complex III (ubiquinol: cytochrome c oxidoreductase), Complex IV (cytochrome oxidase), ubiquinone, and phospholipid were found to be effectively invariant with the matrix density and/or membrane folding and essentially the same as values we reported previously for spherical, fused, ultralarge, matrix-free, inner membranes. Diffusion of proton-transporting Complex V (ATP synthase) appeared to be 2-3-fold slower at the greatest matrix density and degree of membrane folding. Consistent with a diffusion-coupled mechanism of electron transport, comparison of electron transport frequencies (productive collisions) with the theoretical, diffusion-controlled, collision frequencies (maximum collisions possible) revealed that there were consistently more calculated than productive collisions for all redox partners. Theoretical analyses of parameters for submicron fluorescence recovery after photobleaching measurements in intact mitoplasts support the finding of highly mobile redox components diffusing at the same rates as determined in conventional fluorescence recovery after photobleaching measurements in fused, ultralarge inner membranes. These findings support the Random Collision Model of Mitochondrial Electron Transport at the level of the intact mitoplast and suggest a similar conclusion for the intact mitochondrion.  相似文献   

13.
SYNOPSIS. Cell-free extracts of a streptomycin-bleached strain of Euglena gracilis var. bacillaris have been examined for enzyme systems primarily responsible for the oxidation of reduced pyridine nucelotides. NADH lipoyl dehydrogenase, NADH and NADPH oxidase, NADH and NADPH diaphorase, and NADH and NADPH cytochrome c reductase have been demonstrated. The NADPH-linked enzymes had lower activity rates and were less sensitive to N-ethyl maleimide and p-hydroxymercuribenzoate than their NADH-linked counterparts. NADH cytochrome c reductase was the most sensitive to antimycin A. Michaelis-Menten constants (Km) determined were as follows: NADH diaphorase, 350 μM; NADPH diaphorase, 200 μM; NADH cytochrome c reductase, 13 μM; NADPH cytochrome c reductase, 9 μM; NADH oxidase, 100 μM; NADPH oxidase 150 μM; NADH lipoyl dehydrogenase, 0.35 μM. Enzyme activities after storage at –5 C indicate that the diaphorases are less labile than the other tested enzymes, and the differential activities of the NADH and NADPH linked enzymes suggest that functionally they may have different roles.  相似文献   

14.
K Matsushita  H R Kaback 《Biochemistry》1986,25(9):2321-2327
The respiratory chain in the cytochrome d deficient mutant Escherichia coli GR19N is a relatively simple, linear system consisting of primary dehydrogenases, ubiquinone 8, cytochrome b-556, and cytochrome o oxidase. By use of right-side-out and inside-out membrane vesicles from this strain, various oxidase activities and the generation of the H+ electrochemical gradient were studied. Oxidation of ubiquinol 1 or N,N,-N',N'-tetramethyl-p-phenylenediamine, which donate electrons directly to the terminal oxidase, generates a H+ electrochemical gradient comparable to that observed during D-lactate oxidation. In contrast, D-lactate/ubiquinone 1 or D-lactate/ferricyanide oxidoreductase activity does not appear to generate a membrane potential, suggesting that electron flow from D-lactate dehydrogenase to ubiquinone is not electrogenic. Moreover, proteoliposomes reconstituted with purified D-lactate dehydrogenase, ubiquinone 8, and purified cytochrome o catalyze D-lactate and ubiquinol 1 oxidation and generate a H+ electrochemical gradient similar to that observed in membrane vesicles. Strikingly, in inside-out vesicles, NADH oxidation generates a H+ electrochemical gradient that is very significantly greater than that produced by either D-lactate or ubiquinol 1; furthermore, NADH/ubiquinone 1 and NADH/ferricyanide oxidoreductase activities are electrogenic. It is suggested that the only component between D-lactate dehydrogenase or ubiquinol and oxygen in GR19N membranes that is directly involved in the generation of the H+ electrochemical gradient is cytochrome o, which functions as a "half-loop" (i.e., the oxidase catalyzes the scalar release of 2 H+ from ubiquinol on the outer surface of the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Characteristics of External NADH Oxidation by Beetroot Mitochondria   总被引:6,自引:6,他引:0       下载免费PDF全文
Mitochondria isolated from fresh red beetroot (Beta vulgaris L.) tissue do not oxidize external NADH with O2 as the electron acceptor. These mitochondria have a rotenone- and antimycin-insensitive pathway of NADH oxidation associated with the outer membrane and are capable of reducing cytochrome c or potassium ferricyanide. They are also capable of oxidizing internal NADH via the inner membrane electron transport chain with normal rotenone and antimycin sensitivity and ADP/O ratios. They differ from other plant mitochondria in the apparent lack of the NADH dehydrogenase located on the outer surface of the inner membrane. It is shown that this activity develops during the aging of red beetroot slices in aerated dilute CaSO4 solutions, and is present in the mitochondria isolated from aged tissue.  相似文献   

16.
The reduction of the following exogenous quinones by succinate and NADH was studied in mitochondria isolated from both wild type and ubiquinone (Q)-deficient strains of yeast: ubiquinone-0 (Q0), ubiquinone-1 (Q1), ubiquinone-2 (Q2), and its decyl analogue 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone (DB), duroquinone (DQ), menadione (MQ), vitamin K1 (2-methyl-3-phytyl-1,4-naphthoquinone), the plastoquinone analogue 2,3,6-trimethyl-1,4-benzoquinone (PQOc1), plastoquinone-2 (PQ2), and its decyl analogue (2,3-dimethyl-6-decyl-1,4-benzoquinone). Reduction of the small quinones DQ, Q0, Q1, and PQOc1 by NADH occurred in both wild type and Q-deficient mitochondria in a reaction inhibited more than 50% by myxothiazol and less than 20% by antimycin. The reduction of these small quinones by succinate also occurred in wild type mitochondria in a reaction inhibited more than 50% by antimycin but did not occur in Q-deficient mitochondria suggesting that endogenous Q6 is involved in their reduction. In addition, the inhibitory effects of antimycin and myxothiazol, specific inhibitors of the cytochrome b-c1 complex, on the reduction of these small quinones suggest the involvement of this complex in the electron transfer reaction. By contrast, the reduction of Q2 and DB by succinate was insensitive to inhibitors and by NADH was 20-30% inhibited by myxothiazol suggesting that these analogues are directly reduced by the primary dehydrogenases. The dependence of the sensitivity to the inhibitors on the substrate used suggests that succinate-ubiquinone oxidoreductase interacts specifically with center i (the antimycin-sensitive site) and NADH ubiquinone oxidoreductase preferentially with center o (the myxothiazol-sensitive site) of the cytochrome b-c1 complex. The NADH dehydrogenase involved in the myxothiazol-sensitive quinone reduction faces the matrix side of the inner membrane suggesting that center o may be localized within the membrane at a similar depth as center i.  相似文献   

17.
To gain some insight into the mechanism by which glutamate neurotoxicity takes place in cerebellar granule cells, two steps of glucose oxidation were investigated: the electron flow via respiratory chain from certain substrates to oxygen and the transfer of extramitochondrial reducing equivalents via the mitochondrial shuttles. However, cytochrome c release from intact mitochondria was found to occur in glutamate-treated cells as detected photometrically in the supernatant of the cell homogenate suspension. As a result of cytochrome c release, an increase of the oxidation of externally added NADH was found, probably occurring via the NADH-b5 oxidoreductase of the outer mitochondrial membrane. When the two mitochondrial shuttles glycerol 3-phosphate/dihydroxyacetone phosphate and malate/oxaloacetate, devoted to oxidizing externally added NADH, were reconstructed, both were found to be impaired under glutamate neurotoxicity. Consistent early activation in two NADH oxidizing mechanisms, i.e., lactate production and plasma membrane NADH oxidoreductase activity, was found in glutamate-treated cells. In spite of this, the increase in the cell NADH fluorescence was found to be time-dependent, an index of the progressive damage of the cell.  相似文献   

18.
A.N. Malviya  A. Rendon  D. Aunis 《FEBS letters》1983,160(1-2):153-158
Cytochrome b-561 in chromaffin granules interacts with antimycin and its -peak shifts 1 nm towards red. When chromaffin granules were treated with Triton X-100 antimycin no effect was observed. Cytochrome b-561 is located in the plasma membrane isolated from the chromaffin cells. The plasma membrane b-561 does not seem to interact with antimycin. A number of NADH or NADPH (acceptor) oxidoreductase activity has been observed in isolated plasma membrane providing clues to the origin of plasma membrane dehydrogenase. The possible role of cytochrome b561 in secretory granules other than its accredited energy conserving electron transport property is projected.  相似文献   

19.
It was reported that VDAC1 possesses an NADH oxidoreductase activity and plays an important role in the activation of xenobiotics in the outer mitochondrial membrane. In the present work, we evaluated the participation of VDAC1 and Cyb5R3 in the NADH-dependent activation of various redox cyclers in mitochondria. We show that external NADH oxidoreductase caused the redox cycling of menadione ≫ lucigenin>nitrofurantoin. Paraquat was predominantly activated by internal mitochondria oxidoreductases. An increase in the ionic strength stimulated and suppressed the redox cycling of negatively and positively charged acceptors, as was expected for the Cyb5R3-mediated reduction. Antibodies against Cyb5R3 but not VDAC substantially inhibited the NADH-related oxidoreductase activities. The specific VDAC blockers G3139 and erastin, separately or in combination, in concentrations sufficient for the inhibition of substrate transport, exhibited minimal effects on the redox cycler-dependent NADH oxidation, ROS generation, and reduction of exogenous cytochrome c. In contrast, Cyb5R3 inhibitors (6-propyl-2-thiouracil, p-chloromercuriobenzoate, quercetin, mersalyl, and ebselen) showed similar patterns of inhibition of ROS generation and cytochrome c reduction. The analysis of the spectra of the endogenous cytochromes b5 and c in the presence of nitrofurantoin and the inhibitors of VDAC and Cyb5R3 demonstrated that the redox cycler can transfer electrons from Cyb5R3 to endogenous cytochrome c. This caused the oxidation of outer membrane-bound cytochrome b5, which is in redox balance with Cyb5R3. The data obtained argue against VDAC1 and in favor of Cyb5R3 involvement in the activation of redox cyclers in the outer mitochondrial membrane.  相似文献   

20.
ATP synthesis during exogenous NADH oxidation. A reappraisal   总被引:1,自引:0,他引:1  
This paper reports a reinvestigation on the pathway for mitochondrial oxidation of exogenous NADH and on the related ATP synthesis, first reported 30 years ago (Lehninger, A.L. (1951) J. Biol. Chem. 190, 345-359). NADH oxidation, both in intact and in water-treated mitochondria, is 90% inhibited by mersalyl, an inhibitor of the outer membrane NADH-cytochrome b5 reductase, and 10% inhibited by rotenone. The mersalyl-sensitive, but not the rotenone-sensitive, portion of NADH oxidation is stimulated by exogenous cytochrome c. Part of ATP synthesis is independent of exogenous NADH and cytochrome c, and is inhibited by rotenone and antimycin A, and is therefore due to oxidation of endogenous substrates. Another part of ATP synthesis is dependent on exogenous NADH and cytochrome c, is insensitive to rotenone and antimycin A, and is due to operation of cytochrome oxidase. It is concluded that (i) oxidation of exogenous NADH in the presence of cytochrome c proceeds mostly through NADH-cytochrome b5 reductase and cytochrome b5 on the outer membrane and then through cytochrome oxidase via the cytochrome c shuttle, and (ii) ATP synthesis during oxidation of exogenous NADH is partly due to oxidation of endogenous substrates and partly to operation of cytochrome oxidase receiving electrons from the outer membrane via cytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号