首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The endocrine pancreas of the grey kangaroo,Macropus fuliginosus, was investigated by means of immunocytochemistry using the PAP method on the same section at the light- and electron-microscopic levels. Semithin plastic sections were stained individually with primary antibodies for insulin, glucagon, somatostatin and pancreatic polypeptide (PP), and then photographed. Sections were osmicated, re-embedded in BEEM capsules, and ultrathin sections made and examined. The same labelled cells as in the semithin sections were localised in the thin sections, photographs taken and the morphology of secretory granules studied. The insulin cells were pleomorphic; their secretory granules displayed an electron-dense core surrounded by an empty halo. The glucagon cells possessed granules with an electron-dense core usually surrounded by a halo of less dense granular material. Somatostatin cells had larger, less dense secretory granules. The PP cells showed small, dense secretory granules. In order for an ultrastructural study to be considered reliable for the definite identification of endocrine cell types, it is essential that it be corroborted by correlated immunocytochemical data at the light-and electron-microscopic levels.  相似文献   

2.
Summary The endocrine pancreas of the Australian fattailed dunnart, Sminthopsis crassicaudata, was investigated by means of electron-microscopic immunocytochemistry using the protein A-gold technique on London resin (LR) white-embedded tissue. The primary antibodies used were raised against insulin, glucagon, somatostatin and pancreatic polypeptide. The morphology of the secretory granules differed in the four cell types. The insulin cells are pleomorphic, and the secretory granules composed of an electron-dense core surrounded by an electron-lucen halo. The glucago cells possess granules with an electron-dense core usually surrounded by a halo of less dense granular material. Somatostatin cells have large, less dense secretory granules. The pancreatic polypeptide cells show small, dense secretory granules. In order for an ultrastructural study to be considered reliable for the definite identification of endocrine cell types, it is essential that it be corroborated by immunocytochemical data at the light-or preferably electron-microscopic level. Recent developments in immuno-electron-microscopic techniques have contributed to a better knowledge of cells responsible for the secretion of a wide variety of hormones, as in this study.  相似文献   

3.
The electron immunocytochemical co-localization of prochymosin and pepsinogen in chief cells, mucous neck cells and transitional mucous neck/chief cells of calf fundic glands was studied using specific antisera for prochymosin and pepsinogen with a protein A-gold method. Prochymosin and pepsinogen immunoreactivities were detected in the same secretory granules of the chief, mucous neck and transitional cells, simultaneously using small and large colloidal gold particles. In chief cells, both immunoreactivities were distributed uniformly over the same zymogen granules showing a round, large, homogeneous and electron-dense appearance. In mucous neck cells, both immunoreactivities were found exclusively on the same electron-dense core located eccentrically in the mucous granule showing light or moderate electron density. In transitional mucous neck/chief cells, electron-dense cores became larger in size and some granules were occupied by the electron-dense core without a halo between the core and the limiting membrane. Both immunoreactivities were found uniformly over the electron-dense core. The granules having no halo in the transitional cells could not be distinguished from the typical zymogen granules in the chief cells.  相似文献   

4.
An immunocytochemical technique using specific antiglucagon serum reveals the presence of glucagon-containing cells situated exclusively in the oxyntic glandular mucosa of the dog stomach. Electron microscope examination of the mucosa demonstrated endocrine cells containing secretory granules with a round dense core surrounded by a clear halo, indistinguishable from secretory granules of pancreatic A cells. Like the alpha granules of pancreatic A cells, the granules of these gastric endocrine cells exhibited a peripheral distribution of silver grains after Grimelius silver staining. Moreover, the granules of these cells were found to be specifically labeled with reaction product, using the peroxidase immunocytochemical technique at the ultrastructural level. Accordingly, these cells were named gastric A cells. These data suggest that the gastric oxyntic mucosa contains cells indistinguishable cytologically, cytochemically, and immunocytochemically from pancreatic A cells. It is believed that gastric A cells are responsible for the secretion of the gastric glucagon.  相似文献   

5.
Pancreastatin is a 49 amino acid comprising peptide isolated from porcine pancreas that is derived by proteolytic processing from chromogranin A. Using an antibody against the synthetic C-terminal fragment pancreastatin (33-49), we examined the light and electron microscopical immunocytochemical localization of this peptide in porcine tissues. Pancreastatin-like immunoreactivity (PLI) was found in pancreatic somatostatin-, insulin- and glucagon cells in varying intensities; pancreatic polypeptide cells were always negative. At the electron microscopical (EM) level the immunoreactivity was confined to the electron dense core of the secretory granules in the case of somatostatin and insulin cells or to the less electron dense "halo" of the glucagon granules. In the antrum PLI positive cells represented gastrin (G), somatostatin (D) and enterochromaffin (EC) cells, in the duodenum in addition to EC- and G-cells a small number of PLI positive cells showed a positive immunoreaction for glucagon-like peptide (GLP) I and secretin in serial sections. Both norepinephrine and epinephrine containing cells of the adrenal medulla exhibited a strong reaction for PLI. In the pituitary several cell populations stained with varying intensities, including gonadotrophs and thyrotrophys. PLI is present in a distinct and characteristic subpopulation of neuroendocrine cells in various organs. The subcellular localization may indicate a function in the granular concentration, packaging and storage of peptides and amines in the brain-gut endocrine system.  相似文献   

6.
The secretory granules of rat bronchiolar Clara cells were classified into different types by their ultrastructural appearances followed by immunocytochemistry using anti-rat 10 kDa Clara cell-specific protein (10 kDa CCSP) antibody. One predominant type was the oval to round granule (type A granule), of which the matrix was composed of a map-like mixture of electron-dense and less electron-dense material. Another predominant type was the rod-shaped granule (type B granule). The content of type B granules varied from a finely fibrillar (type B1 granule) to an electron-dense, rod-like (type B3 granule) structure. Various intermediate types (type B2 granule) between type B1 and B3 granules were also found. Small cytoplasmic vesicles were found occasionally in close proximity to type B2 or B3 granule. Another type of granule (type C granule) was large, up to 8 microns in diameter, and contained a moderately electron-dense amorphous matrix. Both type A and C granules stained at a similar density with the antibody. The nascent form of type A granules, which was found in the vicinity to the trans face of the Golgi apparatus, was also labeled. On the other hand, the labeling density of type B granules varied: type B1 granules were almost devoid of immunolabeling, whereas type B3 granules were intensely labeled. Type B2 granules stained with the antibody; however, the labeling density was less than that of type B3 granules. The small cytoplasmic vesicles of type B2 granules were labeled.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Summary Calcitonin gene-related peptide (CGRP)-, tachykinins- and somatostatin-immunoreactive neurones in rat dorsal root ganglia have been studied by means of single and double immunogold labelling techniques. Peptide-immunoreactive neurones are generally B- or C-type cells of small size, with well developed rough endoplasmic reticulum and scanty neurofilaments. In neurones classifiable as A2-type cells, i.e. larger neurones with a lighter cytoplasm due to the presence of poorly developed Nissl bodies and numerous neurofilaments, only CGRP immunoreactivity was detected. Immunolabelled structures were identified as large (60–100 nm diameter), electron-dense, membranebounded p-type granules. They were observed only in neuronal cell bodies or in the intraganglionic portions of the axons. No granules immunoreactive to the antisera applied in this study were observed in non-neuronal cells. Immunostaining experiments with different combinations of the antisera revealed, in some cells, the presence of double immunolabelled granules; in particular localization of CGRP and tachykinins, CGRP and somatostatin, and tachykinins and somatostatin to single secretory granules was demonstrated. The finding that more than one peptide is localized to the same secretory granule supports the postulate that peptides are co-released upon nerve stimulation providing morphological support for physiological and pharmacological data demonstrating an interaction between different peptides in the modulation of synaptic activity.  相似文献   

8.
Ghrelin is a new gastric peptide involved in food intake control and growth hormone release. We aimed to assess its cell localisation in man during adult and fetal life and to clarify present interspecies inconsistencies of gastric endocrine cell types. A specific serum generated against amino acids 13-28 of ghrelin was tested on fetal and adult gastric mucosa and compared with ghrelin in situ hybridisation. Immunogold electron microscopy was performed on normal human, rat and dog adult stomach. Ghrelin cells were detected in developing gut, pancreas and lung from gestational week 10 and in adult human, rat and dog gastric mucosa. By immunogold electron microscopy, gastric ghrelin cells showed distinctive morphology and hormone reactivity in respect to histamine enterochromaffin-like, somatostatin D, glucagon A or serotonin enterochromaffin cells. Ghrelin cells were characterised by round, compact, electron-dense secretory granules of P/D(1) type in man (mean diameter 147+/-30 nm), A-like type in the rat (183+/-37 nm) and X type in the dog (273+/-49 nm). It is concluded that, ghrelin is produced by well-defined cell types, which in the past had been labelled differently in various mammals mostly because of the different size of their secretory granule. In man ghrelin cells develop during early fetal life.  相似文献   

9.
Growth hormone (GH), prolactin (PRL), and mammosomatotrope (MS) cells of gilthead sea bream, Sparus aurata, a teleost fish, were studied in specimens from hatching to 15 months (adults) using conventional electron microscopy and an immunogold method using anti-tilapia GH sera and anti-chum salmon PRL serum. MS cells, immunoreactive to both anti-GH sera and anti-PRL sera, had been first identified in fish in a previous study in newly hatched larvae and in older larvae and juvenile specimens of Sparus aurata by light microscopic immunocytochemistry. In the present work, MS cells reacted positively to immunogold label only in older larvae and juveniles and their secretory granules immunoreacted with both GH and PRL antisera or with only one of them. MS cells were ultrastructurally similar to the PRL cells, with which they coincided in time. This is the first report on the ultrastructural characterization of MS cells in fish. In adults, the secretory granules of GH cells (immunoreactive to anti-GH serum) were mainly round, of variable size, and had a homogeneous, highly electron-dense content. Irregularly shaped secretory granules were also present. PRL cells (immunoreactive to anti-PRL serum) were usually observed in a follicular arrangement; they showed few, small, and mainly round secretory granules with a homogeneous and high or medium electron-dense content. Some oval or elongated secretory granules were also observed. GH and PRL cells that showed involutive features were also found. In newly hatched larvae, GH, PRL, and MS cells could not be distinguished either by their ultrastructure or by the immunogold labeling of the secretory granules. In 1-day-old larvae, presumptive GH and PRL cells were observed according to their position in the pituitary gland. In 2-day-old larvae, a few cells showed some of the ultrastructural features described for GH and PRL cells of adults. During development, the number, size, and shape of the secretory granules in both cell types clearly increased and the organelles developed gradually. Some GH cells were found undergoing mitosis.  相似文献   

10.
Most, if not all, endocrine cells seem capable of synthesizing and storing more than one hormone. Such cellular colocalization of hormones can be due either to the presence of two or more specific granules within the cells or to colocalization of the hormones within a single granule. The present study was performed to clarify the subcellular localization of insulin, glucagon, somatostatin, and pancreatic polypeptide within the endocrine cells of the human and porcine pancreas during fetal development, with special reference to possible colocalization of the hormones. The tissue specimens were processed for ultrastructural cytochemistry using Lowicryl as embedding medium. An immunogold labeling technique was used with two parallel, but not interacting, antibody chains. Sections from each specimen were double labeled in different combinations giving a complete covering of the four major islet hormones. During fetal life (50-90 days prenatally in porcine pancreas, 14 weeks gestation in the human pancreas) several hormones were demonstrated, not only in the same endocrine cells, but also in the same secretory granules (polyhormonal granules). Costorage of insulin, glucagon, somatostatin, and pancreatic polypeptide was demonstrated in granules in pancreatic endocrine fetal cells. At an early fetal stage, the endocrine cells contained either dense, round granules or pale, heteromorphous granules. With increasing age and maturation of the endocrine cells, structural differentiation of the secretory granules was found to be associated with a gradual disappearance of the polyhormonal granules. The first genuine monohormonal cell to appear in the porcine fetus was the pancreatic polypeptide cell (at 70 days gestation); it was followed by the somatostatin-producing endocrine cell. Mature insulin- and glucagon-producing cells were only demonstrated after birth. Thus, in the adult pancreatic endocrine cells, each specific endocrine cell type produced only one of the four classical hormones. The present investigation demonstrated that the endocrine cells of the fetal, but not the adult, pancreas are able to synthesize all the major islet hormones, and that these peptides are costored in the same granule. The data obtained support the concept of a common precursor stem cell for pancreatic hormone-producing cells.  相似文献   

11.
The distribution of peptide immunoreactivities predicted from the sequence of the human preproglucagon gene in enteroglucagon (EG; glicentin-like immunoreactant-containing) cells of the human gut and A cells of the pancreas has been determined by light and electron microscopic immunocytochemistry. At light microscopy the application of peroxidase-antiperoxidase and immunogold-silver staining methods has revealed that glucagon-like peptide (GLP-1 and GLP-2) immunoreactivities coexist with a glicentin-related immunodeterminant in human colorectal EG cells and pancreatic A cells. Using single and double colloidal gold probe electron immunocytochemistry, we have been able to show the coexistence of glicentin, GLP-1, and GLP-2 immunoreactivities within single EG cell secretory granules. No morphologic segregation of the proglucagon immunoreactants was observed in EG cells of the colonic mucosa. In pancreatic A cells we have localized GLP-1, GLP-2, and glucagon-[16-29] immunoreactivities solely to the electron-dense core of the secretory granules, whereas glicentin-related immunoreactivity was restricted to the electron-lucent halo. The results obtained in the present study have shown that the peptide immunoreactivities predicted from cDNA sequencing of the human preproglucagon gene are indeed expressed in colorectal EG and pancreatic A cells. The topographical segregation of immunoreactivities in the A cell secretory granule shows that antigenic determinants derived from the C-terminal portion of proglucagon are stored with glucagon in the core of the secretory granule.  相似文献   

12.
Summary In the gastric mucosa of two teleost species, the perch (Perca fluviatilis) and the catfish (Ameiurus nebulosus) three endocrine cell types were found, located predominantly between the mucoid cells of the gastric mucosa. A fourth cell type is present in the gastric glands of catfish. Each cell type was defined by its characteristic secretory granules. Type-I cells were predominant in both fish. These cells contained round or oval granules with a pleomorphic core. The average diameter of granules was 400 nm for the perch and 270 nm for the catfish. Type-II cells of both species displayed small, highly osmiophilic granules about 100 nm in diameter. The secretory granules of type-III cells (260 nm in the perch and 190 nm in the catfish) were round or slightly oval in shape and were filled with a finely particulate electron-dense material. Type-IV cells of the catfish were found in the gastric glands only. Their cytoplasm was filled with homogeneous, moderately electron-dense granules averaging 340 nm in diameter. The physiological significance of these different morphological types of gastric endocrine cells requires further investigation.  相似文献   

13.
The big and secondary islets of sea bass larvae were characterized ultrastructurally from, 25 to 60 days after hatching. From the 25th day, big islets consisted of inner type II and III, external type I and peripheral type IV cells. From the 55th day, type V cells appeared in limited peripheral areas. Secondary islets, first found in 32-day-old larvae, were made up of inner type II and III, external type I, and peripheral either type IV and V cells (type I islets), or only type V cells (type II islets). Type I cells contained secretory granules with a fine granular, low-medium electron-dense material, whereas the secretory granules of type II cells were smaller and had a high electron-dense core with diffused limits; needle and rod-like crystalloid contents were occasionally found. Type III secretory granules posessed a homogeneous, high or medium electron-dense material with or without a clear halo. Type IV cells had secretory granules with a polygonal dense core embedded in a granular matrix and granules containing a high or medium electron-dense material. Type V cells had secretory granules with a fine granular, high or medium electron-dense content. These cell-types correlated with cells previously identified immuno-cytochemically, as regards to their distribution in the islets, and related to those characterized ultrastructurally in adult specimens. Thus, types I, II, III, IV and V correspond to D1, B, D2, A and PP cells, respectively. From the 32nd day onwards, endocrine cells of all the different types were found grouped, type V cells also being observed in isolation close to pancreatic ducts and/or blood vessels. Small groups consisting of type I and II cells were found in 40-day-old larvae. A mitotic centroacinar ductular cell containing some secretory granules similar to those of type I cells, was seen adjacent to a type I cell. As the larvae grew older, the endoplasmic reticulum developed, the number of free ribosomes decreased, and the number and size of the secretory granules increased. Dark type I, II, III, IV and V cells were found in the islets and cell clusters from the 55th day onwards.  相似文献   

14.
The ultrastructure of three types of gland cells of embryos and free-swimming larvae of Austramphilina elongata is described. Type I gland cells contain large, more or less round electron-dense granules which are formed by numerous Golgi complexes. Type II gland cells contain thread-like, membrane-bound secretory granules with longitudinally arranged microtubules inside the granules; secretory droplets are produced by Golgi complexes and the microtubules apparently condense in the cytoplasm or in the droplets. Type III gland cells contain irregular-ovoid membrane-bound granules with coiled up microtubules which have an electron-dense core; the granules are formed by secretionderived from Golgi complexes and the microtubules aggregate around and migrate into the secretion; microtubules are at first hollow and the early secretory granules have a central electron-dense region.  相似文献   

15.
Summary The secretory granules of rat bronchiolar Clara cells were classified into different types by their ultrastructural appearances followed by immunocytochemistry using anti-rat 10 kDa Clara cell-specific protein (10 kDa CCSP) antibody. One predominant type was the oval to round granule (type A granule), of which the matrix was composed of a map-like mixture of electron-dense and less electron-dense material. Another predominant type was the rod-shaped granule (type B granule). The content of type B granules varied from a finely fibrillar (type B1 granule) to an electron-dense, rod-like (type B3 granule) structure. Various intermediate types (type B2 granule) between type B1 and B3 granules were also found. Small cytoplasmic vesicles were found occasionally in close proximity to type B2 or B3 granule. Another type of granule (type C granule) was large, up to 8 m in diameter, and contained a moderately electron-dense amorphous matrix. Both type A and C granules stained at a similar density with the antibody. The nascent form of type A granules, which was found in the vicinity to the trans face of the Golgi apparatus, was also labeled. On the other hand, the labeling density of type B granules varied: type B1 granules were almost devoid of immunolabeling, whereas type B3 granules were intensely labeled. Type B2 granules stained with the antibody; however, the labeling density was less than that of type B3 granules. The small cytoplasmic vesicles of type B2 granules were labeled. From these findings, it is suggested that the granules of rat Clara cells consist of two types of granules of distinct origin; one appears to derive from condensing vacuoles of Golgi origin, whereas the other may be formed by membranefusions with small cytoplasmic vesicles of unknown source.  相似文献   

16.
The gastroenteropancreatic (GEP) endocrine system of bowfin (Amia calva) was described using light and electron microscopy and immunological methods. The islet organ (endocrine pancreas) consists of diffusely scattered, mostly small islets and isolated patches of cells among and within the exocrine acini. The islets are composed of abundant, centrally located B cells immunoreactive to bovine and lamprey insulin antisera and D cells showing a widespread distribution and specificity to somatostatin antibodies. A and F cells are present at the very periphery of the islets and are immunoreactive with antisera against glucagon (and glucagon-like peptide) and several peptides of the pancreatic polypeptide (PP)-family, respectively. The peptides of the two families usually collocates within the same peripheral islet cells and are the most common immunoreactive peptides present in the extra-islet tissue. Immunocytochemistry and fine structural observations characterised the granule morphology for B and D cells and identified two cell types with granules immunoreactive to glucagon antisera. These two putative A cells had similar granules, which were distinct from either B or D cells, but one of the cells had rod-shaped cytoplasmic inclusions within cisternae of what appeared to be rough endoplasmic reticulum. The inclusions were not immunoreactive to either insulin or glucagon antisera. Only small numbers of cells in the stomach and intestine immunoreacted to antisera against somatostatin, glucagon, and PP-family peptides. The paucity of these cells was reflected in the low concentrations of these peptides in intestinal extracts. The GEP system of bowfin is not unlike that of other actinopterygian fishes, but there are some marked differences that may reflect the antiquity of this system and/or may be a consequence of the ontogeny of this system in this species.  相似文献   

17.
To identify and characterize the subcellular topography of glycine-extended pro-gastrin-processing intermediates (G-Gly) in human antral mucosa, we performed an electron microscopic immunocytochemical study using region-specific antisera generated against the synthetic peptide, Tyr-Gly-Trp-Met-Asp-Phe-Gly (GL7), and C-terminal-specific anti-gastrin antisera. As has been previously reported, G-cells contained both electron-dense and electron-lucent granules, with a range of intermediate forms. Gastrin immunoreactivity was demonstrated in almost all granules of each type, whereas anti-GL7 antisera immunostained chiefly electron-dense granules. The relative ratio of GL7/gastrin granules varied among different cells but was approximately 1:10 on average. Other cytoplasmic organelles were devoid of specific labeling for GL7 or gastrin. As we have assumed that G-Gly serves as the immediate precursor for each molecular form of gastrin, electron-dense granules with high labeling for GL7 are regarded as the principal site for conversion of G-Gly to gastrin. This speculation supports many previous reports that electron-dense granules are immature and that the granules become less electron-dense with maturation.  相似文献   

18.
Summary The midgut of Blaberus craniifer is principally made up of columnar epithelial cells which are derived from small regenerative cells found grouped in nidi. Between them, small sparsely granulated cells with clear cytoplasm can be observed lying on the basal lamina. Mainly based on the size, shape and texture of their secretory granules, at least ten types of such endocrine cells have been identified. Five cell types contain a uniform population of dense granules: (1) medium-sized, round to oval granules; (2) small elongated granules; (3) large irregular granules; (4) oval granules with a highly osmiophilic core; (5) oval, haloed granules. Five others are characterized by a heterogeneous population of granules: (6) small, round to oval, variably electron-dense granules; (7) oval medium-sized granules of variable electron density; (8) large irregular granules of variable electron density; (9) small dense granules and large vesicles with filamentous material; (10) small dense granules and very large pale vesicles.In addition, near the regenerative cells, large cells characterized by very large, irregular, dense granules (up to 4 m), lack contact with the lumen, and reach the basal lamina only by slender cytoplasmic processes.Several antisera raised against mammalian peptides and amine were used to reveal axonal fibers and endocrine cells. Serotonin-like immunoreactivity is localized in a profuse innervation of the muscle layers that surround the epithelium, whereas cholecystokinin and methionine-enkephalin antisera stain a more moderate number of axonal fibers. Cholecystokinin-, methionine-enkephalin-, substance P-, vasoactive intestinal peptide-, somatoliberin-, and gonadoliberin-like immunoreactivities were detected in endocrine cells of the epithelium. While most of the cells appear pyramidal, oval, fusiform or bowl-shaped, and seem to lack contact with the lumen, cells reaching it have been detected reacting with antisera to cholecystokinin, substance P, vasoactive intestinal peptide, somatoliberin and gonadoliberin.  相似文献   

19.
The cellular ultrastructure and surface glycoconjugate expression of three life stages of Leishmania major were compared. Noninfective logarithmic phase promastigotes (LP) are immature cells bearing a thin cell coat, short flagellum, small and empty flagellar pocket, and a loose cytoplasm filled with profiles of ER and large Golgi complex. LP also contain subpopulations of maturing cells containing less ER and Golgi and synthesizing cytoplasmic granules of different size, number, and electron-density. Infective or metacyclic promastigotes (MP) are fully differentiated nondividing forms with a thickened, prominent cell coat, long flagellum, distended flagellar pocket filled with secretory material, and few cytoplasmic organelles other than abundant electron-dense granules. Tissue amastigotes also contain electron-dense cytoplasmic granules, their flagellar pockets are also enlarged and contain secretory material, but they lack a discernable cell coat. Immunogold labeling of GP63 on the cell surface was extensive only on amastigotes. Promastigote GP63 appeared to be masked by the presence of a densely packed lipophosphoglycan (LPG) coat which was extensively labeled on the entire surface of MP and LP. An elongated, developmentally modified form of LPG was abundantly labeled only on MP. LPG was poorly labeled on amastigotes, arguing that the promastigote cell coat is a stage-specific structure which is lost during intracellular transformation.  相似文献   

20.
The neurotensin-cell is identified immunohistochemically and ultrastructurally by differential counting of endocrine cells in the gut of a primate (Tupaia belangeri). Utilizing light microscopy, the EC-cells are identified by the Masson-Fontana silver stain; with the same method the neurotensin cells are not stained. The other endocrine cells have been quantified in the small intestine using the peroxidase-antiperoxidase stain with antisera against glucagon, somatostatin, cholecystokinin, gastrin, secretin, pancreatic polypeptide, gastric inhibitory peptide and neurotensin. In the ileal mucosa of Tupaia, the most frequent endocrine cell is the EC-cell followed by the glucagonoid cell, (L-cell). The immunoreactive neurotensin cell represents the third most frequent endocrine cell in this region. On the ultrastructural level, this third most frequent endocrine cell is a heretofore undescribed cell, the N-cell, containing electron dense secretory granules measuring 335 +/- 87 nm in diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号