首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Recently, we identified that regulation of leukocyte recruitment by IL-6 requires shedding of the IL-6R from infiltrating neutrophils. In this study, experiments have examined whether other IL-6-related cytokines possess similar properties. Levels of oncostatin M (OSM) and leukemia inhibitory factor were analyzed in patients with overt bacterial peritonitis during the first 5 days of infection. Although no change in leukemia inhibitory factor was observed throughout the duration of infection, OSM was significantly elevated on day 1 and rapidly returned to baseline by days 2-3. The source of OSM was identified as the infiltrating neutrophils, and OSM levels correlated both with leukocyte numbers and i.p. soluble IL-6R (sIL-6R) levels. FACS analysis revealed that OSM receptor beta expression was restricted to human peritoneal mesothelial cells. Stimulation of human peritoneal mesothelial cells with OSM induced phosphorylation of gp130 and OSM receptor beta, which was accompanied by activation of STAT3 and secretion of CC chemokine ligand 2/monocyte chemoattractant protein-1 and IL-6. Although OSM itself did not modulate CXC chemokine ligand 8/IL-8 release, it effectively suppressed IL-1beta-mediated expression of this neutrophil-activating CXC chemokine. Moreover, OSM synergistically blocked IL-1beta-induced CXC chemokine ligand 8 secretion in combination with the IL-6/sIL-6R complex. Thus suggesting that OSM and sIL-6R release from infiltrating neutrophils may contribute to the temporal switch between neutrophil influx and mononuclear cell recruitment seen during acute inflammation.  相似文献   

2.
Interleukin-6 signaling via its soluble receptor (sIL-6R) differentially regulates inflammatory chemokine expression and leukocyte apoptosis to coordinate transition from neutrophil to mononuclear cell infiltration. sIL-6R activities may, however, be influenced in vivo by the occurrence of two sIL-6R isoforms that are released as a consequence of differential mRNA splicing (DS) or proteolytic cleavage (PC) of the cognate IL-6R (termed DS- and PC-sIL-6R). Using human peritoneal mesothelial cells and a murine model of peritoneal inflammation, studies described in this work have compared the ability of both isoforms to regulate neutrophil recruitment. In this respect, DS- and PC-sIL-6R were comparable in their activities; however, these studies emphasized that IL-6 trans signaling differentially controls neutrophil-activating CXC chemokine expression. In vitro, stimulation of mesothelial cells with IL-6 in combination with either DS-sIL-6R or PC-sIL-6R showed no induction of CXC chemokine ligand (CXCL)1 (GRO alpha) and CXCL8 (IL-8), whereas both isoforms enhanced CXCL5 (ENA-78) and CXCL6 (granulocyte chemotactic protein-2) expression. Moreover, when complexed with IL-6, both isoforms specifically inhibited the IL-1 beta-induced secretion of CXCL8. These findings were paralleled in vivo, in which induction of peritoneal inflammation in IL-6-deficient (IL-6(-/-)) mice resulted in enhanced keratinocyte-derived chemokine and macrophage-inflammatory protein-2 (the murine equivalent of CXCL1 and CXCL8) levels, but reduced LPS-induced CXC chemokine (the murine equivalent of CXCL5) expression. Reconstitution of IL-6 signaling in IL-6(-/-) mice with IL-6 and its soluble receptor isoforms corrected this chemokine imbalance and suppressed overall neutrophil infiltration. These data confirm that sIL-6R-mediated signaling primarily limits neutrophil influx; however, induction of CXCL5 and CXCL6 may regulate other neutrophil responses.  相似文献   

3.
In vivo and in vitro roles of IL-21 in inflammation   总被引:3,自引:0,他引:3  
IL-21 is a cytokine known to mediate its biological action via the IL-21R, composed of a specific chain, IL-21Ralpha, and the common gamma-chain (CD132). Recent data suggest that IL-21 possesses proinflammatory properties. However, there is no clear evidence that IL-21 induces inflammation in vivo and, curiously, the interaction between IL-21 and neutrophils has never been investigated, despite the fact that these cells express CD132 and respond to other CD132-dependent cytokines involved in inflammatory disorders. Using the murine air pouch model, we found that IL-21 induced inflammation in vivo, based on recruitment of neutrophil and monocyte populations. In contrast to LPS, administration of IL-21 into the air pouch did not significantly increase the concentration of IL-6, CCL5, CCL3, and CXCL2. We demonstrated that HL-60 cells expressed IL-21Ralpha, which is down-regulated during their differentiation toward neutrophils, and that IL-21Ralpha is not detected in neutrophils. Concomitant with this, IL-21 induced Erk-1/2 phosphorylation in HL-60 cells, but not in neutrophils. To eliminate the possibility that IL-21 could activate neutrophils even in the absence of IL-21Ralpha, we demonstrated that IL-21 did not modulate several neutrophil functions. IL-21-induced Erk-1/2 phosphorylation was not associated with proliferation or differentiation of HL-60 toward neutrophils, monocytes, or macrophages. IL-21Ralpha was detected in human monocytes and monocyte-derived macrophages, but IL-21 increased CXCL8 production only in monocyte-derived macrophages. We conclude that IL-21 is a proinflammatory cytokine, but not a neutrophil agonist. We propose that IL-21 attracts neutrophils indirectly in vivo via a mechanism independent of IL-6, CCL3, CCL5, and CXCL2 production.  相似文献   

4.
Microbial infection urges prompt intervention by the immune system. The complement cascade and neutrophil granulocytes are the predominant contributors to this immediate anti-microbial action. We have previously shown that mannan-binding lectin-associated serine protease-1 (MASP-1), the most abundant enzyme of the complement lectin pathway, can induce p38-MAPK activation, NFkappaB signaling, and Ca2+-mobilization in endothelial cells. Since neutrophil chemotaxis and transmigration depends on endothelial cell activation, we aimed to explore whether recombinant MASP-1 (rMASP-1) is able to induce cytokine production and subsequent neutrophil chemotaxis in human umbilical vein endothelial cells (HUVEC). We found that HUVECs activated by rMASP-1 secreted IL-6 and IL-8, but not IL-1alpha, IL-1ra, TNFalpha and MCP-1. rMASP-1 induced dose-dependent IL-6 and IL-8 production with different kinetics. rMASP-1 triggered IL-6 and IL-8 production was regulated predominantly by the p38-MAPK pathway. Moreover, the supernatant of rMASP-1-stimulated HUVECs activated the chemotaxis of neutrophil granulocytes as an integrated effect of cytokine production. Our results implicate that besides initializing the complement lectin pathway, MASP-1 may activate neutrophils indirectly, via the endothelial cells, which link these effective antimicrobial host defense mechanisms.  相似文献   

5.
Increased levels of IL-6 are documented in asthma, but its contribution to the pathology is unknown. Asthma is characterized by airway wall thickening due to increased extracellular matrix deposition, inflammation, angiogenesis, and airway smooth muscle (ASM) mass. IL-6 binds to a specific membrane-bound receptor, IL-6 receptor-alpha (mIL-6Ralpha), and subsequently to the signaling protein gp130. Alternatively, IL-6 can bind to soluble IL-6 recpetor-alpha (sIL-6Ralpha) to stimulate membrane receptor-deficient cells, a process called trans-signaling. We discovered that primary human ASM cells do not express mIL-6Ralpha and, therefore, investigated the effect of IL-6 trans-signaling on the pro-remodeling phenotype of ASM. ASM required sIL-6Ralpha to activate signal transducer and activator 3, with no differences observed between cells from asthmatic subjects compared with controls. Further analysis revealed that IL-6 alone or with sIL-6Ralpha did not induce release of matrix-stimulating factors (including connective tissue growth factor, fibronectin, or integrins) and had no effect on mast cell adhesion to ASM or ASM proliferation. However, in the presence of sIL-6Ralpha, IL-6 increased eotaxin and VEGF release and may thereby contribute to local inflammation and vessel expansion in airway walls of asthmatic subjects. As levels of sIL-6Ralpha are increased in asthma, this demonstration of IL-6 trans-signaling in ASM has relevance to the development of airway remodeling.  相似文献   

6.
Contradictory results have been reported on the effects and role of IL-6 on proteoglycan (PG) synthesis. Having shown recently that in vitro IL-6 depends on the presence of soluble IL-6 receptor alpha (sIL-6Ralpha) to fully exert its effects on chondrocytes, we conducted the present study to analyse the effects of IL-6 on PG synthesis by human articular chondrocytes in the presence of sIL-6Ralpha. PG synthesis was quantified by specific ELISA using a monoclonal antibody (MAB) raised against the keratan sulphate region of PG as a capture antibody, and a MAB to the acid binding region as a detector. It proved specific for PG from primary (differentiated) chondrocytes. In the absence of sIL-6Ralpha, IL-6 had a slight inhibitory effect on PG synthesis by articular chondrocytes. sIL-6Ralpha alone also had slight but consistent inhibitory effects. When adding sIL-6Ralpha at concentrations of 50 ng/ml corresponding to levels found in synovial fluid, the effects of IL-6 increased consistently. However, even at optimal concentrations (30-100 ng/ml of IL-6sR per 100 ng/ml of IL-6), maximal inhibition (48%) did not equal the degree of inhibition achieved by IL-1 at 1 ng/ml (66%). Similar effects, although slightly weaker, were observed on osteoarthritic cells. Dexamethasone, over a wide range of concentrations, markedly enhanced proteoglycan synthesis and completely reversed the downregulatory effects of IL-1 and IL-6 + sIL-6Ralpha. The effects of IL-1 were partially inhibited by an anti-IL-6 antibody. Finally, unlike IL-1, IL-6 + sIL-6Ralpha only weakly stimulated nitric oxide (NO) synthesis. In conclusion, sIL-6Ralpha potentiates the inhibitory effect of IL-6 on PG synthesis by articular chondrocytes, but the overall effect of IL-6 + IL-6sR is moderate compared to the effects of IL-1.  相似文献   

7.
Recently, it has been reported that TLR2 on macrophages plays a unique role in the inflammatory response and host defense to infection with Borrelia burgdorferi (Bb) which is an etiologic agent of Lyme disease. Experimental studies show that PMNs also play an essential role in infection control by Bb. However, there is no available data about TLR2 expression on PMN in the course of Lyme disease. In the present study, TLR2 expression and production of IL-1beta and IL-6 as well as their natural regulators (sIL-1RII, IL-1Ra and sIL-6Ralpha, sgp130, resp) by PMN of peripheral blood in patients with Lyme disease were examined. For the purpose of comparison, the same activity of autologous peripheral blood mononuclear cells (PBMCs) was estimated. An effect of rhIL-15 on TLR2 and cytokine secretion was also studied. Increased TLR2 expression in unstimulated neutrophils suggests an important role of these cells in mechanism recognition of B burgdorferi in patients with Lyme disease. The relationship between IL-1beta and IL-6 as well as their regulators by unstimulated PMN and PBMC, observed in the present study, may lead to enhanced IL-6- and to inhibition of IL-1beta-mediated reactions in this patient group. Changes in the TLR2 expression after rhIL-15 stimulation appear to have a favorable effect on mechanism recognition of Bb. The relations between IL-6 and its regulators (sIL-6Ralpha and sgp130) as well as between IL-1beta and its regulators (IL-1Ra and sIL-1RII) after rhIL-15 stimulation may lead to enhanced IL-1beta- and IL-6-mediated inflammatory reactions in the course of Lyme disease.  相似文献   

8.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are both low-molecular-weight lysophospholipid (LPL) ligands which are recognized by the Edg family of G protein-coupled receptors (GPCRs). In endothelial cells, these two ligands activate Edg receptors resulting in cell proliferation and cell migration. Interleukin-8 (IL-8) is a C-X-C chemokine and acts as a chemoattractant of neutrophils, whereas monocyte chemoattractant protein-1 (MCP-1) is a C-C chemokine and functions mainly as a chemoattractant of monocytes/macrophages. Both factors are secreted from endothelial cells and have been implicated in the processes leading to atherosclerosis. We examined the effects of LPLs on the expression of IL-8 and MCP-1, key regulators of leukocyte recruitment in human umbilical cord vein endothelial cells (HUVECs). Work illustrated in this article showed that LPA and S1P enhanced IL-8 and MCP-1 mRNA expressions, and protein secretions in dose- and time-dependent fashions. Maximal mRNA expression appeared at 16 hr post-ligand treatment. Using prior treatments with chemical inhibitors, LPLs enhanced IL-8 and MCP-1 expressions through a Gi-, Rho-, and NFkappaB-dependent mechanism. In a chemotaxis assay system, LPL treatments of endothelial cells enhanced monocyte recruitment through upregulating IL-8 and MCP-1 protein secretions. Pre-incubation with AF12198, an IL-1 receptor antagonist or IL-1 functional blocking antibody both suppressed the enhanced effects elicited by LPLs of IL-8 and MCP-1 mRNA expressions in HUVECs. These results suggest that LPLs released by activated platelets might enhance the IL-8- and MCP-1-dependent chemoattraction of monocytes toward the endothelium through an IL-1-dependent mechanism, which may play an important role in facilitating wound-healing and inflammation processes.  相似文献   

9.
Although cytokine synthesis in polymorphonuclear leukocytes (PMN) was shown to be modulated by soluble mediators, the impact of microenvironmental conditions has not been elucidated. In this study, we investigated the effect of cell density on cytokine release from human neutrophils. PMN were cultured at various cell densities (10 x 10(6) PMN/ml; 60 x 10(6) PMN/ml), and LPS-induced release of cytokines was quantified by ELISA technique. Upon an increase in PMN density, secretion of the CXC chemokine IL-8 was progressively reduced. This effect was paralleled by a decrease in IL-8 mRNA. In contrast, TNF-alpha and IL-1beta rose proportionally with increasing cell density. The inhibition of IL-8 secretion was reproduced by conditioned media of PMN at high cell density, but was not affected by blocking beta(2) integrin-dependent adhesion. When analyzing the supernatant of LPS-challenged neutrophils, large amounts of soluble TNFRs p55 and p75 (sTNFRI, sTNFRII), and IL-1R antagonist (IL-1RA), rising constantly with the cell density, were detected. Interestingly, combined blocking of the bioactivities of these mediators completely restored neutrophil IL-8 secretion at high cell densities, with the anti-IL-1RA Ab being the more potent agent. Moreover, combined application of exogenous IL-1RA and sTNFRs to 10 x 10(6) PMN/ml reproduced the suppression of IL-8 generation. We conclude that neutrophil IL-8 synthesis is autoregulated, being suppressed under conditions of high cell density. IL-1RA and sTNFRs, accumulating under these circumstances, seem to be centrally involved in this regulatory mechanism by interfering with the IL-1beta- and TNF-alpha-dependent IL-8 generation. This feedback mechanism may control further neutrophil recruitment and activation in a neutrophil-rich environment, thereby preventing tissue destruction.  相似文献   

10.
Tryptic enzymes such as tryptase, trypsin and thrombin are reportedly able to alter neutrophil behavior. However, little is known of the influence of these proteinases on lactoferrin or IL-8 release from neutrophils. In the present study, we investigated the effects of tryptase, trypsin, thrombin and elastase, and agonist peptides of PAR-1 SFLLR-NH(2) and PAR-2 SLIGKV-NH(2) and tc-LIGRLO-NH(2) on lactoferrin and IL-8 release from highly purified human neutrophils. Flow cytometry shows CD16(+) neutrophils express PAR-1 and PAR-2, but not PAR-3 and PAR-4 proteins. RT-PCR analysis reveals that neutrophils express only PAR-2 genes. Tryptase and trypsin, but not thrombin and elastase, induced significant lactoferrin and IL-8 secretion from neutrophils. SLIGKV-NH(2) and tc-LIGRLO-NH(2), but not SFLLR-NH(2), also stimulated lactoferrin and IL-8 secretion from neutrophils. In conclusion, only a proportion of neutrophils express PAR-1 and/or PAR-2. Tryptase and trypsin-induced lactoferrin and IL-8 secretion from neutrophils most likely occur through activation of PAR-2.  相似文献   

11.
BACKGROUND: Available data indicate that neutrophils (PMN) produce a wide range of cytokines with the potential to modulate immune response. Recent investigation have shown that interleukin (IL)-15 and IL-18 potentiated several functions of normal neutrophils. It has been reported that IL-18-induced cytokine production may be significantly enhanced by coincident addition of IL-15. AIMS: In the present study we compared the effect of recombinant human (rh)IL-15 and rhIL-18 as well as effect of a rhIL-15 and rhIL-18 combination on the induction secretion of sIL-6Ralpha and sgp130 by human neutrophils. METHODS: PMN were isolated from heparinized whole blood of healthy persons. The PMN were cultured for 18 h at 37 degrees C in a humidified incubator with 5% CO(2). rhIL-15 and/or rhIL-18 and lipopolysaccharide were tested to PMN stimulation. The culture supernatants of PMN were removed and examined for the presence of sIL-6R and sgp130 by human enzyme-linked immunosorbent assay kits. Cytoplasmic protein fractions of PMN were analysed for the presence of sIL-6R and sgp130 by western blotting using monoclonal antibodies capable of detecting these proteins. Cells were lysed and cytoplasmic proteins were electrophoresed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The resolved proteins were transferred onto nitrocellulose and incubated with the primary monoclonal antibodies anti-sIL-6R and anti-sgp130. The membranes were incubated at room temperature with alkaline phosphatase anti-mouse immunoglobulin G. Immunoreactive protein bans were visualized by an AP Conjugate Substrate Kit. RESULTS AND CONCLUSIONS: The results of our investigation revealed that IL-15 alone, similarly to IL-18, has no significant ability for the regulation of both soluble IL-6 receptors, sIL-6R and sgp130, released by human neutrophils. It is interesting to note that the secretion of sgp130 was changed after PMN stimulation with rhIL-15 in the presence of rhIL-18. The combination of rhIL-15 and rhIL-18 was shown to induce PMN to secretion relatively higher amounts of sgp130 compared with the stimulation of PMN with rhIL-15 alone and rhIL-18 alone. The results obtained suggest that IL-15 and IL-18, belonging to the inflammatory cytokines, through the regulation of sgp130 secretion must be also considered as anti-inflammatory mediators that may influence the balance reactions mediated by the IL-6 cytokine family.  相似文献   

12.
Interleukin (IL)-6 is produced at the site of inflammation and plays a key role in the acute phase response as defined by a variety of clinical and biological features such as the production of acute phase proteins. IL-6 in combination with its soluble receptor sIL-6Ralpha, dictates the transition from acute to chonic inflammation by changing the nature of leucocyte infiltrate (from polymorphonuclear neutrophils to monocyte/macrophages). In addition, IL-6 exerts stimulatory effects on T- and B-cells, thus favoring chronic inflammatory responses. Strategies targeting IL-6 and IL-6 signaling led to effective prevention and treatment of models of rheumatoid arthritis and other chronic inflammatory diseases.  相似文献   

13.
Herpetic stromal keratitis (HSK) is an immunopathologic disease triggered by infection of the cornea with HSV. Key events in HSK involve the interaction between cornea-infiltrating inflammatory cells and resident cells. This interaction, in which macrophages, producing IL-1 and TNF-alpha, and IFN-gamma-producing Th1 cells play a crucial role, results in the local secretion of immune-modulatory factors and a major influx of neutrophils causing corneal lesions and blindness. The Th1-derived cytokine IL-17 has been shown to play an important role in several inflammatory diseases characterized by a massive infiltration of neutrophils into inflamed tissue. Here we show that IL-17 is expressed in corneas from patients with HSK and that the IL-17R is constitutively expressed by human corneal fibroblasts (HCF). IL-17 exhibited a strong synergistic effect with TNF-alpha on the induction of IL-6 and IL-8 secretion by cultured HCF. Secreted IL-8 in these cultures had a strong chemotactic effect on neutrophils. IL-17 also enhanced TNF-alpha- and IFN-gamma-induced secretion of macrophage-inflammatory proteins 1alpha and 3alpha, while inhibiting the induced secretion of RANTES. Furthermore, considerable levels of IFN-gamma-inducible protein 10 and matrix metalloproteinase 1 were measured in stimulated HCF cultures, while the constitutive secretion of monocyte chemotactic protein 1 remained unaffected. The data presented suggest that IL-17 may play an important role in the induction and/or perpetuation of the immunopathologic processes in human HSK by modulating the secretion of proinflammatory and neutrophil chemotactic factors by corneal resident fibroblasts.  相似文献   

14.
In the present study, we explored the involvement of interleukin-6 (IL-6) in neutrophilia under inflammatory conditions. The neutrophil count in the peripheral blood was high in arthritic monkeys, and anti-IL-6 receptor antibody reduced neutrophil counts to normal levels. IL-6 injection into normal monkeys significantly increased neutrophil counts in the blood 3h after injection. The expression of cluster of differentiation (CD) 162 on circulating neutrophils was reduced by IL-6 injection. IL-6 treatment in vitro did not affect CD162 expression on neutrophils from human blood. In IL-6-treated monkeys, IL-8 and granulocyte-macrophage colony-stimulating factor (GM-CSF) levels in plasma were clearly elevated. IL-8 and GM-CSF treatment in vitro reduced cell-surface CD162 expression on human neutrophils, and moreover, increased soluble CD162 expression in the cell supernatant. The addition of IL-6 into human whole peripheral blood induced IL-8 production and reduced CD162 expression on neutrophils. Furthermore, IL-8 and GM-CSF augmented mRNA expression of a disintegrin and metalloprotease like domain 10 (ADAM10) in neutrophils. Knock-down of ADAM10 by siRNA in neutrophil-like HL-60 cells partially reversed the expression of CD162 reduced by GM-CSF and IL-8 on HL-60 cells. In conclusion, IL-6 induced neutrophilia and reduced CD162 expression on neutrophils in inflammation.  相似文献   

15.
Neutrophil depleted mice are protected from concanavalin A-mediated hepatitis, showing that neutrophils are critical for cellular liver damage. Interleukin-6 has pro- and anti-inflammatory properties and mediates neutrophil recruitment in diseases such as rheumatoid arthritis. In classic signaling, interleukin-6 binds to the membrane-bound interleukin-6-receptor and initiates signaling via gp130. In interleukin-6 trans-signaling, the agonistic soluble interleukin-6-receptor can form a soluble interleukin-6/interleukin-6-receptor complex and stimulate cells which only express gp130 but no interleukin-6-receptor. Interleukin-6 trans-signaling was shown to be important for liver regeneration and development of liver adenomas. Here, we show that blocking classic interleukin-6 signaling but not interleukin-6 trans-signaling reduced concanavalin A-induced liver damage in mice, with reduced liver STAT3 phosphorylation and liver neutrophil accumulation. However, the level of neutrophil-attracting chemokine KC is only reduced by inhibition of interleukin-6 trans-signaling. Analysis of circulating neutrophils after concanavalin A challenge revealed that classic interleukin-6 signaling is required for the mobilization of blood neutrophils. Reduced neutrophil infiltration was accompanied by increased levels of hepatoprotective monocyte chemoattractant protein-1 and reduced level of hepatodestructive interleukin-4. Abrogated classic interleukin-6 signaling in concanavalin A-mediated hepatitis exhibited liver-protective effects indicating that interleukin-6 classic but not interleukin-6 trans-signaling is responsible for liver damage. Classic interleukin-6 signaling is required to mount an efficient neutrophilia during concanavalin A-induced immune response, which might have clinical implications in the regard that blocking global interleukin-6 signaling pathways is a treatment option in different chronic inflammatory diseases.  相似文献   

16.
17.
Several chronic inflammatory changes undergone during chronic haemodialysis are associated with increased pro-inflammatory cytokine production. Although generation of anaphylatoxins has been incriminated in the untoward effects of haemodialysis, it is still debated whether anaphylatoxins stimulate monocyte secretion of TNF-alpha and IL-1. We demonstrate that peripheral mononuclear cells isolated from healthy controls and cultured with complement-activated autologous serum or recombinant C5a induced high levels of IL-1, IL-1ra, IL-8 and MCP-1, low levels of TNFalpha and sTNFRII but no IL-10 and MIP-1alpha. Cytokine production by leukocytes was investigated by FACS analysis in six patients dialysed consecutively with three equivalent low permeability membranes known to activate the complement to different degrees: polysulfone (F6HPS), cellulose acetate (CA) and cuprophane (CP). Percentage of leukocytes expressing IL-1, IL-1ra, TNF-alpha and IL-8 is increased in patients dialysed with CP. Moreover, we show for the first time that haemodialysis is associated with the production of cytokines by circulating neutrophils. Predialysis plasma levels of MCP-1 and TNFRII did not increase during the dialysis session at the time when anaphylatoxin generation was highest. Dialysis with membranes that activate the complement to a high extent induce activation of leukocytes which may explain chronic complications associated with dialysing with CP.  相似文献   

18.
Calcitonin gene-related peptide (CGRP), a neuropeptide with proinflammatory activities, is released from termini of corneal sensory neurons in response to pain stimuli. Because neutrophil infiltration of the clear corneal surface is a hallmark of corneal inflammation in the human eye, we determined whether CGRP can bind to human corneal epithelial cells (HCEC) and induce expression of the neutrophil chemotactic protein IL-8. It was found that HCEC specifically bound CGRP in a saturable manner with a Kd of 2.0 x 10-9 M. Exposure of HCEC to CGRP induced a significant increase in intracellular cAMP levels and enhanced IL-8 synthesis nearly 4-fold. The capacity of CGRP to stimulate cAMP and IL-8 synthesis was abrogated in the presence of the CGRP receptor antagonist CGRP8-37. CGRP stimulation had no effect on the half-life of IL-8 mRNA while increasing IL-8 pre-mRNA synthesis >2-fold. In contrast to IL-8, CGRP did not induce monocyte chemotactic protein-1 or RANTES synthesis, nor did the neuropeptide enhance detectable increases in steady state levels of mRNA specific for these two beta-chemokines. The results suggest that HCEC possess CGRP receptors capable of initiating a signal transduction cascade that differentially activates expression of the IL-8 gene but not the genes for monocyte chemotactic protein-1 or RANTES. The capacity of CGRP to stimulate IL-8 synthesis in HCEC suggests that sensory neurons are involved in induction of acute inflammation at the eye surface.  相似文献   

19.
This study describes a novel path to the activation of smooth muscle cells (SMC) by the IL-6/soluble IL-6 receptor (sIL-6R) system. Human vascular SMC constitutively express only scant amounts of IL-6R and so do not respond to stimulation with this cytokine. We show that SMC also do not constitutively express appreciable levels of gp130, which would render them sensitive to transsignaling by the IL-6/sIL-6R complex. Because gp130 is generally believed not to be subject to regulation, SMC would thus appear not to qualify as targets for the IL-6/sIL-6R system. However, we report that treatment of SMC with IL-6/sIL-6R provokes marked up-regulation of gp130 mRNA and surface protein expression. This is accompanied by secretion of IL-6 by the cells, so that an autocrine stimulation loop is created. In the wake of this self-sustaining system, there is a selective induction and secretion of MCP-1, up-regulation of ICAM-1, and marked cell proliferation. The study identifies SMC as the first example of cells in which gp130 expression is subject to substantive up-regulation, and discovers a novel amplification loop involving IL-6 and its soluble receptor that drives SMC into a proinflammatory state.  相似文献   

20.
IL-15 has been shown to accelerate and boost allergic sensitization in mice. Using a murine model of allergic sensitization to OVA, we present evidence that blocking endogenous IL-15 during the sensitization phase using a soluble IL-15Ralpha (sIL-15Ralpha) suppresses the induction of Ag-specific, Th2-differentiated T cells. This significantly reduces the production of OVA-specific IgE and IgG and prevents the induction of a pulmonary inflammation. Release of proinflammatory TNF-alpha, IL-1beta, IL-6, and IL-12 as well as that of Th2 cytokines IL-4, IL-5, and IL-13 into the bronchi are significantly reduced, resulting in suppressed recruitment of eosinophils and lymphocytes after allergen challenge. It is of clinical relevance that the airway hyper-responsiveness, a major symptom of human asthma bronchiale, is significantly reduced by sIL-15Ralpha treatment. Ex vivo analysis of the draining lymph nodes revealed reduced numbers of CD8, but not CD4, memory cells and the inability of T cells of sIL-15Ralpha-treated mice to proliferate and to produce Th2 cytokines after in vitro OVA restimulation. This phenomenon is not mediated by enhanced numbers of CD4(+)/CD25(+) T cells. These results show that IL-15 is important for the induction of allergen-specific, Th2-differentiated T cells and induction of allergic inflammation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号