首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated and cloned the full length cDNA for mouse GH-releasing hormone (mGRH) from mouse hypothalamus using a recently described strategy involving the polymerase chain reaction technique (PCR). Degenerate oligonucleotide primers were selected based on short (six amino acids) conserved regions in the human and rat GRH peptides that would recognize DNA sequences encoding similar amino acids regardless of codon usage. Primer-extended cDNA was amplified by PCR on cDNA templates prepared by reverse transcribing total mouse hypothalamic RNA. After cloning and sequencing the initial product, the 3' and 5' ends of mGRH were generated using a separate PCR strategy (RACE protocol). The mGRH cDNA encodes a 103-amino acid reading frame, structurally similar to the human and rat GRH genes, containing a signal sequence, a 42-residue GRH peptide, and a 31-residue C-terminal region. Although the structures of mouse and rat GRH are highly conserved in the signal peptide and C-terminal region, there is considerable diversity in the GRH region, which exhibits nearly comparable homology with the rat (68%) and human (62%) structures. Differences between mouse and rat GRH were also found in the amino acid cleavage sites at the 5' and 3' ends of the mature peptide and at the polyadenylation signal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The role of thyroid hormone and GH in the regulation of hypothalamic GH-releasing hormone (GRH) gene expression in the rat was examined after the induction of thyroid hormone deficiency by thyroidectomy. Thyroidectomy resulted in a time-dependent decrease in hypothalamic GRH content, which was significant by 2 weeks postoperatively, and a reduction in pituitary GH content to 1% of the control level by 4 weeks. In contrast, GRH secretion by incubated hypothalami under both basal and K(+)-stimulated conditions was increased after thyroidectomy. Hypothalamic GRH mRNA levels also exhibited a time-dependent increase, which was significant at 1 week and maximal by 2 weeks after thyroidectomy. Administration of antirat GH serum to thyroidectomized rats resulted in a further increase in GRH mRNA levels. T4 treatment of thyroidectomized rats for 5 days, which also partially restored pituitary GH content, lowered the elevated GRH mRNA levels. However, comparable effects on GRH mRNA levels were observed by rat GH treatment alone. These results suggest that the changes in hypothalamic GRH gene expression after thyroidectomy in the rat are due to the GH deficiency caused by thyroidectomy, rather than a direct effect of thyroid hormone on the hypothalamus, since the changes were reversible by GH alone despite persistent thyroid hormone deficiency. In addition, they further support the role of GH as a physiological negative feedback regulator of GRH gene expression.  相似文献   

3.
Mouse placenta has been found to contain an mRNA that encodes a previously unidentified member of the prolactin-growth hormone family. This 1.1-kb mRNA (designated PRP mRNA) was detected as a cDNA clone that hydridized to a cDNA clone of mouse proliferin, a recently described growth-associated placental protein related to prolactin. PRP mRNA levels are highest in the fetal part of the placenta and peak at day 12 of gestation, decreasing gradually until term. The 972-bp sequence of PRP mRNA, determined from two cDNA clones, encodes a protein of 244 amino acid residues that has a hydrophobic leader sequence. The protein encoded by PRP mRNA has significant homology to all of the members of the prolactin family, yet is different from each of them; it also differs from mouse placental lactogen. Nucleotide sequence homology is most extensive between PRP and proliferin mRNAs, particularly at their 5' ends, where they share 92 of the first 97 nucleotides.  相似文献   

4.
5.
6.
Carp growth hormone: molecular cloning and sequencing of cDNA   总被引:5,自引:0,他引:5  
Y Koren  S Sarid  R Ber  V Daniel 《Gene》1989,77(2):309-315
cDNA clones of the fish Cyprinus carpio growth hormone (GH) mRNA have been isolated from a cDNA library prepared from carp pituitary gland poly(A)+RNA. The nucleotide sequence of one of the carp GH cDNA clones containing an insert of 1164 nucleotides (nt) was determined. The cDNA sequence was found to encode a polypeptide of 210 amino acids (aa) including a signal peptide of 22 aa and to contain 5' and 3' untranslated regions of the mRNA of 36 and 498 nt, respectively. The carp GH presents a 63% amino acid sequence homology with the salmon GH, has structural features common with other GH polypeptides of mammalian or avian origin and contains domains of conserved sequence near the N- and C-terminal regions. Southern blot hybridization of carp genomic DNA with GH cDNA probes shows the presence of at least two GH-coding sequences in the fish genome.  相似文献   

7.
Growth hormone-releasing hormone (GRH) was initially isolated, characterized, sequenced, and cloned from human tumors and subsequently from the hypothalamus of humans and other animal species. Extensive structure-function studies have indicated the amino terminus to be most important for its biologic action, and the primary mechanism of its bioinactivation occurs by cleavage of an amino terminal dipeptide. The GRH gene is expressed primarily in the hypothalamic arcuate nucleus but also in the placenta. Expression of the GRH gene is regulated by growth hormone in a classical feedback manner, with hypophysectomy leading to increased expression that is reversed by growth hormone treatment. GRH gene overexpression in transgenic mice leads to a syndrome similar to that of ectopic GRH secretion with massive pituitary hyperplasia and markedly enhanced growth. The transgenic mouse has been used for studies of GRH biosynthesis and provides a suitable model for the study of precursor processing to the mature hormone.  相似文献   

8.
Slot-blot hybridization technique was used to evaluate growth hormone-releasing hormone (GHRH) mRNA levels in the hypothalamus of long-term (14 days) hypophysectomized (HPX) rats treated or not with 125 micrograms hGH/rat, twice daily IP, since the first day postsurgery. In addition, mRNA levels were determined in the hypothalamus of short-term (4 days) GH-treated (250 micrograms hGH/rat, twice daily IP) intact rats. GHRH mRNA levels were increased in HPX rats, and GH treatment partially counteracted this rise. Short-term administration of GH decreased GHRH mRNA levels in intact rats. These results, evaluated together with previous findings showing decreased hypothalamic GHRH-like immunoreactivity in both HPX rats and intact rats given GH (6, 7, 9), indicate that GH exerts a negative feedback action on the synthesis and release of GHRH.  相似文献   

9.
10.
11.
12.
Cloning and sequencing of bullfrog growth hormone complementary DNA   总被引:2,自引:0,他引:2  
Total mRNA was isolated from the pituitary glands of bullfrog (Rana catesbeiana), purified by affinity chromatography with oligo(dT)-cellulose columns. The cDNA was synthesized and cloned in Escherichia coli using EcoRI linkers and pBR322 as vector. The cDNA library was screened by hybridization with 32P-labeled duck growth hormone (GH) cDNA. A positive clone was selected and sequenced. The full-length bullfrog GH cDNA contains 950 nucleotide pairs with an open reading frame coding for the precursor GH of 215 amino-acid residues. The partial amino-acid sequence from the protein confirms that derived from the cDNA, with Phe as the first residue in the mature bullfrog GH preceded by a 25-residue hydrophobic signal peptide. The bullfrog GH shares sequence homology with those of other vertebrate species in the following order: duck (61% protein sequence homology; 67% cDNA homology), rat (56%; 61%), human (47%; 57%) and salmon (42%; 50%).  相似文献   

13.
The effect of Freund's adjuvant injection on 24-hour variation of hypothalamic corticotropin-releasing hormone (CRH), thyrotropin-releasing hormone (TRH), GH-releasing hormone (GRH) and somatostatin levels was examined in adult rats kept under light between 0800 and 2000 h daily. Groups of rats receiving Freund's complete adjuvant or its vehicle 3 days before sacrifice were killed at six different time intervals throughout a 24-hour cycle. In the median eminence, adjuvant vehicle-injected rats exhibited significant 24-hour variations for the four hormones examined, with maxima at noon. These 24-hour rhythms were inhibited or suppressed by Freund's adjuvant injection. In the anterior hypothalamus of adjuvant vehicle-treated rats, CRH content peaked at 1600 h, while two peaks were found for TRH and GRH levels, i.e., at 2400-0400 h and 1600 h. Freund's adjuvant injection suppressed 24-hour rhythm of anterior hypothalamic CRH, TRH and GRH content and uncovered a peak in anterior hypothalamic somatostatin levels at 0400 h. In the medial hypothalamus of adjuvant vehicle-treated rats, significant 24-hour variations were detectable for TRH (peaks at 1600 and 2400 h) and somatostatin (peak at 2400 h) which disappeared after Freund's adjuvant injection. In the posterior hypothalamus of adjuvant vehicle-treated rats, two peaks were apparent for CRH, TRH and somatostatin levels, i.e. at 1600 h and 2400-0400 h, this hormonal profile remaining unmodified after Freund's adjuvant administration. The administration of the immunosuppressant drug cyclosporine (5 mg/kg, 5 days) impaired the depressing effect of Freund's adjuvant injection on CRH, TRH and somatostatin content in median eminence, but not that on GRH. In the anterior hypothalamus, cyclosporine generally prevented the effect of immunization on hormone levels an revealed a second maximum in TRH at 0400 h. Cyclosporine also restored 24-hour variations in TRH and somatostatin levels of medial hypothalamus of Freund's adjuvant-injected rats but was unable to modify them in the posterior hypothalamus. The results further support the existence of a significant effect of immune-mediated inflammatory response at an early phase after Freund's adjuvant injection on hypothalamic levels which was partially sensitive to immunosuppression by cyclosporine.  相似文献   

14.
15.
It has been shown that the extent of methylation of cytosine in vertebrate DNA is inversely correlated with gene expression. We studied cytosine methylation in and around the homologous human growth hormone (GH) and chorionic somatomammotropin (CS) genes to determine if these genes are undermethylated in DNA from tissues in which they are expressed (pituitary and placenta, respectively) compared to other tissues. Hpa II and Hha I (which cleave only unmethylated 5' CCGG 3' and 5' GCGC 3' respectively) and Msp I (which cleaves CCGG and CmeCGG) were used to digest DNA samples followed by gel electrophoresis, Southern transfer and hybridization with a GH cDNA probe. The extent of methylation of Hpa II and Hha I sites in the GH and CS genes was leukocyte much greater than pituitary greater than placenta = hydatidiform mole. Taken as a whole, our data support the hypothesis that undermethylation is a necessary but not sufficient condition for gene expression since placental and pituitary DNAs are less methylated than leukocyte DNA in this region. However, the correlation between gene expression and undermethylation is imperfect since (1) hydatiform mole DNA has a very similar methylation pattern compared to placental DNA even though moles make little or no CS and (2) the level of methylation of the GH gene compared to the CS gene does not vary in a tissue-specific manner.  相似文献   

16.
17.
18.
Two prolactin-like proteins (bPLP-I and bPLP-II) were deduced from the nucleotide sequence analyses of the cDNA clones derived from a bovine (Bos taurus) term placenta. These proteins resembled bovine prolactin but were different from the reported bovine placental lactogens or prolactin-related proteins. The predicted amino acid sequences of these clones showed 45-51% identity with bovine prolactin and 23-24% with bovine growth hormone. The two new clones show 62 and 39% overall homology with each other at the levels of nucleotide and amino acid sequences, respectively. bPLP-I, bPLP-II, placental lactogens, prolactins (PRLs), and other prolactin-like proteins isolated from cow, mouse, and rat share 7 common amino acid residues. Five of the 7 residues are conserved by other members of the family such as growth hormones, suggesting that they may be essential for the common structural features of the gene family. The other 2 residues are uniquely conserved in bovine, mouse, and rat placental lactogens, PRLs, and PRL-like proteins, predicting their indispensable roles in binding to the specific receptors. bPLP-I and bPLP-II, as well as bPLP-III, are shown to be expressed stage specifically and predominantly in full-term bovine placentas.  相似文献   

19.
Cloning and sequence analysis of mink growth hormone cDNA   总被引:2,自引:0,他引:2  
A cDNA clone for mink growth hormone (GH) was isolated from a mink pituitary cDNA library, employing a part of rat growth hormone cDNA sequence as a probe. According to the nucleotide sequence, mature mink GH consists of 190 amino acids with a calculated molecular weight of 21,720. The amino acid sequence homology between the mature region of mink GH and those of pig GH, rat GH, bovine GH and human GH was 98.4%, 93.7%, 89.0% and 66.7%, respectively.  相似文献   

20.
Regulation of rat growth hormone receptor gene expression   总被引:13,自引:0,他引:13  
A cDNA encoding the growth hormone (GH) receptor was cloned from rat liver. Both the nucleotide and translated amino acid sequence share greater than 70% similarity with the GH receptors from rabbit and human. An RNA probe was generated from this sequence for use in a solution hybridization assay to quantitate GH receptor mRNA expression in rat tissues. Expression was detected in 9/12 tissues examined, with the highest levels observed in the liver. Expression in liver, kidney, heart and muscle was developmentally regulated, being low at birth and rising to adult levels in 5 weeks. No difference was observed between hepatic expression in males and females, although livers from pregnant rats had elevated levels. Hypophysectomy and GH treatment did not affect hepatic GH receptor mRNA levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号