共查询到20条相似文献,搜索用时 15 毫秒
1.
DDR1 receptor tyrosine kinase promotes prosurvival pathway through Notch1 activation 总被引:1,自引:0,他引:1
Kim HG Hwang SY Aaronson SA Mandinova A Lee SW 《The Journal of biological chemistry》2011,286(20):17672-17681
2.
3.
Abdulhussein R McFadden C Fuentes-Prior P Vogel WF 《The Journal of biological chemistry》2004,279(30):31462-31470
Discoidin domain receptors 1 and 2 (DDR1 and DDR2) are tyrosine kinase receptors activated by triple-helical collagens. Aberrant expression and signaling of these receptors have been implicated in several human diseases linked to accelerated matrix degradation and remodeling including tumor invasion, atherosclerosis and liver fibrosis. The objective of this study is to characterize the collagen-binding sites in the discoidin domains of DDR1 and DDR2 at a molecular level. We expressed glutathione S-transferase fusion proteins containing the discoidin and extracellular domains of DDR1 and DDR2 in insect cells and subjected them to a solid-phase collagen-binding assay. We found high affinity binding of the DDR extracellular domains to immobilized type I collagen and confirmed the discoidin-collagen interaction with an enzyme-linked immunosorbent assay-based read-out. Furthermore, we created a three-dimensional model of the DDR1 discoidin domain based on the related domains of blood coagulation factors V and VIII. This model predicts the presence of four neighboring, surface-exposed loops that are topologically equivalent to a major phospholipid-binding site in factors V and VIII. To test the involvement of these loops in collagen binding, we mutated individual amino acid residues to alanine or deleted short sequence stretches within these loops. We found that several residues within loop 1 (Ser-52-Thr-57) and loop 3 (Arg-105-Lys-112) as well as Ser-175 in loop 4 are critically involved in collagen binding. Our structure-function analysis of the DDR discoidin domains provides new insights into this non-integrin-mediated collagen-signaling mechanism and may ultimately lead to the design of small molecule inhibitors that interfere with aberrant DDR function. 相似文献
4.
Bocharov EV Mayzel ML Volynsky PE Goncharuk MV Ermolyuk YS Schulga AA Artemenko EO Efremov RG Arseniev AS 《The Journal of biological chemistry》2008,283(43):29385-29395
Eph receptors are found in a wide variety of cells in developing and mature tissues and represent the largest family of receptor tyrosine kinases, regulating cell shape, movements, and attachment. The receptor tyrosine kinases conduct biochemical signals across plasma membrane via lateral dimerization in which their transmembrane domains play an important role. Structural-dynamic properties of the homodimeric transmembrane domain of the EphA1 receptor were investigated with the aid of solution NMR in lipid bicelles and molecular dynamics in explicit lipid bilayer. EphA1 transmembrane segments associate in a right-handed parallel alpha-helical bundle, region (544-569)(2), through the N-terminal glycine zipper motif A(550)X(3)G(554)X(3)G(558). Under acidic conditions, the N terminus of the transmembrane helix is stabilized by an N-capping box formed by the uncharged carboxyl group of Glu(547), whereas its deprotonation results in a rearrangement of hydrogen bonds, fractional unfolding of the helix, and a realignment of the helix-helix packing with appearance of additional minor dimer conformation utilizing seemingly the C-terminal GG4-like dimerization motif A(560)X(3)G(564). This can be interpreted as the ability of the EphA1 receptor to adjust its response to ligand binding according to extracellular pH. The dependence of the pK(a) value of Glu(547) and the dimer conformational equilibrium on the lipid head charge suggests that both local environment and membrane surface potential can modulate dimerization and activation of the receptor. This makes the EphA1 receptor unique among the Eph family, implying its possible physiological role as an "extracellular pH sensor," and can have relevant physiological implications. 相似文献
5.
Discoidin domain receptor 1 (DDR1) is a transmembrane receptor tyrosine kinase activated by triple-helical collagen. So far six different isoforms of DDR1 have been described. Aberrant expression and signaling of DDR1 have been implicated in several human diseases linked to accelerated matrix degradation and remodeling, including tumor invasion, atherosclerosis, and lung fibrosis. Here we show that DDR1 exists as a disulfide-linked dimer in transfected as well as endogenously expressing cells. This dimer formation occurred irrespective of its kinase domain, as dimers were also found for the truncated DDR1d isoform. A deletion analysis of the extracellular domain showed that DDR1 mutants lacking the stalk region failed to form dimers, whereas deletion of the discoidin domain did not prevent dimerization. Point mutagenesis within the stalk region suggested that cysteines 303 and 348 are necessary for dimerization, collagen binding, and activation of kinase function. The identification of DDR1 dimers provides new insights into the molecular structure of receptor tyrosine kinases and suggests distinct signaling mechanisms of each receptor subfamily. 相似文献
6.
Dimerization mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase. 总被引:2,自引:0,他引:2
Oncogenic activation of the met (hepatocyte growth factor/scatter factor) receptor tyrosine kinase involves a genomic rearrangement that generates a hybrid protein containing tpr-encoded sequences at its amino terminus fused directly to the met-encoded receptor kinase domain. Deletion of Tpr sequences abolishes the transforming ability of this protein, implicating this region in oncogenic activation. We demonstrate, by site-directed mutagenesis and coimmunoprecipitation experiments, that a leucine zipper motif within Tpr mediates dimerization of the tpr-met product and is essential for the transforming activity of the met oncogene. By analogy with ligand-stimulated activation of receptor tyrosine kinases, we propose that constitutive dimerization mediated by a leucine zipper motif within Tpr is responsible for oncogenic activation of the Met kinase. The possibility that this mechanism of activation represents a paradigm for a class of receptor tyrosine kinase oncogenes activated by DNA rearrangement is discussed. 相似文献
7.
The Arc two-component system modulates the expression of numerous genes in response to respiratory growth conditions. This system comprises ArcA as the response regulator and ArcB as the sensor kinase. ArcB is a tripartite histidine kinase whose activity is regulated by the oxidation of two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation. Here, we report that the ArcB protein segment covering residues 70-121, fulfills the molecular characteristics of a leucine zipper containing coiled coil structure. Also, mutational analyses of this segment reveal three different phenotypical effects to be distributed along the coiled coil structure of ArcB, demonstrating that this motif is essential for proper ArcB signaling. 相似文献
8.
The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase 总被引:14,自引:0,他引:14 下载免费PDF全文
Maroun CR Naujokas MA Holgado-Madruga M Wong AJ Park M 《Molecular and cellular biology》2000,20(22):8513-8525
Epithelial morphogenesis is critical during development and wound healing, and alterations in this program contribute to neoplasia. Met, the hepatocyte growth factor (HGF) receptor, promotes a morphogenic program in epithelial cell lines in matrix cultures. Previous studies have identified Gab1, the major phosphorylated protein following Met activation, as important for the morphogenic response. Gab1 is a docking protein that couples the Met receptor with multiple signaling proteins, including phosphatidylinositol-3 kinase, phospholipase Cgamma, the adapter protein Crk, and the tyrosine specific phosphatase SHP-2. HGF induces sustained phosphorylation of Gab1 and sustained activation of extracellular signal-regulated kinase (Erk) in epithelial Madin-Darby canine kidney cells. In contrast, epidermal growth factor fails to promote a morphogenic program and induces transient Gab1 phosphorylation and Erk activation. To elucidate the Gab1-dependent signals required for epithelial morphogenesis, we undertook a structure-function approach and demonstrate that association of Gab1 with the tyrosine phosphatase SHP-2 is required for sustained Erk activation and for epithelial morphogenesis downstream from the Met receptor. Epithelial cells expressing a Gab1 mutant protein unable to recruit SHP-2 elicit a transient activation of Erk in response to HGF. Moreover, SHP-2 catalytic activity is required, since the expression of a catalytically inactive SHP-2 mutant, C/S, abrogates sustained activation of Erk and epithelial morphogenesis by the Met receptor. These data identify SHP-2 as a positive modulator of Erk activity and epithelial morphogenesis downstream from the Met receptor. 相似文献
9.
A putative leucine zipper within the herpes simplex virus type 1 UL6 protein is required for portal ring formation 总被引:1,自引:0,他引:1 下载免费PDF全文
The herpes simplex virus type 1 UL6 protein forms a 12-subunit ring structure at a unique capsid vertex which functions as a conduit for encapsidation of the viral genome. To characterize UL6 protein domains that are involved in intersubunit interactions and interactions with other capsid proteins, we engineered a set of deletion mutants spanning the entire gene. Three deletion constructs, D-5 (Delta 198-295), D-6 (Delta 322-416), and D-LZ (Delta 409-473, in which a putative leucine zipper was removed), were introduced into the viral genome. All three mutant viruses produced only B capsids, indicating a defect in encapsidation. Western blot analysis showed that the UL6 protein was present in the capsids isolated from two mutants, D-6 and D-LZ. The protein encoded by D-5, on the other hand, was not associated with capsids and was instead localized in the cytoplasm of the infected cells, indicating that this deletion affected the nuclear transport of the portal protein. The UL6 protein from the KOS strain (wild type) and the D-6 mutant were purified from insect cells infected with recombinant baculoviruses and shown to form ring structures as assessed by sucrose gradient centrifugation and electron microscopy. In contrast, the D-LZ mutant protein formed aggregates that sedimented throughout the sucrose gradient as a heterogeneous mixture and did not yield stable ring structures. A mutant (L429E L436E) in which two of the heptad leucines of the putative zipper were replaced with glutamate residues also failed to form stable rings. Our results suggest that the integrity of the leucine zipper region is important for oligomer interactions and stable ring formation, which in turn are required for genome encapsidation. 相似文献
10.
Ectodomain shedding of TGF-alpha and other transmembrane proteins is induced by receptor tyrosine kinase activation and MAP kinase signaling cascades 总被引:8,自引:0,他引:8 下载免费PDF全文
A variety of transmembrane proteins, such as transforming growth factor-alpha (TGF-alpha), tumor necrosis factor-alpha (TNF-alpha) and L-selectin, undergo shedding, i.e. cleavage of the ectodomain, resulting in release of a soluble protein. Although the physiological relevance of ectodomain shedding is well recognized, little is known about the signaling mechanisms activating this process. We show that growth factor activation of cell surface tyrosine kinase receptors induces ectodomain cleavage of transmembrane TGF-alpha through activation of the Erk MAP kinase signaling cascade without the need for new protein synthesis. In addition, expression of constitutively activated MEK1 or its downstream target Erk2 MAP kinase was sufficient to stimulate TGF-alpha shedding. The basal cleavage level in the absence of exogenous growth factor stimulation was due to p38 MAP kinase signaling. Accordingly, a constitutively activated MKK6, a p38 activator, activated TGF-alpha shedding in the absence of exogenous stimuli. In addition to TGF-alpha shedding, these mechanisms also mediate L-selectin and TNF-alpha cleavage. Thus, L-selectin shedding by neutrophils, induced by N-formylmethionyl-leucyl-phenylalanine, was strongly inhibited by inhibitors of Erk MAP kinase or p38 MAP kinase signaling. Our results indicate that activation of Erk and p38 signaling pathways may represent a general physiological mechanism to induce shedding of a variety of transmembrane proteins. 相似文献
11.
12.
The dimerization of PSGL‐1 is driven by the transmembrane domain via a leucine zipper motif 下载免费PDF全文
P‐selectin glycoprotein ligand‐1 (PSGL‐1) is a homodimeric mucin ligand that is important to mediate the earliest adhesive event during an inflammatory response by rapidly forming and dissociating the selectin‐ligand adhesive bonds. Recent research indicates that the noncovalent associations between the PSGL‐1 transmembrane domains (TMDs) can substitute for the C320‐dependent covalent bond to mediate the dimerization of PSGL‐1. In this article, we combined TOXCAT assays and molecular dynamics (MD) simulations to probe the mechanism of PSGL‐1 dimerization. The results of TOXCAT assays and Martini coarse‐grained molecular dynamics (CG MD) simulations demonstrated that PSGL‐1 TMDs strongly dimerized in a natural membrane and a leucine zipper motif was responsible for the noncovalent dimerization of PSGL‐1 TMD since mutations of the residues that occupied a or d positions in an (abcdefg)n leucine heptad repeat motif significantly reduced the dimer activity. Furthermore, we studied the effects of the disulfide bond on the PSGL‐1 dimer using MD simulations. The disulfide bond was critical to form the leucine zipper structure, by which the disulfide bond further improved the stability of the PSGL‐1 dimer. These findings provide insights to understand the transmembrane association of PSGL‐1 that is an important structural basis for PSGL‐1 preferentially binding to P‐selectin to achieve its biochemical and biophysical functions. 相似文献
13.
Structural and functional studies recently indicated that the erythropoietin receptor exists as a preassembled homodimer whose activation by ligand binding requires self-interaction of its transmembrane segment. Here, we probed the interface formed by the transmembrane segments by asparagine-scanning mutagenesis in a natural membrane. We show that this interface is based on a leucine zipper-like heptad repeat pattern of amino acids. The strongest impact of asparagine was observed at position 241, suggesting the highest packing density around this position, which is in agreement with results obtained upon mutation to alanine. Interestingly, the same face of the transmembrane helix had previously been shown to enter a heterophilic interaction with the transmembrane segment of gp55-P, a viral membrane protein that leads to ligand-independent receptor activation in infected cells. Further, functional characterization of an erythropoietin receptor mutant with asparagine at position 241 in a hematopoietic cell line showed that this protein could still be activated by erythropoietin yet was not constitutively active. This suggests that forced self-interaction of the transmembrane segments does not suffice to induce signaling of the erythropoietin receptor. 相似文献
14.
The nervous system in many species consists of multiple neuronal cell layers, each forming specific connections with neurons in other layers or other regions of the brain. How layer-specific connectivity is established during development remains largely unknown. In the Drosophila adult visual system, photoreceptor (R cell) axons innervate one of two optic ganglia layers; R1-R6 axons connect to the lamina layer, while R7 and R8 axons project through the lamina into the deeper medulla layer. Here, we show that the receptor tyrosine kinase Off-track (Otk) is specifically required for lamina-specific targeting of R1-R6 axons. Otk is highly expressed on R1-R6 growth cones. In the absence of otk, many R1-R6 axons connect abnormally to medulla instead of innervating lamina. We propose that Otk is a receptor or a component of a receptor complex that recognizes a target-derived signal for R1-R6 axons to innervate the lamina layer. 相似文献
15.
The tyrosine kinase activity of the epidermal-growth-factor receptor is necessary for phospholipase A2 activation. 下载免费PDF全文
H J Goldberg M M Viegas B L Margolis J Schlessinger K L Skorecki 《The Biochemical journal》1990,267(2):461-465
Cytosolic glutathione transferases (GSTs) were purified from the rat spleen by S-hexyl-GSH-Sepharose chromatography, and two major forms were identified as GSTs 2-2 and 7-7 (GST P). Besides these forms an acidic form (pI 5.8) was purified by chromatofocusing at pH 7-4 and it accounted for about 1% of the total GST activity bound to S-hexyl-GSH-Sepharose. Two-dimensional gel electrophoresis revealed that it is a homodimer (subunit Mr 26,000 with pI 5.8). Immunoblot analysis demonstrated that it was immunologically related to GSTs 2-2 and 1-1, and its N-terminal amino acid was apparently blocked, similarly to other forms of the class Alpha. This form had a low activity towards cumene hydroperoxide or 4-hydroxynon-2-enal, indicating that this form differed from GSTs 10-10 and 8-8 as well as from GSTs 1-1 and 2-2. These results suggest that it is a new form of GST belonging to the class Alpha. 相似文献
16.
17.
Structural requirements for the transmembrane activation of the insulin receptor kinase 总被引:7,自引:0,他引:7
Tetrameric insulin holoreceptor (alpha 2 beta 2) was reduced with dithiothreitol into alpha beta dimers such that they maintain up to 50% of insulin binding at tracer ligand concentrations. Scatchard analysis of insulin binding to dimers revealed that they had a reduced affinity for ligand by a factor of 3-6 compared to holoreceptor, whereas the maximum number of high affinity binding sites was not affected. The alpha beta dimers can be separated from holoreceptor by sucrose density gradient centrifugation, and hence, they are not associated by noncovalent interactions. Insulin-dependent autophosphorylation of alpha beta dimers isolated from low ionic strength sucrose density gradients was minimal and was always accompanied by reoxidation of dimers to the tetrameric holoreceptor. The reformed tetramer exhibited a strong insulin-dependent autophosphorylation reaction. Reoxidation was prevented by isolating alpha beta dimers in sucrose density gradients containing 0.15 M NaCl. Under these conditions, no insulin-dependent autophosphorylation was observed. When insulin receptor was first autophosphorylated and then reduced, receptor kinase activity, as assayed by histone phosphorylation, was not affected. Also, the insulin-independent, basal autophosphorylation was maintained after reduction into alpha beta dimers. We conclude that alpha beta-alpha beta interaction is not necessary for the maintenance of basal kinase activity or for insulin-activated kinase activity once autophosphorylation occurs. However, dimer-dimer interaction appears critical for the insulin-dependent activation of the receptor's intrinsic kinase activity. 相似文献
18.
In Drosophila embryos, the Torso receptor tyrosine kinase (RTK) activates the small G protein Ras (D-Ras1) and the protein kinase Raf (D-Raf) to activate ERK to direct differentiation of terminal structures . However, genetic studies have demonstrated that Torso, and by extension other RTKs, can activate Raf and ERK independently of Ras . In mammalian cells, the small G protein Rap1 has been proposed to couple RTKs to ERKs. However, the ability of Rap1 to activate ERKs remains controversial, in part because direct genetic evidence supporting this hypothesis is lacking. Here, we present biochemical and genetic evidence that D-Rap1, the Drosophila homolog of Rap1, can activate D-Raf and ERK. We show that D-Rap1 binds D-Raf and activates ERKs in a GTP- and D-Raf-dependent manner. Targeted disruption of D-Rap1 expression decreased both Torso-dependent ERK activation and the ERK-dependent expression of the zygotic genes tailless and huckebein to levels similar to those achieved in D-Ras1 null embryos. Furthermore, combined deficiencies of D-Ras1 and D-Rap1 completely abolished expression of these genes, mimicking the phenotype observed in embryos lacking D-Raf. These studies provide the first direct genetic evidence of Rap1-mediated activation of the MAP kinase cascade in eukaryotic organisms. 相似文献
19.
Quiescent cell proline dipeptidase (QPP) is an intracellular serine protease that is also secreted upon cellular activation. This enzyme cleaves N-terminal Xaa-Pro dipeptides from proteins, an unusual substrate specificity shared with dipeptidyl peptidase IV (CD26/DPPIV). QPP is a 58-kDa protein that elutes as a 120-130-kDa species from gel filtration, indicating that it forms a homodimer. We analyzed this dimerization with in vivo co-immunoprecipitation assays. The amino acid sequence of QPP revealed a putative leucine zipper motif, and mutational analyses indicated that this leucine zipper is required for homodimerization. The leucine zipper mutants showed a complete lack of enzymatic activity, suggesting that homodimerization is important for QPP function. On the other hand, an enzyme active site mutant retained its ability to homodimerize. These data are the first to demonstrate a role for a leucine zipper motif in a proteolytic enzyme and suggest that leucine zipper motifs play a role in mediating dimerization of a diverse array of proteins. 相似文献
20.
Ly-6A is required for T cell receptor expression and protein tyrosine kinase fyn activity. 总被引:2,自引:0,他引:2 下载免费PDF全文
To characterize the function of the Ly-6A antigen in T cell activation, antisense Ly-6 RNA was expressed in a stably transfected antigen-specific T cell clone. Reduced Ly-6A expression results in inhibition of responses to antigen, anti-TCR (anti-T cell receptor) crosslinking and concanavalin A plus recombinant interleukin 1 and causes impairment of in vitro fyn tyrosine kinase activity. More substantial reduction of Ly-6A results in reduction of TCR expression. Analysis of mRNA species indicates that the reduction is specific for the TCR beta chain. These data demonstrate that Ly-6A may regulate TCR expression and may be involved in early events of T cell activation via regulation of fyn tyrosine kinase activity. 相似文献