首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bacterial strain 5HP capable of degrading and utilizing 5-hydroxypicolinic acid as the sole source of carbon and energy was isolated from soil. In addition, the isolate 5HP could also utilize 3-hydroxypyridine and 3-cyanopyridine as well as nicotinic, benzoic and p-hydroxybenzoic acids for growth in the basic salt media. On the basis of 16S rRNA gene sequence analysis, the isolate 5HP was shown to belong to the genus Pusillimonas. Both the bioconversion analysis using resting cells and the enzymatic assay showed that the degradation of 5-hydroxypicolinic acid, 3-hydroxypyridine and nicotinic acid was inducible and proceeded via formation of the same metabolite, 2,5-dihydroxypyridine. The activity of a novel enzyme, 5-hydroxypicolinate 2-monooxygenase, was detected in the cell-free extracts prepared from 5-hydroxypicolinate-grown cells. The enzyme was partially purified and was shown to catalyze the oxidative decarboxylation of 5-hydroxypicolinate to 2,5-dihydroxypyridine. The activity of 5-hydroxypicolinate 2-monooxygenase was dependent on O2, NADH and FAD.  相似文献   

2.
The visA gene of Streptomyces virginiae has been thought to be a part of the virginiamycin S (VS) biosynthetic gene cluster based on its location in the middle of genes that encode enzymes highly similar to those participating in the biosynthesis of streptogramin-type antibiotics. Heterologous expression of the visA gene was achieved in Escherichia coli by an N-terminal fusion with thioredoxin (TrxA), and the intact recombinant VisA protein (rVisA) was purified after cleavage with enterokinase to remove the TrxA moiety. The purified rVisA showed clear L-lysine 2-aminotransferase activity with an optimum pH of around 8.0 and an optimum temperature at 35 degrees C, with 2-oxohexanoate as the best amino acceptor, indicating that VisA converts L-lysine into Delta(1)-piperidine 2-carboxylic acid. A visA deletion mutant of S. virginiae was created by homologous recombination, and the in vivo function of the visA gene was studied by phenotypic comparison between the wild type and the visA deletion mutant. No differences in growth in liquid media or in morphological behavior on solid media were observed, indicating that visA is not involved in primary metabolism or morphological differentiation. However, the visA mutant failed to produce VS while maintaining the production of virginiamycin M(1) at a level comparable to that of the parental wild-type strain, demonstrating that visA is essential to VS biosynthesis. These results, together with the observed recovery of the defect in VS production by the external addition of 3-hydroxypicolinic acid (3-HPA), a starter molecule in VS biosynthesis, suggest that VisA is the first enzyme of the VS biosynthetic pathway and that it supplies 3-HPA from L-lysine.  相似文献   

3.
In the conversion of quinolinic acid to 6-hydroxypicolinic acid by whole cells of Alcaligenes sp. strain UK21, the enzyme reactions involved in the hydroxylation and decarboxylation of quinolinic acid were examined. Quinolinate dehydrogenase, which catalyzes the first step, the hydroxylation of quinolinic acid, was solubilized from a membrane fraction, partially purified, and characterized. The enzyme catalyzed the incorporation of oxygen atoms of H2O into the hydroxyl group. The dehydrogenase hydroxylated quinolinic acid and pyrazine-2,3-dicarboxylic acid to form 6-hydroxyquinolinic acid and 5-hydroxypyrazine-2,3-dicarboxylic acid, respectively. Phenazine methosulfate was the preferred electron acceptor for quinolinate dehydrogenase. 6-Hydroxyquinolinate decarboxylase, catalyzing the nonoxidative decarboxylation of 6-hydroxyquinolinic acid, was purified to homogeneity and characterized. The purified enzyme had a molecular mass of approximately 221 kDa and consisted of six identical subunits. The decarboxylase specifically catalyzed the decarboxylation of 6-hydroxyquinolinic acid to 6-hydroxypicolinic acid, without any co-factors. The N-terminal amino acid sequence was homologous with those of bacterial 4,5-dihydroxyphthalate decarboxylases.  相似文献   

4.
1,3-propanediol oxidoreductase (DhaT), which catalyzes the conversion of 3-hydroxypropionaldehyde (3-HPA) to 1,3-propanediol (1,3-PD) with the oxidation of NADH to NAD+, is a key enzyme in the production of 1,3-PD from glycerol. DhaT is known to be severely inactivated by its physiological substrate, 3-HPA, due to the reaction of 3-HPA with the thiol group of the cysteine residues. In this study, using site-directed mutagenesis, four cysteine residues in Klebsiella pneumoniae J2B DhaT were substituted to alanine, the amino acid commonly found in cysteine’s positions in other DhaT, individually and in combination. Among the total of 15 mutants developed, a double mutant (C28A_C107A) and a triple mutant (C28A_C93A_C107A) exhibited approximately 50 and 16% higher activity than the wild-type counterpart, respectively, after 1 h incubation with 10 mM 3-HPA. According to detailed kinetic studies, the double mutant had slightly better kinetic properties (V max , K cat , and K m for both 3-HPA and NADH) than wild-type DhaT. This study shows that DhaT stability against 3-HPA can be increased by cysteine-residue removal, albeit to a limited extent.  相似文献   

5.
An actinomycete strain designated as 4297 was isolated from a soil sample collected near Moscow. The strain produced a complex of two antibiotics. One of them had a broad antibacterial spectrum and, in terms of its physicochemical properties and X-ray structural evidence, was identified with griseoviridin. The other was active against gram-positive bacteria and, by its chromatographic comparison with an authentic sample, mass spectroscopic determination of the molecular weight and UV spectra, was identified with etamycin. The strain 4297 differed from the described cultures producing griseoviridin and etamycin. By the taxonomic features it was classified as belonging to Streptomyces albolongus.  相似文献   

6.
The enzyme 4-hydroxyphenylacetate, NAD(P)H:oxygen oxidoreductase (1-hydroxylating) (EC 1.14.13 ...; 4-hydroxyphenylacetate 1-monooxygenase; referred to here as 4-HPA 1-hydroxylase) was induced in Pseudomonas acidovorans when 4-hydroxyphenylacetate (4-PHA) was utilized as carbon source for growth; homogentisate and maleylacetoacetate were intermediates in the degradation of 4-HPA. A preparation of the hydroxylase that was free from homogentisate dioxygenase and could be stored at 4 C in the presence of dithioerythritol with little loss of activity was obtained by ultracentrifuging cell extracts; but when purified 18-fold by affinity chromatography the enzyme became unstable. Flavin adenine dinucleotide and Mg2+ ions were required for full activity. 4-HPA 1-hydrocylase was inhibited by KCl, which was uncompetitive with 4-HPA. Values of Ki determined for inhibitors competitive with 4-HPA were 17 muM dl-4-hydroxymandelic acid, 43 muM 3,4-dihydroxyphenylacetic acid, 87 muM 4-hydroxy-3-methylphenylacetic acid, and 440 muM 4-hydroxyphenylpropionic acid. Apparent Km values for substrates of 4-HPA 1-hydroxylase were 31 muM 4-HPA, 67 muM oxygen, 95 muM reduced nicotinamide adenine dinucleotide (NADH); AND 250 muM reduced nicotinamide adenine dinucleotide phosphate (NADPH). The same maximum velocity was given by NADH and NADPH. A chemical synthesis is described for 2-deutero-4-hydroxyphenylacetic acid. This compound was enzymatically hydroxylated with retention of half the deuterium in the homogentisic acid formed. Activity as substrate or inhibitor of 4-HPA 1-hydroxylase was shown only by those analogues of 4-HPA that possessed a hydroxyl group substituent at C-4 of the benze nucleus. A mechanism is suggested that accounts for this structural requirement and also for the observation that when 4-hydroxyphenoxyacetic acid was attacked by the enzyme, hydroquinone was formed by release of the side chain, probably as glycolic acid. Only one enantiometer of racemic 4-hydroxyhydratropic acid was attacked by 4-HPA 1-hydroxylase; the product, alpha-methylhomogentisic acid (2-(2,5-dihydroxyphenyl)-propionic acid), exhibited optical activity. This observation suggests that, during its shift from C-1 to C-2 of the nucleus, the side chain of the substrate remains bound to a site on the enzyme while a conformational change of the protein permits the necessary movement of the benzene ring.  相似文献   

7.
3-Hydroxypropionic acid (3-HP) is a commercially valuable platform compound. Klebsiella pneumoniae has been concerned as an appropriate host for 3-HP production because of its robust capacity to metabolize glycerol. Glycerol conversion to 3-HP in K. pneumoniae comprises two successive reactions: glycerol dehydratase catalyzes glycerol to 3-hydroxypropionaldehyde (3-HPA); aldehyde dehydrogenase catalyzes 3-HPA to 3-HP. Previous studies focusing on inducible expression of aldehyde dehydrogenase have shown defects of high cost of inducer and low catalytic activity due to inclusion body. Here we show a different strategy that a native promoter in the host K. pneumoniae was used to drive the heterologous expression of aldehyde dehydrogenase gene ald4 from Saccharomyces cerevisiae. The 3-HP yield of the recombinant reached a peak of 4.23 g/L at log phase, but it decreased during later period of fermentation. Except the validation of high activity of ald4, particularly, the 3-HP formation was uncovered to be closely coupled with cell division, and the lacking of NAD and ATP at latter fermentation phase became the bottleneck for cell growth and 3-HP accumulation. Furthermore, 3-HP is postulated to be converted to 3-HPA via feedback inhibition or other metabolite via unknown mechanism. Since glycerol dissimilation is a common mechanism in a variety of bacteria, the expression strategy using native promoter and implications may provide significant insight into the metabolic engineering for 3-HP production.  相似文献   

8.
Mode of action of melinacidin, an inhibitor of nicotinic acid biosynthesis   总被引:3,自引:2,他引:1  
Melinacidin, a new antibacterial agent, blocked the synthesis of nicotinic acid and its amide in Bacillus subtilis cells. The inhibitory activity of the agent was reversed by nicotinic acid, its amide, or nicotinamide adenine dinucleotides, but not by l-kynurenine, l-3-hydroxykynurenine, l-hydroxyanthranilic acid, or quinolinic acid. These properties indicated that the antibiotic interferes with the conversion of quinolinic acid to nicotinate ribonucleotide by the enzyme quinolinate phosphoribosyl-transferase. However, the activity of a purified preparation of this enzyme derived from a Pseudomonas strain was not impaired by the antibiotic. This suggested that, in B. subtilis, melinacidin interferes with a reaction which occurs before the formation of quinolinic acid in the biosynthetic pathway leading to nicotinic acid. Failure of quinolinic acid to reverse melinacidin inhibition in B. subtilis cultures might be due to insufficient penetration of the cell membranes by quinolinate.  相似文献   

9.
K Glund  W Schlumbohm  M Bapat  U Keller 《Biochemistry》1990,29(14):3522-3527
A quinoxaline-2-carboxylic acid activating enzyme was purified to homogeneity from triostin-producing Streptomyces triostinicus. It could also be purified from quinomycin-producing Streptomyces echinatus. Triostins and quinomycins are peptide lactones that contain quinoxaline-2-carboxylic acid as chromophoric moiety. The enzyme catalyzes the ATP-pyrophosphate exchange reaction dependent on quinoxaline-2-carboxylic acid and the formation of the corresponding adenylate. Besides quinoxaline-2-carboxylic acid, the enzyme also catalyzes the formation of adenylates from quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid. No adenylates were seen from quinoline-3-carboxylic acid, quinoline-4-carboxylic acid, pyridine-2-carboxylic acid, and 2-pyrazinecarboxylic acid. Previous work [Gauvreau, D., & Waring, M. J. (1984) Can. J. Microbiol. 30, 439-450] revealed that quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid became efficiently incorporated into the corresponding quinoxaline antibiotic analogues in vivo. Together with the data described here, this suggests that the enzyme is part of the quinoxaline antibiotics synthesizing enzyme system. The enzyme displays a native molecular weight of 42,000, whereas in its denatured form it is a polypeptide of Mr 52,000-53,000. It resembles in its behavior actinomycin synthetase I, the chromophore activating enzyme involved in actinomycin biosynthesis [Keller, U., Kleinkauf, H., & Zocher, R. (1984) Biochemistry 23, 1479-1484].  相似文献   

10.
Normal rat kidney cells treated with the pyridine derivative picolinic acid, or 5-methylnicotinamide, an inhibitor of ADP-ribosylation, are unable to process 28S rRNA and accumulate 60S ribosomal subunits in the cytoplasm. Synthesis of polyA(+) RNA, rRNA precursors, and the processing of 18S rRNA into 40S ribosomal subunits are almost unaffected. Serum starvation and treatment of cells with histidinol, cycloleucine, nicotinic acid, or 1,10-phenanthroline do not elicit this alteration in rRNA metabolism. Ribosomal subunits synthesized before picolinic acid addition have different stabilities after picolinic acid treatment. The 40S subunits are degraded while the 60S subunits are more stable, demonstrating that a compensatory mechanism exists to maintain preferentially existing subunits when they are no longer being synthesized. The results suggest that ADP-ribosylation is necessary for proper processing of 28S rRNA and therefore for formation of mature 60S ribosomal subunits.  相似文献   

11.
Actinomycin synthetase I was purified to homogeneiety from actinomycin-producing Streptomyces chrysomallus. The purified enzyme is a single polypeptide chain of M(r) 45,000. It catalyzes the formation of the adenylate of 4-methyl-3-hydroxyanthranilic acid (4-MHA) from the free acid and ATP in an equilibrium reaction. 4-MHA is the precursor of the chromophoric part of actinomycin. By using the 4-MHA analogue, 4-methyl-3-hydroxybenzoic acid, as a model substrate it could be established that the equilibrium constant Keq is independent on enzyme concentration, which suggests that no stoichiometric acyladenylate-enzyme complex is formed in contrast to observations made with aminoacyl adenylates formed by aminoacyl-tRNA synthetases or multifunctional peptide synthetases. Actinomycin synthetase I does not charge itself with substrate carboxylic acid via a covalent thioester bond as is usual for amino acid activation in non-ribosomal peptide synthesis. In addition, the enzyme does not act as an acyl-coenzyme A ligase as revealed by its inability to release AMP in the presence of 4-MHA or other structurally related aromatic carboxylic acids, coenzyme A and ATP. Additional analysis of the activation reaction showed that it is exothermic, whereas the free enthalpy change delta G0 is positive due to a negative entropy change indicating a strong influence of restriction of random motion on the course of the reaction. Determinations of Km and kcat of various substrate carboxylic acids revealed the highest kcat/Km ratio for the natural substrate 4-MHA. From these properties, actinomycin synthetase I represents the prototype of novel chromophore activating enzymes involved in non-ribosomal synthesis of chromopeptide lactones in streptomycetes.  相似文献   

12.
The enzyme nicotinic acid mononucleotide adenylyltransferase (NaMN AT; EC 2.7.7.18) is essential for the synthesis of nicotinamide adenine dinucleotide and is a potential target for antibiotics. It catalyzes the transfer of an AMP moiety from ATP to nicotinic acid mononucleotide to form nicotinic acid adenine dinucleotide. In order to provide missing structural information on the substrate complexes of NaMN AT and to assist structure-based design of specific inhibitors for antibacterial discovery, we have determined the crystal structure of NaMN AT from Pseudomonas aeruginosa in three distinct states, i.e. the NaMN-bound form at 1.7A resolution and ATP-bound form at 2.0A as well as its apo-form at 2.0A. They represent crucial structural information necessary for better understanding of the substrate recognition and the catalytic mechanism. The substrate-unbound and substrate-complexed structures are all in the fully open conformation and there is little conformational change upon binding each of the substrates. Our structures indicate that a conformational change is necessary to bring the two substrates closer together for initiating the catalysis. We suggest that such a conformational change likely occurs only after both substrates are simultaneously bound in the active site.  相似文献   

13.
应用克雷伯杆菌诱变菌株(Kp8)分别在游离与固定化态下转化生物柴油副产物甘油(粗甘油)制备3-羟基丙醛(3-HPA)。结果发现,Kp8在含30 g/L粗甘油发酵培养基(实验条件I)中较初始克雷伯杆菌(Kp0)在含30 g/L纯甘油培养基(实验条件II)中发酵产3-HPA的相对产率提高了13.75%;Kp8与Kp0经溶胶-凝胶法固定后分别在实验条件I、II下发酵,前者3-HPA相对产率为游离Kp0的73.75%,后者为65.6%;固定化细胞分别进行了7个批次的发酵,实验条件I中3-HPA相对产率由80%降至60%,3-HPA总得率从0.321 g/g降到0.243 g/g,3-HPA转化率从40.1%降到30.4%,实验条件II中3-HPA相对产率维持在70%~80%水平,3-HPA总得率维持在0.315 g/g~0.276 g/g,3-HPA转化率维持在39.4%~34.5%。  相似文献   

14.
1,3-propanediol oxidoreductase (DhaT) of Klebsiella pneumoniae converts 3-hydroxypropionaldehyde (3-HPA) to 1,3-propanediol (1,3-PD) during microbial production of 1,3-PD from glycerol. In this study, DhaT from newly isolated K. pneumoniae J2B was cloned, expressed, purified, and studied for its kinetic properties. It showed, on its physiological substrate 3-HPA, higher activity than similar aldehydes such as acetaldehyde, propionaldehyde and butyraldehyde. The turnover numbers (k cat , 1/s) were estimated as 59.4 for the forward reaction (3-HPA to 1,3-PD at pH 7.0) and 10.0 for the reverse reaction (1,3-PD to 3-HPA at pH 9.0). The Michaelis constants (K m , mM) were 0.77 (for 3-HPA) and 0.03 (for NADH) for the forward reaction (at pH 7.0), and 7.44 (for 1,3-PD) and 0.23 (for NAD+) for the reverse reaction (at pH 9.0). Between these forward and reverse reactions, the optimum temperature and pH were significantly different (37°C and 7.0 vs. 55°C and 9.0, respectively). These results indicate that, under physiological conditions, DhaT mostly catalyzes the forward reaction. The enzyme was seriously inhibited by heavy metal ions such as Ag+ and Hg2+. DhaT was highly unstable when incubated with its own substrate 3-HPA, indicating the necessity of enhancing its stability for improved 1,3-PD production from glycerol.  相似文献   

15.
16.
Quinolinic, picolinic, and nicotinic acids and nicotinamide are end products of the kynurenine pathway from l-tryptophan and are intermediates in the biosynthesis of nicotinamide adenine dinucleotide. These compounds are involved in complex interrelationships with inflammatory and apoptotic responses associated with neuronal cell damage and death in the central nervous system. To facilitate the study of these compounds, we have utilized gas chromatography-mass spectrometry in electron capture negative ionization mode for their concurrent trace quantification in a single sample. Deuterium-labeled quinolinic, picolinic, and nicotinic acids were used as internal standards and the compounds were converted to their hexafluoroisopropyl esters prior to chromatography. Nicotinamide was readily quantified after conversion to nicotinic acid using gas-phase hydrolysis-a process which did not affect the deuterated internal standards. The on-column limit of quantification was less than 1 fmol for each of the analytes and calibration curves were linear. A packed column liner was used in the gas chromatograph inlet to effectively eliminate sample interference effects in the analysis of trace (femtomolar) levels of quinolinic acid. The method enables rapid and specific concurrent quantification of quinolinic, picolinic, and nicotinic acids in tissue extracts and physiological and culture media.  相似文献   

17.
In this report the optimization of biosynthesis of tacrolimus, the immunosupressant widely used in transplantology and dermatology was described. The enhancement of the productivity of Streptomyces tsukubaensis strain was achieved by development of new precursors of tacrolimus biosynthesis, which should allow to reduce the costs of the process.The enrichment of the fermentation medium in pyridine-2-carboxylic acid (picolinic acid), piperidine-2-carboxylic acid (pipecolic acid), pyridine-3-carboxylic acid (nicotinic acid) or pyridine-3-carboxylic acid amide (nicotinamide) caused significant growth of the productivity of tacrolimus: 7-fold, 6-fold, 3-fold and 5-fold, respectively. The optimum concentration of the precursors in medium was 0.0025–0.005%. The investigation of the kinetics of tacrolimus biosynthesis together with the analysis of the impact of tested compounds on the culture growth and NAD (nicotinamide adenine dinucleotide) concentration in S. tsukubaensis cells enables to put forward a hypothesis concerning the mechanism of action of tested culture medium additives. The compounds active as tacrolimus precursors (pipecolic and picolinic acids) are more effective than these active mainly as the growth promoters (nicotinamide and nicotinic acid). Nicotinamide and nicotinic acid – vitamin B3 components – promote S. tsukubaensis growth most probably due to the stimulation of NAD/NADP biosynthesis.  相似文献   

18.
An analytical method has been developed for the measurements of five urinary acids namely, quinolinic acid, picolinic acid, nicotinic acid, 2-pyridylacetic acid and 3-pyridylacetic acid. The high performance liquid chromatograph–electrospray ionization mass spectrometry was operated in positive polarity under selected ion monitoring mode, with a column flow rate of 0.2 ml/min and an injection volume of 20 μl. The method used isotope-labelled picolinic acid (PA-d4) and nicotinic acid (NA-d4) as internal standards for the quantification. The sample preparation involved parallel use of two different types of mixed-mode solid phase extraction cartridges (Strata-X-AW for the extraction of quinolinic acid, and Strata-X-C for the remaining acids). Quantitative analysis of five target acids in several human and rat urine samples showed that the levels of acids were relatively uniform among rats while larger variations were observed for human samples.  相似文献   

19.
A soluble enzyme which catalyzes the transfer of the methyl group from S-adenosyl-L-methionine to the nitrogen atom of pyridine-3-carboxylic acid (nicotinic acid) could be detected in protein preparations from heterotrophic cell suspension cultures of soybean (Glycine max L.). Enzyme activity was enriched nearly 100-fold by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography to study kinetic properties. S-adenosyl-L-methionine:nicotinic acid-N-methyltransferase (EC 2.1.1.7) showed a pH optimum at pH 8.0 and a temperature optimum between 35 and 40 degrees C. The apparent KM values were determined to be 78 microM for nicotinic acid and 55 microM for the cosubstrate. S-Adenosyl-L-homocysteine was a competitive inhibitor of the methyltransferase with a KI value of 95 microM. The native enzyme had a molecular mass of about 90 kDa. The catalytic activity was inhibited by reagents blocking SH groups, whereas other divalent cations did not significantly influence of the enzyme reaction. The purified methyltransferase revealed a remarkable specificity for nicotinic acid. No other pyridine derivative was a suitable methyl group acceptor. To study a potential methyltransferase activity with nicotinamide as substrate, an additional purification step was necessary to remove nicotinamide amidohydrolase activity from the enzyme preparation. This was achieved by affinity chromatography on S-adenosyl-L-homocysteine-Sepharose thus leading to a 580-fold purified enzyme which showed no methyltransferase activity toward nicotinamide as substrate.  相似文献   

20.
Batch fermentation of glycerol to 1,3-propanediol (1,3PPD) by Enterobacter agglomerans CNCM 1210 showed the lethal accumulation of 3-hydroxypropionaldehyde (3-HPA) when performed under initial substrate content higher than 40 g/L. Assigned to the inhibition by the NAD/NADH ratio of the 3-HPA converting enzyme: 1,3PPD dehydrogenase, intracellular assays were conducted in an attempt to identify the metabolic mechanisms involved in the increase of that ratio. An overflow metabolism through the 1,3PPD formation pathway was established, while a catabolic limitation in the oxidative branch at the level of glyceraldehyde-3-phosphate dehydrogenase occurred. Uncoupled activities of synthesis and consumption of reducing equivalents are thus suspected to provoke the increase of the NAD/NADH ratio and the subsequent accumulation of 3-HPA. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号