首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The quaternary structure of bovine seminal ribonuclease, the only dimeric protein in the superfamily of ribonucleases, is maintained both by noncovalent forces and by two intersubunit disulfides. The available monomeric derivatives of the enzyme may not be reassembled into dimers. They are catalytically active, but do not retain certain properties of the dimeric enzyme, such as: (i) the ability to respond cooperatively to increasing substrate concentrations in the rate-limiting reaction step; and (ii) the antitumor and immunosuppressive actions. In this report we describe the preparation of stable monomers of seminal ribonuclease which can be reassociated into covalent dimers indistinguishable from the native protein. With this procedure a hybrid dimer was constructed, made up of a native subunit associated to a subunit catalytically inactivated by selective alkylation of the active site His-119. This dimer was found to have enzymic properties typical of monomeric ribonucleases, such as a hyperbolic saturation curve in the hydrolytic rate-limiting step of the reaction. However, the hybrid dimer was one order-of-magnitude more active than the dimeric enzyme.  相似文献   

2.
Possible steps in the folding of bacteriorhodopsin are revealed by studying the refolding and interaction of two fragments of the molecule reconstituted in lipid vesicles. (1) Two denatured bacteriorhodopsin fragments have been purified starting from chymotryptically cleaved bacteriorhodopsin. Cleaved bacteriorhodopsin has been renatured from a mixture of the fragments in Halobacterium lipids/retinal/dodecyl sulfate solution following removal of dodecyl sulfate by precipitation with potassium. The renatured molecules have the same absorption spectrum and extinction coefficient as native cleaved bacteriorhodopsin. They are integrated into small lipid vesicles as a mixture of monomers and aggregates. Extended lattices form during the partial dehydration process used to orient samples for X-ray and neutron crystallography. (2) Correct refolding of cleaved bacterioopsin occurs upon renaturation in the absence of retinal. Regeneration of the chromophore and reformation of the purple membrane lattice are observed following subsequent addition of all-trans retinal. (3) The two chymotryptic fragments have been reinserted separately into lipid vesicles and refolded in the absence of retinal. Circular dichroism spectra of the polypeptide backbone transitions indicate that they have regained a highly alpha-helical structure. The kinetics of chromophore regeneration following reassociation have been studied by absorption spectroscopy. Upon vesicle fusion, the refolded fragments first reassociate, then bind retinal and finally regenerate cleaved bacteriorhodopsin. The complex formed in the absence of retinal is kinetically indistinguishable from cleaved bacterioopsin. The refolded fragments in lipid vesicles are stable for months, both as separate entities and after reassociation. These observations provide further evidence that the native folded structure of bacteriorhodopsin lies at a free energy minimum. They are interpreted in terms of a two-stage folding mechanism for membrane proteins in which stable transmembrane helices are first formed. They subsequently pack without major rearrangement to produce the tertiary structure.  相似文献   

3.
Band 3 (Mr = 95,000), the anion transport protein of human erythrocyte membranes exists primarily as a dimer in solutions of nonionic detergents such as octaethylene glycol mono-n-dodecyl ether (C12E8). The role of the oligomeric structure of Band 3 in the binding of [14C]4-benzamido-4'-aminostilbene-2,2'-disulfonate (BADS), an inhibitor of anion transport (Ki = 1-2 microM), was studied by characterizing the interaction of BADS with dimers and monomers of Band 3 covalently attached to p-mercuribenzoate-Sepharose 4B. BADS bound to matrix-bound Band 3 dimers with an affinity of approximately 3 microM at a stoichiometry of 1 BADS molecule/Band 3 monomer, in agreement with the BADS binding characteristic of Band 3 in the membrane and in solutions of C12E8. Band 3 dimers could be attached to the matrix via one subunit by limiting the amount of p-chloromercuribenzoate on the Sepharose bead. Matrix-bound monomers were formed by dissociation of the dimers with dodecyl sulfate or guanidine hydrochloride. Complete removal of the denaturants allowed formation of refolded Band 3 monomers since the matrix-bound subunits could not reassociate. These refolded Band 3 monomers were unable to bind BADS. Release of the monomers from the matrix with 2-mercaptoethanol allowed reformation of dimers with recovery of the BADS binding sites. These results suggest that the dimeric structure of Band 3 is required for BADS binding and that the BADS binding sites may be at the interface between the two halves of the Band 3 dimer.  相似文献   

4.
The native dimeric form of enolase from pig muscle was immobilized on Sepharose 4B activated with cyanogen bromide. The amount of matrix-bound enolase, its specific activity and kinetic properties depend on the extent of gel activation with CNBr. Only on the Sepharose activated with small quantities of CNBr the amount of protein which remained after treatment with Gdn.HCl was about 50% of the initially bound enolase, indicating that the enzyme was bound covalently to the matrix through a single subunit. The matrix-bound monomers obtained in this way were inactive and were unable to reassociate to dimers on addition of free subunits. The matrix-bound monomers obtained after KBr treatment were inactive but retained the ability to reassociate into active dimers after addition of free subunits. The results indicate that single matrix-bound subunits of pig muscle enolase are enzymatically inactive and dimeric structure is essential for catalytic activity.  相似文献   

5.
Native tetrameric alpha 2-macroglobulin molecules (alpha 2M) can be converted into a population of dimers by incubation with various divalent cations such as Zn, Cd, Mg, Cu, Ni, Co. This dissociation is completed within 30 min at 37 degrees C. These dimers have a characteristic shape and a size of about 16 X 8 nm, and appear to be the half of the native alpha 2M molecule which has a clear tetrameric structure as seen in the electron microscope. At room temperature or below, dimers obtained with 5 to 100 mM Zn++ can reassociate in long linear polymers which display a regular chain-like arrangement and a helical periodicity. The structural characteristics of this polymer are described. The trypsin inhibitory capacity of Zn++-treated alpha 2M has been studied in an attempt to correlate its Zn++-induced conformational changes with its functional modifications.  相似文献   

6.
Dimerization can be utilized to double the molecular weight of proteins and peptides and potentially increase their avidity of binding to target receptors. These dimerization effects may be utilized to increase in vivo half-lives in a manner similar to PEGylation and may also improve biological activity. In this paper, we report a new strategy for the synthesis of N-terminally linked protein and peptide homodimers utilizing native chemical ligation to conjugate a short dithioester linker to the N-terminal cysteines of protein and peptide monomers to form dimers in a single step. This strategy is general and has been applied to the production of dimers from three recombinantly expressed polypeptides, the IgG binding domain Protein G, an HIV entry inhibitor peptide C37H6, and human interleukin-1 receptor antagonist (IL-1ra). The biological activities of the C37H6 and IL-1ra dimers produced by these methods were retained or even slightly increased when compared to their corresponding monomers.  相似文献   

7.
Procedures are described for preparing monomeric selectively S-carboxamido-methylated and S-aminoethylated derivatives of seminal ribonuclease. The main properties of the derivatives, including their extinction coefficients, have been determined. Their catalytic activities and that of the S-carboxymethyl derivative have been tested. On double-stranded RNA as a substrate the monomeric derivatives are less active than the native dimeric enzyme, but much more active than pancreatic ribonuclease. On yeast RNA as a substrate the amino-ethyl derivative is found to be less active (80%) than the native enzyme, while the other two are over 30 percent more active. The monomers are stable in solution and when lyophilized from acetic acid solution do not associate to the same extent as pancreatic or native seminal ribonucleases.  相似文献   

8.
Accumulating evidence indicates that G protein-coupled receptors can assemble as dimers/oligomers but the role of this phenomenon in G protein coupling and signaling is not yet clear. We have used the purified leukotriene B4 receptor BLT2 as a model to investigate the capacity of receptor monomers and dimers to activate the adenylyl cyclase inhibitory Gi2 protein. For this, we overexpressed the recombinant receptor as inclusion bodies in the Escherichia coli prokaryotic system, using a human α5 integrin as a fusion partner. This strategy allowed the BLT2 as well as several other G protein-coupled receptors from different families to be produced and purified in large amounts. The BLT2 receptor was then successfully refolded to its native state, as measured by high-affinity LTB4 binding in the presence of the purified G protein Gαi2. The receptor dimer, in which the two protomers displayed a well defined parallel orientation as assessed by fluorescence resonance energy transfer, was then separated from the monomer. Using two methods of receptor-catalyzed guanosine 5′-3-O-(thio)triphosphate binding assay, we clearly demonstrated that monomeric BLT2 stimulates the purified Gαi2β1γ2 protein more efficiently than the dimer. These data suggest that assembly of two BLT2 protomers into a dimer results in the reduced ability to signal.  相似文献   

9.
A seminal difference exists between the two types of chains that constitute the tetrameric hemoglobin in vertebrates. While alpha chains associate weakly into dimers, beta chains self-associate into tightly assembled tetramers. While heterotetramers bind ligands cooperatively with moderate affinity, homotetramers bind ligands with high affinity and without cooperativity. These characteristics lead to the conclusion that the beta 4 tetramer is frozen in a quaternary R-state resembling that of liganded HbA. X-ray diffraction studies of the liganded beta 4 tetramers and molecular modeling calculations revealed several differences relative to the native heterotetramer at the "allosteric" interface (alpha 1 beta 2 in HbA) and possibly at the origin of a large instability of the hypothetical deoxy T-state of the beta 4 tetramer. We have studied natural and artificial Hb mutants at different sites in the beta chains responsible for the T-state conformation in deoxy HbA with the view of restoring a low ligand affinity with heme-heme interaction in homotetramers. Functional studies have been performed for oxygen equilibrium binding and kinetics after flash photolysis of CO for both hetero- and homotetramers. Our conclusion is that the "allosteric" interface is so precisely tailored for maintaining the assembly between alpha beta dimers that any change in the side chains of beta 40 (C6), beta 99 (G1), and beta 101 (G3) involved in the interface results in increased R-state behavior. In the homotetramer, the mutations at these sites lead to the destabilization of the beta 4 hemoglobin and the formation of lower affinity noncooperative monomers.  相似文献   

10.
It has long been considered that ecto-5'-nucleotidase (eNT) dimers consist of subunits linked by disulfide bonds. Hydrophilic (6.7S) and amphiphilic (4.0S) dimers were separated by sedimentation analysis of eNT purified from bull seminal plasma. Hydrophilic (4. 2S) and amphiphilic (2.6S) eNT monomers were obtained after reduction of disulfide bonds in dimers. The amphiphilic eNT dimers or monomers were converted into their hydrophilic variants with phosphatidylinositol-specific phospholipase C. SDS-PAGE plus Western blot showed 68 kDa subunits, regardless of the addition of beta-mercaptoethanol to the SDS mixture. Active eNT monomers were obtained by addition of 1 M guanidinium chloride (Gdn) to dimers, and unfolded subunits by addition of 4 M Gdn. The results unambiguously demonstrate that the subunits in eNT dimers are not linked by disulfide bridges, but by non-covalent bonds, and that dissociation precedes inactivation and unfolding.  相似文献   

11.
The globular domain of collagen IV was solubilized by collagenase digestion from a mouse tumor, human placenta and bovine aorta and was purified by chromatographic methods. The materials show a unique, mainly non-collagenous amino acid composition and contain small amounts of glucosamine and galactosamine. The globular structures with Mr = 170 000 appear as a hexameric assembly originating from two collagen IV molecules. Subunits of this assembly are two different dimers Da and Db (Mr about 56 000) and monomers (Mr = 28 000). Their N-terminal amino acid sequences start with short triple-helical sequences, which overlap with the C-terminal triple helix of the alpha 1(IV) and alpha 2(IV) chain, demonstrating that the globule originates from the C terminus of collagen IV. Dimers arise from monomers by disulfide cross-linking (form Db) and/or formation of non-reducible cross-links (form Da). Reduction under non-denaturing conditions causes partial dissociation of the globule and of collagen IV dimers, indicating that reducible cross-links are formed between monomers of two different collagen IV molecules. Dissociation of the hexamer into the subunits can be achieved with 8 M urea, sodium dodecyl sulfate or in the pH range 2.5-4. The latter indicates that carboxyl groups are essential for association. Mixtures of the subunits (monomers and dimers) or purified dimers reassemble in neutral buffer into hexamers as shown by ultracentrifugation and electron microscopy. Reconstituted hexamers, however, dissociate in a much broader pH range than the native globules. Circular dichroic spectra indicate that the structure is more completely refolded from acid-treated than from urea-treated material. These data suggest that globules originating from monomers (as existing in single collagen IV molecules) are stabilized by the adjacent triple helix. Covalent cross-link formation stabilizes the globular structure and allows reconstitution in stoichiometric proportions.  相似文献   

12.
E Fredericq  C Houssier 《Biopolymers》1972,11(11):2281-2308
The degree of binding of acridine orange to DNA, native or denatured, has been determined by equilibrium dialysis in 0.1M and 0.001M NaCl at 20°. The nature of the binding process has been investigated by studying various optical properties of the dye–DNA complexes and by relating them to the binding ratio. All these properties were found to vary quantitatively and qualitatively according to the successive stages of the process. These stages were assumed to be a strong binding of intercalated monomers followed by formation of bound dimers and finally by external binding of aggregates of native DNA. Absorption spectra of the complexes could be interpreted on that basis. Circular dichroism spectra were resolved into components: one band for intercalated monomers without interactions, two excition splittings for interacting monomers and bound dimers, respectively, weak bands and exciton splitting for external aggregates. The fluorescence intensity was greatly enhanced in intercallated monomers; its quenching at higher binding ratio was quantitatively related to dimer fixation. The value of the anisotropy of fluorescence at low binding ratio suggested a limited mobility of intercalated monomers; the decrease of polarization at higher binding was attributed to energy transfer between monomers. Electric dichroism displayed by the complexes in the dye absorption bands indicated an orientation of the bound molecules quite parallel to the base rings at low binding. In the range of fixation of dimers and external molecules, the dichroism was lower but still indicated an important degree of ordering.  相似文献   

13.
The effects of unfolding, refolding, and hybridization of triosephosphate isomerase (TPI) subunits from different species and subunits which have been specifically modified at the active site have been examined. These effects have been evaluated in terms of changes in catalytic parameters, CD spectra, and susceptibility to denaturation. Dissociation followed by reassociation yields an active dimer but with increased Km, reduced kcat, and increased susceptibility to inactivation and unfolding in denaturants. These data suggest that while the general structure of the refolded dimer is similar to the native enzyme, its complete original structure is not restored. Covalent reaction of the active site Glu165 with the substrate analogue 3-chloroacetol phosphate (CAP) results in dimers with increased susceptibility to unfolding and inactivation by denaturants (i.e. the rates of inactivation and unfolding are (TPICAP)2 greater than (TPI-TPICAP) greater than (TPI)2). These data point to the interactions between the catalytic center and the subunit interface. Subunits of TPI from different species, in spite of structural differences at the subunit interface, hybridized to active heterodimers. Subunit hybridization was random among monomers from different mammals, preferential between yeast and mammalian or avian monomers. Hybridization did not occur between avian and mammalian monomers under these conditions. These data provide information on the elements in the interface of the dimer and the relationship of the catalytic center with the subunit interface.  相似文献   

14.
Recent sequencing experiments have identified alpha-His246 as the phosphorylation site of Escherichia coli succinyl-CoA synthetase [Buck, D., Spencer, M. E., & Guest, J. R. (1985) Biochemistry 24, 6245-6252]. We have replaced alpha-His246 with an asparagine residue using site-directed mutagenesis techniques. The resulting mutant enzyme (designated H246N) exhibited no enzyme activity, as expected, but was found as a structurally intact, stable tetramer. Small differences in the net charge of H246N and wild-type enzymes were first detected on native polyacrylamide gels. These charge differences were resolved by using native isoelectric focusing gels to further separate the wild-type enzyme into diphosphorylated, monophosphorylated, and unphosphorylated species. The enzyme species were found to be interconvertible upon incubation with the appropriate enzyme substrate(s). Sample mixtures containing increasing molar ratios of H246N (alpha H246N beta)2 to wild-type enzyme (alpha beta)2 were unfolded and then refolded. The refolded enzyme mixtures were analyzed for enzymatic activity and separated on native isoelectric focusing gels. The hybrid enzyme (alpha beta alpha H246N beta) retained a significant amount of enzyme activity and also exhibited substrate synergism (stimulation of succinate in equilibrium succinyl-CoA exchange in the presence of ATP). Substrate synergism with this enzyme has been interpreted as evidence for interaction between active sites in such a way that only a single phosphoryl group is covalently attached to the enzyme at a given time [Wolodko, W. T., Brownie, E.R., O'Connor, M. D., & Bridger, W. A. (1983) J. Biol. Chem. 258, 14116-14119]. On the contrary, we conclude that tetrameric succinyl-CoA synthetase from E. coli is comprised of two independently active dimer molecules associated together to form a "dimer of dimers" that displays substrate synergism within each dimer and not necessarily between dimers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Musatov A  Robinson NC 《Biochemistry》2002,41(13):4371-4376
Bovine heart cytochrome c oxidase (CcO), solubilized by either nonionic detergents or phospholipids, completely dimerizes upon the addition of bile salts, e.g., sodium cholate, sodium deoxycholate, or CHAPS. Bile salt induced dimerization occurs whether dodecyl maltoside, decyl maltoside, or Triton X-100 is the primary solubilizing detergent or the enzyme is dispersed in phosphatidylcholine, phosphatidylethanolamine, or mixtures thereof. In each case, complete CcO dimerization can be verified by sedimentation velocity and sedimentation equilibrium after correction for bound detergent and/or phospholipid. The relative concentration of the bile salt is critical for production of homogeneous, dimeric CcO. For example, enzyme solubilized by 2 mM detergent requires an equal molar concentration of sodium cholate. Similarly, enzyme dispersed in 20 mM phospholipid requires 50 mM sodium cholate, concentrations that are commonly used to reconstitute CcO into small unilamellar vesicles. Bile salts do more than just stabilize dimeric CcO and prevent detergent-induced dissociation into monomers. They are able to completely reverse detergent-induced monomerization and cause completely monomeric CcO to reassociate. Dimeric CcO so generated is no more stable than the original complex and easily dissociates into monomers if the bile salt is removed. The dimerization process is dependent upon a full complement of subunits; e.g., if subunits VIa and VIb are removed, the resulting monomeric CcO will not reassociate upon the addition of sodium cholate. These results support four important consequences: (1) dissociation of dimeric CcO into monomers is reversible; (2) stable dimers can be produced under solution conditions; (3) dimers can be stabilized even at relatively high pH and low enzyme concentration; and (4) subunits VIa and VIb are required for dimerization.  相似文献   

16.
Protein refolding is currently a fundamental problem in biophysics and molecular biology. We have studied the refolding process of frutalin, a tetrameric lectin that presents structural homology with jacalin but shows a more marked biological activity. The initial state in our refolding puzzle was that proteins were unfolded after thermal denaturation or denaturation induced by guanidine hydrochloride, and under both conditions, frutalin was refolded. The denaturation curves, measured by fluorescence emission, gave values of conformational stability of 17.12 kJ.mol-1 and 12.34 kJ.mol-1, in the presence and absence of d-galactose, respectively. Native, unfolded, refolded frutalin and a distinct molecular form denoted misfolded, were separated by size-exclusion chromatography (SEC) on Superdex 75. The native and unfolded samples together with the fractions separated by SEC were also analyzed for heamagglutination activity by CD and fluorescence spectroscopy. The secondary structure content of refolded frutalin estimated from the CD spectra was found to be close to that of the native molecule. All the results obtained confirmed the successful refolding of the protein and suggested a nucleation-condensation mechanism, whereby the sugar-binding site acts as a nucleus to initiate the refolding process. The refolded monomers, after adopting their native three-dimensional structures, spontaneously assemble to form tetramers.  相似文献   

17.
The influence of urea on the allosteric phosphofructokinase from Escherichia coli has been studied by measuring the changes in enzymatic activity, protein fluorescence, circular dichroism, and retention in size-exclusion chromatography. Tetrameric, dimeric, and monomeric forms of the protein can be discriminated by their elution from a high-performance liquid chromatography gel filtration column. Three successive steps can be detected during the urea-induced denaturation of phosphofructokinase: (i) the dissociation of the native tetramer into dimers which abolishes the activity; (ii) the dissociation of dimers into monomers which exposes the unique tryptophan, Trp-311, to the aqueous solvent; (iii) the unfolding of the monomers which disrupts most of the secondary structure. This pathway involves the ordered dissociation of the interfaces between subunits and supports a previous hypothesis (Deville-Bonne et al., 1989). Phosphofructokinase can be quantitatively renatured from urea solutions, provided that precautions are taken to avoid the aggregation of one insoluble monomeric state. The renaturation of phosphofructokinase from urea implies three steps: an initial folding reaction within the monomeric state is followed by two successive association steps. The faster association step restores the native fluorescence, and the slower regenerates the active enzyme. The renaturation and denaturation of phosphofructokinase correspond to the complex pathway: tetramer in equilibrium dimer in equilibrium folded monomer in equilibrium unfolded monomer. It is found that the subunit interface which forms the regulatory site is more stable and associates 40 times more rapidly than the subunit interface which forms the active site.  相似文献   

18.
The pentapeptide repeat is a recently discovered protein fold. Mycobacterium tuberculosis MfpA is a founding member of the pentapeptide repeat protein (PRP) family that confers resistance to the antibiotic fluoroquinolone by binding to DNA gyrase and inhibiting its activity. The size, shape, and surface potential of MfpA mimics duplex DNA. As an initial step in a comprehensive biophysical analysis of the role of PRPs in the regulation of cellular topoisomerase activity and conferring antibiotic resistance, we have explored the solution structure and refolding of MfpA by fluorescence spectroscopy, CD, and analytical centrifugation. A unique CD spectrum for the pentapeptide repeat fold is described. This spectrum reveals a native structure whose beta-strands and turns within the right-handed quadrilateral beta-helix that define the PRP fold differ from canonical secondary structure types. MfpA refolded from urea or guanidium by dialysis or dilution forms stable aggregates of monomers whose secondary and tertiary structure are not native. In contrast, MfpA refolded using a novel "time-dependent renaturation" protocol yields protein with native secondary, tertiary, and quaternary structure. The generality of "time-dependent renaturation" to other proteins and denaturation methods is discussed.  相似文献   

19.
The unfolding and dissociation of the tetrameric enzyme fructose-1,6-bisphosphatase from pig kidney by guanidine hydrochloride have been investigated at equilibrium by monitoring enzyme activity, ANS binding, intrinsic (tyrosine) protein fluorescence, exposure of thiol groups, fluorescence of extrinsic probes (AEDANS, MIANS), and size-exclusion chromatography. The unfolding is a multistate process involving as the first intermediate a catalytically inactive tetramer. The evidence that indicates the existence of this intermediate is as follows: (1) the loss of enzymatic activity and the concomitant increase of ANS binding, at low concentrations of Gdn.HCl (midpoint at 0.75 M), are both protein concentration independent, and (2) the enzyme remains in a tetrameric state at 0.9 M Gdn.HCl as shown by size-exclusion chromatography. At slightly higher Gdn.HCl concentrations the inactive tetramer dissociates to a compact dimer which is prone to aggregate. Further evidence for dissociation of tetramers to dimers and of dimers to monomers comes from the concentration dependence of AEDANS-labeled enzyme anisotropy data. Above 2.3 M Gdn.HCl the change of AEDANS anisotropy is concentration independent, indicative of monomer unfolding, which also is detected by a red shift of MIANS-labeled enzyme emission. At Gdn.HCl concentrations higher than 3.0 M, the protein elutes from the size-exclusion column as a single peak, with a retention volume smaller than that of the native protein, corresponding to the completely unfolded monomer. In the presence of its cofactor Mg(2+), the denaturated enzyme could be successfully reconstituted into the active enzyme with a yield of approximately 70-90%. Refolding kinetic data indicate that rapid refolding and reassociation of the monomers into a nativelike tetramer and reactivation of the tetramer are sequential events, the latter involving slow and small conformational rearrangements in the refolded enzyme.  相似文献   

20.
Receptor dimerization is important for many signaling pathways. However, the monomer-dimer equilibrium has never been fully characterized for any receptor with a 2D equilibrium constant as well as association/dissociation rate constants (termed super-quantification). Here, we determined the dynamic equilibrium for the N-formyl peptide receptor (FPR), a chemoattractant G protein-coupled receptor (GPCR), in live cells at 37°C by developing a single fluorescent-molecule imaging method. Both before and after liganding, the dimer-monomer 2D equilibrium is unchanged, giving an equilibrium constant of 3.6 copies/μm(2), with a dissociation and 2D association rate constant of 11.0 s(-1) and 3.1 copies/μm(2)s(-1), respectively. At physiological expression levels of ~2.1 receptor copies/μm(2) (~6,000 copies/cell), monomers continually convert into dimers every 150 ms, dimers dissociate into monomers in 91 ms, and at any moment, 2,500 and 3,500 receptor molecules participate in transient dimers and monomers, respectively. Not only do FPR dimers fall apart rapidly, but FPR monomers also convert into dimers very quickly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号